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Explicit matrix ~l~ments ~re found for the generators of the group SO ( 6) in an arbitrary 
totally ~ymmetnc IrreducIble representation, using the physical principal SO (3) subgroup in 
the cham SO ( 6) :::J SO (5) :::J SO (3). The internal one missing label problem is solved through 
the definition of intrinsic states associated to the SU(2) XSU(2) subgroup in the chain 
SO(~) :::JSO.(5) ~SU(2) :X:SU(2) and out of which is projected a complete set of states in the 
phYSIcal basIs by mtegratlOns over the physical rotation group manifold. The matrix elements 
?f the SO. (6) generators in the SU (2) X SU (2) basis are themselves obtained by the 
mtermedlate use of an SU (2) X SU (2) xU ( 1 ) basis, the latter group being a subgroup of 
SO(6) but not ofSO(5). 

I. INTRODUCTION 

A well-known and remarkably successful model for de
scribing even-even nuclei is the standard interacting boson 
model. 1-3 The basic constituents of this model are an sand d 
boson, carrying angular momentum 0 and 2, respectively. 
The bilinear forms in the associated boson creation opera
tors (st, d Z: f-l = - 2, - 1, ... ,2) and boson annihilation 
operators (s, dl': f-l = - 2, -1, ... ,2) generate a U(6) Lie 
group. The principle of boson number conservation permits 
to restrict the group to SU (6) or even to its local contents 
described by the SU (6) Lie algebra. The interacting boson 
model thus allows for three-types of so-called dynamical 
symmetries, mathematically connected to the three Lie alge
bra inclusion chains SU(6) :::JSU(3) :::JSO(3), SU(6) 
:::JSO(6) :::JSO(5) :::JSO(3), and SU(6) :::JSU(5) :::JSO(5) 
:::J SO (3). Each of the chains ends at the physical SO (3) Lie 
subalgebra ofSU (6). Hence, the N-boson states belonging to 
the totally symmetric irreducible representation (irrep) 
[NOOOO] ofSU (6) are partly labeled by the angular momen
tum I and its projection m along a fixed axis, and partly by 
the representation labels of the subalgebra(s) in the chain 
considered. In general still one label is missing in order to 
distinguish completely between the SU (6) states. 

To each of the dynamical symmetries corresponds an 
unperturbed Hamiltonian 1-3 which is expressible in terms of 
the second degree Casimir operators of the algebras which 
occur in the associated symmetry chain. Although the theo
retical predictions resulting from this simplest kind of model 
Hamiltonian do fit the experimental data rather well, there is 
nowadays a tendency to consider higher degree boson inter
action terms into the Hamiltonian as well. The interaction 
terms which are frequently discussed4-6 usually break the 
existing dynamical symmetry. Recently it has been argued 
by some of the present authors 7 that from the mathematical 
point of view there is no a priori reason to destroy the sym
metry. Indeed, it suffices to select the higher degree interac-
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tion terms out of the set of SO (3) scalars belonging to the 
enveloping algebra of the dynamical symmetry subalgebra. 
In fact, one can be even more restrictive by choosing the 
interactions out of the so-called integrity basis for SO (3 ) 
scalars.s 

This program of systematic, complete, and symmetry 
conserving interaction term generation has been successfully 
carried out in the SU (3) symmetry limit by some of us.7 

More in detail, we have obtained, apart from the SU (3) and 
SOC 3) invariants, two functionally independent SOC 3) sca
lars in the SU (3) enveloping algebra, which were added to 
the unperturbed Hamiltonian and both proved to bear phys
ical relevance, since they account for theoretical results 
which fit much better the experimental measurements. Also, 
we have been able to establish a simple algorithm to evaluate 
matrix elements of these operators in any totally symmetric 
SU(6) irrep.9-11 

Some years ago, three of the present authors have made 
in a series of papers a thorough study of the classification of 
nuclear quadrupole and octupole phonon states. 12.13 One of 
the particular aspects therein has been the construction of an 
SO (3) scalar of fourth degree in the SO (5) enveloping alge
bra. Also large parts of its spectrum have been derived in 
closed form. In the scope of extending the interacting boson 
model while preserving the symmetry, this operator is clear
ly relevant both in the SO ( 6) and the SU (5) limits. It is, 
nevertheless, in these cases more natural to ask for SO (3 ) 
scalars which preserve the SO ( 6) or SU (5) symmetry but 
eventually break the SO (5) symmetry. In fact, it has been 
proved recently by one ofus14 that in both limits there exist 
in the integrity basis of the corresponding enveloping alge
bra two functionally independent SOC 3) scalars of third de
gree in the generators. Hence, if one wishes to treat the 
SO(6) and SUeS) dynamical symmetries in complete analo
gy with the SU (3) limit, it is of primordial interest to con
struct first these operators and to establish a method for 
finding their matrix elements in the corresponding physical
ly labeled state basis. The present paper accounts for a first 
decisive step towards the achievement of that goal. 
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The SO (3) scalar operators concerned can be viewed as 
Racah-coupled generators which are themselves equivalent 
to SOC 3) tensor operators. Hence, it suffices at first instance 
to compute the matrix elements of the SO ( 6) or SU (5) gen
erators in the physical basis which exhibits the symmetry 
under consideration. It is the aim of the present work to 
carry out this task for the SO (6) limit. The SU (5) limit will 
be treated in a forthcoming publication. 

Our analysis has been inspired and influenced by the 
earlier work of Kemmer et al. 15

•
16 in which the matrix ele

ments of the SO(5) (subalgebra) generators have been es
tablished by means of closed formulas. The analogy, how
ever, is far from being trivial, as we shall have to introduce 
besides the SU(2) XSU(2) subalgebra which they consid
ered, another subalgebra ofthe type SU (2) X SU (2) xU ( 1 ) 
which is, however, not contained in SO(5). 

The paper is outlined as follows. In Sec. II we describe 
the SO (6) algebra and its irreducible representations (ir
reps) in the physical SO (3) basis. Section III is concerned 
with a similar discussion with respect to the SU(2) xSU(2) 
basis. The already mentioned SU (2) X SU (2) xU ( 1 ) subal
gebra is treated in Sec. IV. In this basis we shall at first suc
ceed in deriving the SO(6) generator matrix elements. We 
next return to the physical basis going over the 
SU(2) XSU(2) basis in Sec. V and arriving at our final re
sults in Sec. VI. 

II. SO(6) IN THE PHYSICAL SO(3) BASIS 

It is a well-known fact that the SO(6) irreps reduce into 
irreps of the physical SO (3) Lie sub algebra according to the 
physical reduction chain SO ( 6) ::) SO (5) ::) SO (3).17 In par
ticular, it is verified from standard tables l8

•
19 that the 15-

dimensional SO (6) irrep [0,1,1] decomposes throughout 
that chain in the SO ( 3) irreps [1], [2 J, and [3], whereby 
2k + 1 is the dimension of the irrep [k]. Hence, in the 
SO(3) basis the SO(6) Lie algebra is generated by the 
SOC 3) basis elements 1o'! ± 1 together with the components 
PI' (f.L = - 2, - 1, ... ,2) of a five-dimensional irreducible 
SOC 3) tensor operator and the components ql' 
(f.L = - 3, - 2, ... ,3) of a seven-dimensional SO(3) tensor 
operator. The I and q operators form a basis of the ten-di
mensional SO (5) Lie subalgebra in the chain. Since P and q 
are SO(3) tensors of rank 2 and 3, respectively, the following 
commutation properties hold by definition: 

[1- l'/ + d 1o, [10,1 ± d = ± I ± I' (2.1) 

[io,P 1'] = f.LP I' ' 

[I ± UPI'] = ~ (2 +f.L)(3 ±f.L)/2 PI'± I (2.2) 

(f.L - 2, - 1, ... ,2), 

[ lo,ql'] = f.Lql" 

[l±l,ql'] = ~(3+f.L)(4+f.L)/2 ql'±l (2.3) 

(f.L -3,-2, ... ,3). 

The remaining commutators can be derived by expressing 
the SO(3) tensors I,p, andq in terms of the canonical SO(3) 
tensor operators G: (1,1') which map the (21' + I)-dimen
sional space specified by I' into a (21 + 1) -dimensional space 
and which are unambiguously defined by their reduced ma
trix elements, Le.,20 
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(1IllIIGk(/,l')111 ") = [2k + 1] l/2Dr/D/./". (2.4) 

These canonical SO(3) tensor operators are known to satis
fy the commutation property 

[G:; (l1'/2),G:~ (/3,/4)] 

= 2.: [(2k l + 1 )(2k2 + 1 )(2k3 + 1)] 1/2 
k 3.K3 

For the case under study, since the lowest dimensional 
SO(6) irrepdecomposesintotheSO(3) irreps [0] and [2], 
the representation space is specified by I ° and I = 2. 
Moreover, it has already been established that2°-22 

II-' = JIO G ~l) (2,2) (f.L = - 1,0,1), 

PI-'=G~2)(2,0)+G~2)(0,2) (f.L= -2, 1, ... ,2), 

ql-'=G~3)(2,2) (f.L= -3,-2, ... ,3). (2.6) 

The commutators amongst P and q operators now follow by 
combining (2.6) and (2.5), whereas the already obtained 
commutators (2.1)-(2.3) can be verified again. 

In the present work we are only concerned with SO ( 6) 
as one of the dynamical symmetry groups of the SU(6) in
teracting boson model. Hence, we need to construct for any 
totally symmetric SU(6) irrep [N,O,O,O,O] a nondegenerate 
state basis which exhibits the SO(6) and the physical SO(3) 
symmetries. On account of the reduction formula 

SU(6) ..... SO(6): [N,O,O,O,O] ..... 2.: [0',0,0], 
(7 

with 0' = N,N - 2,N 4, ... ,1 or 0, 
(2.7) 

we can consider the SU ( 6) symmetric irreps to be fully re
duced to SO (6) so that we can confine ourselves to the prob
lem of the decomposition of the totally symmetric irreps of 
SO(6) with respect to SO(3). Moreover, in the reduction of 
SOC 6) into SOC 5) these irreps also decompose without de
generacy into a sum of totally symmetric SOC 5) irreps, 
namely, 

SOC 6) ..... SO( 5): [0',0,0] ..... 2.: ['1',0], 
r 

with '1' = 0',0' - 1,0' 2, ... ,0. (2.8) 

It is well known that in the further reduction of the symmet
ric SO (5) irreps into SO (3) irreps one additional label is 
required. 15.23.24 From what we have learned out of our treat
ment of the nuclear quadrupole vibrations l2,13 the fourth 
degree SOC 5) scalar in the SOC 5) enveloping algebra could 
be used as a label generating operator. However, because its 
spectrum cannot be easily described, it is in the light of the 
present calculations more convenient to choose as the extra 
label the one which is usually considered in the interacting 
boson model!7 and which is obtained in a manner closely 

Vanthournout et al. 2530 



                                                                                                                                    

analogous to that of Elliott for SU(3),z1 i.e., the label v 
(sometimes denoted by vt.) which takes on the values 

v = 0,1,2, ... ,[713], (2.9) 

whereas for a given v value the SO (3) contents is specified 
by 

1=2(1"-3v),2(1"-3v) -2, 

2( 1" - 3v) - 3, ... ,1" - 3v + 1,1" - 3v. (2.10) 

Hence, in any SO ( 6) symmetric irrep [0",0,0] the states 
which constitute a physical basis are labeled as 

100,1",v,l,m) (m = - I, -I + 1, ... ,1), (2.11) 

where one has to take into account the restrictions imposed 
by (2.7)-(2.10). It should be remarked that the states are 
orthogonal in all labels except for the v label. More explicit
ly, 

(O"1"'v'I'm'IO"1"vlm) =A r(v',v)8T'T81'18m'm' (2.12) 

Several equivalent formulas which permit to evaluate the 
overlap integrals A r ( v', v) have been derived by Williams 
and Pursey. 16 For the sake of self-containedness we mention 
here one of the expressions 

A r( v',v) = r' - V[ (21 + 1 )(3v' - 3v)!] -I [( 1" - v)!( 1" - v')!v!v'!(1 + 3v' - 1")! 

x (I + 1" - 3v)!/(I + 1" - 3v')!(1 + 3v - 1")!P/2I ( - 4 )v+ a -P(3v' - 3{3 + a)! 
a,p 

X (21" - 2v - 2v' + 2{3)! [( 1" - V - v' + {3 - a)!( v' - {3)!( v - {3)!al/3 !(21" + v' - 2v + a - {3 + I)! ]-1 

X 3F2(1" - 3v -1,1" + 1- 3v + 1,3v' - 3{3 + a + 1;3v' - 3v + 1,21" + v' - 2v -{3 + a + 2;1). (2.13 ) 

Herein 3F2 represents a generalized hypergeometric function which on the rhs of (2.13) always reduces into a polynomial. 
It is our final aim to obtain the matrix elements of the SO(6) generators in the physical but nonorthonormalized basis 

(2.11). In fact, part of the work is either trivial or has been carried out already previously. Indeed, concerning the matrix 
elements of the I operator and taking into account (2.12), we immediately obtain that 

(2.14 ) 

where we have preferred to mention the SOC 3) reduced matrix elements instead. Furthermore, the reduced matrix elements 
of the SO(5) generators ql-' (fL = - 3, - 2, ... ,3) have been found by Williams and Pursey.16 They read 

(0"1"' v' I'llqllO" 1" V l) 

= 81"'T(2/' + 1)1/2{[ -(5v(1"-v+ 1))1/2(IK331/' K+3) 

- (5vl'(I' + 1)/3(1" - V + 1))1/2(1' K + 31 - III' K + 2)(1 K 3211' K + 2)]A r, (v',v - 1) 

+ (5(1" - v)(v + 1))1/2(1 K 3 - 311' K - 3)A Hv',v + 1) 

+ [(3/'(1' + 1)/2)1/2(1' K 1 11/'K + 1)(/ K 3 III' K + 1) 

- (21'(1' + 1)/3)1/2(/' K 1 - III' K - 1)(1 K 3 - Ill' K - 1) 

- (21"-v)(IK301/'K)]AHv',v)} (K=1"-3v), 

wherein (I m I' m'l/" m + m') denotes a Clebsch-Gordan 
coefficient. All that remains to be done is the calculation of 
the reduced matrix elements of the p-type generators. Of 
course, we can predict that the matrices will no longer be 
diagonal with respect to the SO (5) label 1", as it is the case 
with the matrix (2.15). Since Kemmer etal. 15

,16 provided us 
with a technique to project the physically labeled states 
(2.11) out of another basis of states described by means of 
SU(2) xSU(2) representation labels, it seems straightfor
ward, as a start for solving the present problem, to consider 
that particular subalgebra too. 

III. SO(6) IN THE SU(2)XSU(2) BASIS 

The SO(5) subalgebra of SO(6) contains itself an 

2531 J. Math. Phys., Vol. 28, No. 11, November 1987 

(2.15 ) 

I 
SU(2) xSU(2) Liesubalgebra in which, however, the phys-
ical SO(3) is not included. Nevertheless, the Hill-Wheeler 
projection technique will enable us to go over from the 
SU (2) X SU (2) basis into the physical basis. From the stan
dard reduction tables one can see that the SOC 5) generators 
decompose into the SU (2) X SU (2) generators together 
with an SU(2) XSU(2) spinor-spinor representation 
TO/2.1/2). Besides, the p operators which also constitute a 
five-dimensional SO(5) tensor representation can be rear
ranged to form the components of both another 
SU(2) xSU(2) bispinor (j<1I2,1I2) and an SU(2) xSU(2) 
scalar ZOo Denoting further the generators of the first SU (2) 
group by si-' (fL = - 1,0,1) and those of the second SU (2) 
group by tl-' (fL = - 1,0,1), the following relationship 
between the two SO ( 6) bases can be established: 
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'0 = 3so + to' '± I = 2t ± I + f3T~/~;i~~ liZ' qo = (1/~) ( - So + 3to). 

q±1 =.JIt±1 + (1/j5)T~/~;i:~lIz, q±z = ± (1/~)T~/~k~1I2' (3.1 ) 

U 0/2,112) U (112,112) 
q ± 3 = S ± I , Po = ZO' P ± I = ± 112, '+ 112' P ± 2 = ± 112, ± 112 . 

In the new SU(2) XSU(2) basis the commutation relations read 

[so,s±d = ±S±I' [S_I,s+I] = So, 

[to,Tatd = /3Tap , [so,Uap ] = aUap , 

[t±I,Ta,'+II2] = +(1/~)Ta,±1I2' 

[to,t±tl = ±t±I' [CI,t+tl = to, [so,Tatd =aTap , 

[to,Uap ] = /3Uap , [s ± I ,T '+ 112,P] = + (l/~) T ± 112,p' 

[s ± pU '+ 112,P] = + (l/~) U ± 112,p' [t ± pUa,::P/2] = + (l/~) Ua, ± 1/2' 

[TII2,±1I2,T_ 1I2,'+1I2] = +So-to, [UII2,±1I2,U_1/2,,+I/2] = ±SO+to, (3.2) 

[T± 112,1I2,T± 112,-112] = -~S±I' [U±1I2,1I2,U±1I2,_1I2] =~S±I' 

[TII2,±1I2,T_1I2,±1I2] = -~t±I' [UII2,±1I2,U-1I2,±1I2] =~t±I' 
[TII2, ± 112' U - 112,=F 112] = [T - 112, =F 1/2 ,UII2, ± 1/2] = +ZO' [zo,Tap] = - Uap , 

[Zo,Uap ] = - TaP (V'a,{3E{!, -!}) 

All commutators that are not cited in (3.2) are zero. Also we 
have dropped the superscripts in T and U. 

In the reduction chain SO(6) ::>SO(5) ::>SU(2) 
X SU (2) a totally symmetric SO (6) irrep [0-,0,0] consecu
tively decomposes as prescribed by the rule (2.8) and byl5 

SO(5) ..... SU(2) xSU(2): [1',0] ..... I (S,t) , 
s=t 

with 

S = t = 1'/2,1'/2 - !,1'/2 - I, .. ,,!,O. (3.3) 

Notice that the reduction is complete, hence no labels are 
missing, We denote the orthonormal SO(6) basis states 
which make the SU(2) XSU(2) subalgebra apparent, by 

10-,1',s,ms ,t,m,) 

(ms = - S, -s + I, ... ,s; m, = - t, - t + I, ... ,t), 
(3.4 ) 

where, of course, on account of (3.3) S = t for all states be
longing to symmetric SO ( 6) irreps. 

The matrix elements of the SOC 5) generators, i.e., the 
s,"' tl"' and TaP operators, expressed in the SU(2) XSU(2) 
basis (3.4) have been discussed by Kemmer et al. 15 Restrict
ing once more to the corresponding reduced matrix elements 
one has trivially 

(0-,1" ,S' ,s' IlsII0-,1',s,s) = (0-,1" ,s' ,s' Iltllo-, 1',s,s) 

= 8r'r8s's [s(s + 1 )(2s + 1) p/2, 
(3.5) 

whereby we have exploited the orthonormality of the 
SU(2) XSU(2) basis states. Furthermore, Kemmer et al. 
have proved thae5 

(0-,1" ,s' ,s' II T (112,112) 1I0-,1',s,s) 

= ( _ 1 )2s' - 2S(0-,1',S,SII T0/2,1I2) 110-,1",s',s') 

= 8r'r {8s+ 112,s' [( l' - Zs) (r + Zs + 3) 

X(s+ I)(Zs+ 1)]1/2_8s_ 112,s'[(1'-Zs+ 1) 

X(r+Zs+2)s(Zs+ 1)]1/2}. (3.6) 
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We have made it our further task to determine the matrix 
elements of the SO (6) generators U ~¥2, \/2) (a,/3E{!, - !}) 
and Zo in the same basis (3.4). At present, all that we can say 
is that their action upon a state of the type (3.4) will shift the 
SO(5) label r by plus or minus one unit. Indeed, Zo and 
U 0/2, 112) together constitute the symmetric irrep [1,0] of 
SO(5), and by taking into account the Kronecker product 
reduction l8 

[1,0] ® [r,O] = [r+ 1,0] Ell [1'-1,0] Ell [r,l] 

it suffices to project the symmetric part out of the rhs in 
order to prove our assertion, 

Unfortunately, there is no simple way to calculate di
rectly thezo and U (1/2,112) matrix elements. Instead, we shall 
introduce in the next section yet another orthonormal state 
basis. For future use, let us close this section by giving ex
pressions of the SO (5) and SO ( 6) Casimir operators of sec
ond degree in terms of both the SO (3) and the 
SU (2) X SU (2) generator basis. We find 

C2,SO(5) = - _1_ I ( - 1) 1"11"'_1" - I ( - 1) I"ql"q_I" 
10 I" I" 

= T 1I2,1I2 T _ 112, _ 112 - T 1I2, _ 112 T -1/2,112 

+so - S2 - e, 

1 
C2,SO(6) = C2,SO(5) -"2 I ( - 1) I"PI"P - I" 

I" 

= T I/2,1I2 T _ \12, _ 112 - T 1I2, _ 112 T - 112,112 

(3.7) 

- U1I2,1I2 U _ 112, _ 112 + U1I2, _ 1/2 U _ 112,112 

(3.8) 

whereby for any vector u the notation u2 stands for 
- 2u + 1 U _ I + U~ - Uo· The Casimir operators C2,SO( 5) and 
C2,SO(6) are evidently also invariants of the subalgebras 
SO (3) and SU (2) X SU (2). Therefore they are in an ortho
normal state basis represented by diagonal matrices and 
since their respective eigenvalues are known to take on the 
values - 1'( r + 3 )/2 and - 0-(0- + 4 )/2;17,25 one obtains 
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as an immediate consequence the following reduced matrix 
elements 

(a,7',v',1 '1IC2 •so (S) Ila,7,v,l > 

= ~8T'Tt5I'I(21+ 1)1/2T (T+3)Ar(v',v), 

(a,7'v',l 'IICZ•SO(6) lIa,7,v,l) 

= ~OTTt51'1 (21 + 1) 1/2U (U + 4)A I( v',v), 

(a,7' ,s',s'IIC2,so(s) lIa,7,s,s) 

= !01"'1"Os's 7( 7 + 3)(2s + 1), 

(a,7',s' ,s' II CZ•SO (6) Ila,7,s,s) 

(3.9) 

IV. MATRIX ELEMENTS IN AN SU(2)XSU(2)XU(1) 
BASIS 

The operator zo, which is a scalar under SU (2) X SU (2) 
[and also the zero component of the SO (3) tensor p of rank 
2], thus commutes with all the SU (2) generators sand t 

fI- fI-

(Il = 1,0, + 1). Hence Zo can be considered to generate a 
U(1) algebra and the set {sfl-,tfl-,zolll = - I,O,!} is a gener
ator basis of an SU (2) X SU (2) xU (1 ) subalgebra of 
SO(6), which is clearly not a subalgebra ofSO(5). Since the 
eight remaining SOC 6) generators T (liZ. liZ) U (112. liZ) a{3 , a{3 

(a,/JE{!, - !}) behave as the components of two analogous 
bispinors under SU(2) XSU(2), they can be linearly com
bined to form U ( I) representations. Indeed, defining 

A (1/2,112) - T(1I2.1/2l U(IIZ.I12) 
a{3 - a{3 - a{3 , 

B (1/2.1/2) = T(1I2.112) + u(l/2.112) 
a{3 a{3 a{3 

(Va,/JE{!, !,}), 

we obtain by means of (3.2) that 

[z ,A (112.112)] = A (112.112) ° a{3 a{3' 

[z B (112,112)] - _ B (1/2.1/2) 
0' a{3 - a{3 

(4.1 ) 

(4.2) 
~} ), 

which shows that each of the components of the newly de
fined A (1/2.1/2), B (112.1/2) SU(2) XSU(2) bispinors behave 
as U ( 1) ladder operators when acting upon eigenstates of 
the U ( 1) generator Zoo 

Moreover, since the five operators zo, S2, So. e, and to 
mutually commute, the SOC 6) states can be unambiguously 
labeled by their respective eigenvalues, in other words we 
can establish an SO (6) state basis of orthonormalized mutu
al eigenstates of these five operators. Let us denote such or
thonormal states by 

la,z,s,ms,t,m,} 

(ms - s, - s + 1, ... ,s; m, = - t, - t + 1, ... ,t), 
(4.3) 

where, as before, the fact that only symmetric SO ( 6) irreps 
are considered implies thats t, while from (2.8) and (3.3) 
it can be deduced that s takes on the values a12, 
al2 - !, ... ,!,O. In order to find out what is the range of the 
quantum number z defined in 
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zola,z,s,ms,s,m,} = zla,z,s,ms,s,m), (4.4) 

let us express the SO ( 6) Casimir in terms of the new gener
ator basis. Again dropping superscripts, we obtain by com
bining (4.1) and (3.8), and by using certain commutators 
between A 's and B 's which are derived from (3.2), the fol
lowing equivalent expressions: 

CZ•SO(6) = !(Bllz•llzA -112. 112 + B -1/2, -IIZA II2.112 

-BIIZ._1/2A 112.112 -B-1I2.1I2AIIZ, 112) 

-s2-e-¥~ 2zo, (4.5) 

C2•SO (6) =!(AII2.112B_I12, 112 +A-1I2.-112BIIZ.1/2 

- A liZ. _ 1/2 B 112,112 - A - 112.112 B 112. 112) 

(4.6) 

wherby either the operators A which shift z with + 1, or the 
operators B which shift z with - 1 all stand to the right. 
Hence denoting by Zmax the absolute maximum that z can 
take in the SO (6) irrep [a,O,O] , we learn from the action of 
C2•SO(6) in the form (4.5) upon a state (4.3) with z = Zmax 

the relationship - a( a + 4) 12 = - 2s(s + 1) - Z 

(zmax + 4 )/2, showing that the absolute maximum takesm~~ 
the value 0' and is reached when s = 0. Similarly, the abso
lute minimum is Zmin = 0', again on condition that 
s = t = 0. By means of standard reduction techniques based 
upon character formulas,26 it is possible to deduce the com
plete reduction rule of symmetric SO ( 6) irreps [0',0,0] into 
SU (2) X SU (2) xU ( 1 ) irreps. This rule can be given in two 
complementary forms, i.e., 

Z - a, - a + I" - 0' + 2, ... ,0' - 1,0', 

s t = (a-lzl)/2,(0' Izl)/2 -1, (4.7) 

or 
(0' - Izl)/2 - 2, ... ,! or 0, 

s=t 0'12,(a-l)/2,(0' 2)/2, ... ,!,0, 

Z = - (0' - 2s), - (0' - 2s) + 2, (4.8) 

- (0' - 2s) + 4, ... ,(0' 2s) - 2,(a - 2s). 

We now want to calculate in the state basis (4.3) the 
matrix elements of all the SO ( 6) generators. Certain re
duced matrix elements are immediately established, namely, 

{O',z',s',s'lizoIiO',z,s,s} = oz'zos'sz(2s + 1), 

{O',z',s' ,s'lisIIO',z,s,s} = {O',z',s' ,s'lItIIO',z,s,s} (4.9) 

There remains to be calculated the A (l/2.112) and B (l/2.1I2) 

reduced matrix elements. This proceeds as follows. 
Let X (k) and y(k) denote two SO(3) tensors of rank k. 

Then27 

(X(k)y(k»~a) = 2: (k Al k A21a Il)X~~)Y~~>' 
A 1,A2 

(4.10) 

and 

[X(k),y(k)]~a) = 2: (k AI k A21a Il) [X~~>,y~~)] 
A 1.A2 

= (X(k)y(k»~a) _ (_ l)a(y(k)x(k»~a). 

(4.11 ) 
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Hence when X (k) and Y (k) belong to a Lie algebra, the lhs of 
( 4.11) can be reexpressed linearly in terms of generators, 
and it suffices to have a formula giving the reduced matrix of 
a coupled product of the type (4.10) in terms of the reduced 
matrix elements of the factors X(k) and y(kl, in order to 
obtain a nonlinear relationship between reduced matrix ele
ments of Lie algebra generators. Such a formula is at our 
disposal in the form 28,29 

(I'll (X (k) y (k» (a) III) 
= ( _ 1)1'+I+a(2a + 1)1/2 

Xf.: {~ :, 1~,}(l'IIX(k)II/")(/"lIy(k)IIl), 
( 4.12) 

Let us next apply these formulas for X = Y = A (112,112) after 
having carried out the necessary but trivial extensions for a 
bitensor Then since [A (l12,1I2),A (112,112)] (a,b) = 0 we ob-• , f.LV , 

tain on account of (4.11) nontrivial results only when 
(a,b) = (I,D) or (a,b) = (0,1). Substituting in (4.12) the 
explicit expressions for the occurring 6j symbols27 we find 

- s{u,z + 2,s,sIlA lIu,z + 1,s + ~,s + !} 
X {u,z + l,s + !,s + !IIA lIu,z,s,s} 

+ (s + 1){u,z + 2,s,sIlA lIu,z + 1,s - !,s - !} 
X{u,z + Is -!,s - !IIA lIu,z,s,s} = O. (4.13) 

Similarly, we have the relation 

- s{u,z - 2,s,sIlB lIu,z - l,s + !,s + !} 
X{u,z - 1,s + !,s + !,IIB lIu,z,s,s} 

+ (s + 1 ){u,z - 2,s,sIlB lIu,z - 1,s - !,s - !} 
X {u,z - l,s - !,s - !IIB lIu,z,s,s} = 0, (4.14) 

As an introduction to the derivation of other relationships, 
attention should be drawn upon the fact that from the prop
erties associated to Hermitian conjugation of SO (3) tensors, 
namely, It = (-1) 1'1_1" pt = (-1) {tP_{t' and qt 
= ( - 1) {tq _ I' it follows with the help of (3.1) that 

Tl{3 = ( - 1)a+{3T -a,-{3' 

Ul{3 = (_1)a+{3+IU_ a,_{3' (4,15 ) 

Z6 = Zo (a,pE{!, - !}) 

and consequently, by means of (4.1) also that 

A 1{3 = ( - 1)a +{3B _ a, -{3 (a,pE{!, - !}). (4.16) 

The latter property may be carried over into a relationship 
between reduced matrix elements, i.e., 

{u,z - l,s',s'IiB lIu,z,s,s}* 

= - {u,z,s,sIlA lIu,z- 1,s',s'}. (4.17) 

Next, we shall apply the formulas (4.10 )-( 4.12) with 
X = B (112,112) and Y =A (112.112). We obtain in particular on 
account of the extended version of (4.11) and with the help 
of the commutators amongst A 112.112 and B 112,112 which are a{3 yo 
derived from (3.2), that 
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[A (I/2,1I2),B (1I2,1I2)]~,O) = - 4zo, 

[A (I/2.112),B (1I2.112)]~~O) = - 4s{t' 

[A (I/2.112l,B (1I2.112)16~1) = - 4t{t' 

[A (I/2.112),B (1I2.112)]~~1) = O. 
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(4.18 ) 

Introducing finally the shorthand notations 

{u,z - 1,s + !,s + !IIB lIu,z,s,s} = F(z,s), 

{u,z - 1,s - !,s - !IIB lIu,z,s,s} = G(z,s), 
( 4.19) 

the relations (4.13) and (4.14) are on account of (4.17) 
transformed into 

- sG(z - 1,s + PF(z,s) 

+ (s + 1 )F(z - l,s - !)G(z,s) = 0 (4.20) 

and its complex conjugate. In the same notation, It IS 
straightforward to establish with the help of (4.18) and 
(4.10)-( 4.12) three other independent relations, namely, 

- IG(z + 1,s +!) 12 - IF(z + l,s -~) 12 + IG(Z,sW 

+ IF(z,s) 12 = 8z(2s + 1 )2, (4.21) 

-sIG(z+ l,s+!W+ (s+ 1)IF(z+ l,s-!W 

+ (s + 1) IG(Z,s) 12 - sIF(z,s) 12 

= 8s(s + 1)(2s + 1 )2, (4.22) 

S2[ -IG(z+ 1,s+!)12 + IF(z,s) 12] 

+ (S + 1 )2[ IG(z,s) 12 - !F(Z + 1,s - !) 12] = O. 
(4.23) 

The relations (4.20)-(4.23) should be treated as recursion 
relations subject to certain boundary conditions. The latter 
follow from the reduction rules (4.7) or (4.8) combined 
with the definitions (4.19) and manifest themselves in the 
vanishing of a restricted number of F and G functions for 
some particular z and s values. After straightforward calcu
lations, these functions tum out to be given (upon a possibly 
complex phase factor which is irrelevant to our discussion) 
by 

F(z,s) = [(s+ 1)(2s+ 1)(u-z+2s+4) 

X(u+Z-2s)]1/2, 
(4.24) 

G(z,s) = [s(2s + 1) (u - z - 2s + 2) 

X (u + z + 2s + 2) jI12. 

This completes after simple combination of ( 4.17), (4.19), 
and (4.24), the calculation of the reduced matrix elements of 
the A and B generators in the SU(2) X SU(2) XU( 1) la
beled SO(6) state basis. We shall now return to the 
SU(2) XSU(2) basis by means ofexplicitdiagonalization of 
the SO(5) Casimir in the SU(2) xSU(2) XU(I) basis 
(4.3). 

v. MATRIX ELEMENTS IN THE SU(2)XSU(2) BASIS 

It is our aim to obtain in the present section the reduced 
matrix elements of the SO(6) generators Zo and U~}f2.112) 
(a,pE{!, - !}) in the state basis (3.4) which makes 
apparent the subalgebra SO(5) and the subalgebra SU(2) 
X SU (2). As a start let us notice that whereas Zo is diagonal 
in the orthonormal basis (4.3), it is the Casimir C2.SO (S) 

which is diagonal in the orthonormal basis ( 3.4 ). The 
SU(2) XSU(2) contents of both bases is identically ex
pressed by means of the labels s, m" and m,. Hence diago
nalizing the C2.SO (S) Casimir in the basis (4.3) will enable us 
to establish explicitly the orthogonal transformation that 
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carries that basis into the basis (3.4). It is a simple matter to 
verify that C2•SO(S)' defined in (3.7), can be rewritten as 

C
2

•
SO

(S) = (T(1I2.112)T(1/2.112»~.0) - SZ - e, (5.1) 

hence, on account of ( 4.1 ), can also be rewritten as 

C - [(AA)(o.O) + (BB)(o.O) 
2.S0(S) - 00 00 

+ (AB)~'O) + (B,A)~·0)]/4 - S2 - e, 
(5.2) 

where we have dropped superscripts again. It is now a ques
tion of applying four times the extended version of ( 4.12) on 
the rhs of (5.2), and then substituting the reduced matrix 
elements obtained from (4.24), to establish already the non
diagonal reduced matrix elements of the Casimir, i.e., 

{O",z + 2,s',s'IIC2 •S0(S) 1100,z,s,s} 

= {0",z,s,sIIC2•S0(S) 110",z + 2,s',s'} 

= 8s's(2s + 1)[(0"-z-2s)(0"+z+2s+4) 

X (0" - Z + 2s + 2)(0" + z - 2s + 2)] 1/z/8. (5.3) 

Similarly, taking also into account that 

{O",z,s',s'llszIIO",z,s,s} = {O",z,s',s'lleIlO",z,s,s} 

= 8s'ss(s + 1)(2s + 1), 
we can compute the diagonal matrix elements too, i.e., 

(WS) Tvsws = _ (2s + 1) 
2 (

0"(0" + 3) 

(0"-1)(0"+2) 

and therefore also constitutes the transformation matrix car
rying the basis states 100,z,s,m"s,m,} into basis states of the 
type 100,1",s,m"s,m,), namely, 

10",1" = 0" - i + 1,s,m"s,m, ) 
u-2s+ I 

= L Wi; 10",z = 0" - 2s - 2j + 2,s,ms,s,m,} 
j=1 

(Vie{I,2, ... ,0" - 2s + 1}, Vse{O,p, ... ,O"/2}). 
(5.8) 

The inverse transformation immediately follows from the 
orthogonality property (W) -I = (W) T. Letting the op
erator Zo act on both sides of (5.8), and then using the inverse 
formula of (5.8) we arrive at the following expression for 
reduced matrix elements of Zo in the SU (2) X SU (2) state 
basis: 

(0",1" = 0" - i + 1,s,sllzoIIO",1" = 0" - j + loS,s) 

2535 

= (0",1" = 0" - j + l,s,sllzoIIO",1" = 0" - i + l,s,s) 
u-2s+1 

= (2s + 1) L W ~k W lk (0" - 2s + 2k + 2) 
k=1 

(Vi,je{I,2, ... ,0" - 2s + 1}, Vse{O,p, ... ,0"/2}). 
(5.9) 
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{O",z,s' ,s'IIC2,so(S) 1100,z,s,s} 

= -8s's(2s+ 1)[~+4u+4s(s+ 1) _zZ]!4. 

By setting 

V~ + k,z = {O",z + k,s,sIIC2•SO (5) 1100,z,s,s} 

(ke{ - 2,O,2}), 

one should take notice of the symmetry properties 

V~_2.z = V~.Z_2 = V S
_ z + 2._ z = V S

_ z,_z+2, 

(5.4 ) 

(5.5) 

(5.6) 

which, taken into consideration with the range of z values 
described by (4.8), show that for any acceptable fixed s value 
the associated JI' matrix is bisymmetric, namely, symmetric 
with respect to both the first and the second diagonal. By 
inversion of the reduction rule (3.3) one verifies that for 
fixeds, the SO(5) label nuns through the possible values 2s, 
2s + 1, ... ,0" - 1,0". Hence, the matrix JI' defined in (5.5) 
must have all its 0" - 2s + 1 eigenvalues in the form 
- (2s + 1)1"(1" + 3)/2 with 1"E{2s,2s + 1, ... ,0" - 1,0"}. We 

leave it to the reader to verify this on a few low-dimensional 
matrices although a direct algebraical proof has become su
perfluous in view of the above arguments. Instead, we are 
much more interested in the associated set of 0" - 2s + 1 
eigenvectors of JI' which build up the orthogonal transfor
mation matrix W that diagonalizes JI', i.e., 

(5.7) 

I 
The calculation of the W matrix elements and in particular 
of the sum on the rhs of (5.9) is a purely algebraic problem. 
A complete survey of how we arrived at the solution would 
require too much space and therefore falls outside the scope 
of the present discussion. Let us just mention that the proof 
has been based upon complete induction and makes use of 
certain symmetry properties of the W matrices. The final 
result reads 

(0",1"' ,s',s' IIzo II 0",1" OS,s) 

= 8s's (2s + 1){87 ',7'_1 [(0" -1" + 1)(0" + 1" + 3) 

X (1" - 2s)( 1" + 2s + 2)/(21" + 1 )(21" + 3)] 1/2 

+ 87 '.7+ I [(0" - 1")(0" + 1" + 4)( 1" - 2s + 1) 

X (1" + 2s + 3)/(21" + 3)(21" + 5)] liZ}. (5.10) 

As expected, Zo is diagonal in the SU (2) X SU (2) labels but 
shifts the SOC 5) label by ± 1. Notice that the ordinary ma
trix elements differ from the reduced ones in (5.3) only by 
the factor (2s + 1). The computation of the (reduced) ma
trix elements of the bispinor U (IIZ.I/Z) in the same basis is 
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made straightforward by exploiting the relationship [see 
(3.2) 1 

U Il2,1/2= [T(l/2,1I2)Z] (aRE{1 I}) 
a{3 a{3' 0 ,/-" 2' - 2 ' (5.11 ) 

together with the knowledge of the reduced matrix elements 
(3.6) of T (112,112) and those ofzojustly derived in (5.3). It is, 
however, not relevant here to insist on that calculation, since 
further on we shall only need to analyze the action of the 
SO(6) generators, and in particular of zo, U (112.112), upon a 
restricted subset of states of the type 100,1',s,m"s,m, ). 

Indeed, it has been shown by Kemmer, Pursey, and Wil
liams l5,16 that it is sufficient to consider the so-called intrin
sic SU (2) X SU (2) states which constitute a two-parametric 
family, namely, the states 

X(O',1',v) = 100,1',S = rl2,ms = 1'12 - v,s = 1'12, 

m, = -1'/2) 

(1'E{0,1,2, ... ,O'}, VE{O, 1, ... , [1'/3J}). (5.12) 

The restrictions imposed by the Hill-Wheeler projection 
technique30 tell us that, if we succeed in expressing the action 

I 

( 
1'12 

T(1I2,1I2)X(0' l' + 1 v) = (_I)r+v 
- 1/2,1/2 " _ 1'12 + v 

1 
2 

-! 

of the SOC 6) generators upon the intrinsic states (5.12) ei
ther in terms of pure intrinsic states again or in terms of the 
action of one or more SO (3) generators II' (fJ.. = - 1,0,1) 
upon intrinsic states, then we have the guarantee that the 
matrix elements of the SOC 6) generators in the SO(3) basis 
can all be established in algebraic closed form. Let us recall 
certain results of Williams and Purseyl6; 

t + IX (O',1',v) = !l+tX(O',1',v), 

- [(1'-v+ 1)lvlI/2T~)i:i;2)x(0',1',v) 

= T~~7i:;~~x(0',1',v-l) 

= 3- 1/2CtX(0',1',V - 1). (5.13) 

From (5.10) it follows that 

zoX(O',1',v) = [(O' -1') (O' + l' + 4)/(21' + 5) 11/2 

X 100,1' + 1,1'/2,1'/2 - v,1'/2, -1'/2). 
(5.14 ) 

Because S = 1'/2 there is on the rhs of (5.14) no contribution 
which lowers the l' value. Also, the state on the rhs is not an 
intrinsic state. Let us consider therefore 

(1'+ 1)/2 ) 
(1' + 1 )/2 - v 

(1'/2! (1'+ 1)/2 )(O',1'+ 1,1'/2,1'/211 T(l/2,1I2) 1100,1'+ 1,(1'+ 1)/2,(1'+ 1)12) 
X 1'12 ! - (1' + 1) 12 

X 100,1' + 1,1'12,1'/2 - v,1'/2, - 1'/2) 

= (1' - V + 1) 1/210',1' + 1,1'/2,1'12 - V,1'/2, - 1'12). (5.15) 

Hereby we have made use of (3.6), of the explicit expressions for the 3j symbols and of the well-known relationship 

k 
(5.16 ) 

K 

which is valid for any SO(3) tensor X(k). Combining (5.13), (5.14), and (5.15) we arrive at the result 

ZoX(O',1',v) = [(O' - 1')(O' + l' + 4 )/3(21' + 5)( l' - V + 1) 11/2C tX(O',1' + 1,v). (5.17 ) 

Next, we calculate 

U ~/12it:! 112 X ( O', 1', V ) 

= (O',1' + 1,(1'+ 1)/2,(1'+ 1)/2-v-1,(1'+ 1)/2,- (1'+ 1)/2IT~~7i:~)1I210',1'+ 1,1'/2,1'12-v,1'/2,-1'/2) 

X (O',1' + 1,1'/2,1'/2 - v,1'/2, - 1'/2IzoI0',1',1'/2,1'/2 - v,1'12, -1'/2)X(0',1' + 1,v + 1) 

= [(v+ I)(O'-1')(O'+ 1'+ 4)/(21'+ 5) 1 1I2x (0',r + l,v+ 1). (5.18 ) 

In the intermediate steps we have made use of (5.11), (5.16), (3.6), (5.10), the orthonormality of the states and the explicit 
expressions for the occurring 3j symbols. In an analogous way, it is straightforward to prove that 

U~)i:~~~~x(O',1',v) = [(1' + 1 - v)(O' - 1')(O' + l' + 4)/(21' + 5) 1 1 I 2 X (O',1' + l,v). (5.19) 

The determination of the action of the two remaining U (1/2,1/2) components upon an intrinsic state X( O',1', v) is much more 
complicated than the previous cases. As an example, we shall treat the ( - 1/2,1/2) component in more detail. In particular, 
the action of U ~~7i:;% upon X (O',1',v) produces three different contributions, i.e., 

U~~7i:;%x(0',1',v) = alO',1' + 1,(1'+ 1)/2,(1'+ 1)/2-v-1,(1'+ 1)/2,- (1'+ 1)/2+ 1) 

+b 100,1'+ 1,(1'-1)/2,(1'-1)/2 -v,(1'-1)/2, - (1'-1)/2) +cX(O',1'-I,v). ( 5.20) 
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The calculation of the coefficients a, b, andc is straightforward and is based again upon (5.11), (5.16), (3.6), and (5.10). We 
obtain 

a = (0",7 + 1,(7 + 1 )/2,( 7 + 1)/2 - v - 1,(7 + 1 )/2, - (7 + 1)/2 + 11U~~7i~~i 10",7,7/2,7/2 - v,7/2, - 7/2) 

= [(v+ 1)(0"-7)(0"+7+4)/(7+ 1)(27+5)]1/2, 

b = [(1" - v)(O" - 1")(0" + 1" + 4 )/( 7 + 1 )(27 + 3 )(21" + 5) ]1/2, 

c= - [(7-V)(0"-7+ 1)(0"+1"+3)/(21"+3)]1/2. 

Now, the first nonintrinsic state on the rhs of (5.20) can be easily related to an intrinsic state by considering 

(5.21 ) 

t+ U'(0",1" + l,v + 1) = - [(7 + 1 )/2] 1/
210",7 + 1,( 7 + 1 )/2,( 7 + 1)/2 - v - 1,(1"+ 1 )/2, - (1" + 1)/2 + 1), 

hence on account of (5.13) 

10",1"+ 1,(7+ 1)/2,(7+ 1)/2-v-1,(7+ 1)/2,- (1"+ 1)/2+ 1) = - [2(1"+ 1)]-1/2/+U'(0",1" + 1,v+ 1). (5.22) 

Finally, there remains to investigate the state 10",1" + 1, ( 1" - 1) 12, ( 7 - 1) 12 - v, ( 1" - 1) 12, - (1" - 1) 12). To that aim we 
calculate the action of z~ upon X (0",1" - 1,v) in two different ways. The first way is 

~x(O",1" - 1,v) = [(0" - 7 + 1) (0" + 7 + 3 )/3(21" + 3)( 7 - v) ]1/2zoL U'(0",7,V) 

= [(0" - 7 + 1)(0" + 1" + 3 )/3(21" + 3)( 1" - v)] 1/2 [I-IZo - ~ U ~~7i~% ]X(O",1",v) 

= [(0" - 1" + 1)(0" - 1")(0" + 1" + 3)(0" + 7 + 4 )/9(27 + 3 )(21" + 5)( 7 - v)( 1" - v + 1) ]1/2 

xf2_ IX(0",7 + 1,v) - [(0" - 7 + 1)(0" + 7 + 3 )/(21" + 3)( 7 - v)] 1/2U ~~7i~%x(0",1",v), (5.23) 

where we have used the commutator [ZO,!_I] = [PO,!-I] = - 31/~_1 = - 31/2 U~~7ii~~, and where we applied (5.17) 
twice. The second way is 

~X(0",7 - 1,v) = [(0" - 1" + 1)(0" + 7 + 3)/(21" + 3) ] I 12Z0 1 0",7, ( 7 - 1)/2,( 1" - 1)12 - v,( 1" - 1)/2, - (7 - 1)/2) 

= [(0" - 7 + 1)(0" + 1" + 3)/(27 + 3) ]1/2{[2(0" - 7)(21" + 2)(0" + 7 + 4)/(21" + 3)(21" + 5) ]1/2 

X 10",7+ 1,(7-1)/2,(7-1)/2-v,(7-1)/2,- (1"-1)/2) 

+ [(0" - 7 + 1) (0" + 7 + 3)/(27 + 3) jl/2X (0",7 - l,v)}, 

where now we have twice made use of (5.10). From (5.23) and (5.24) we obtain 

10",7 + 1,( 7 - 1 )/2,( 1" - 1 )/2 - v,( 1" - 1 )/2, - (7 - 1 )/2) 

= [(21" + 3 )/36( 7 + 1) (7 - v) (1" - V + 1) ]1/2/2_ IX(0",7 + l,v) 

- [(27 + 3 )(27 + 5)/4( 7 + 1)(0" - 7)(0" + 7 + 4)( 1" - v) ]l/2U ~~7i~~ix(0",7,V) 

- [(27 + 5)(0" - 1" + 1)(0" + 7 + 3 )/4( 7 + 1)(0" - 1")(0" + 7 + 4) ]1/2X (0",7 - l,v). 

(5.24 ) 

(5.25) 

Finally, we substitute (5.21), (5.22), and (5.25) into (5.20) and solve the equation with respect to U ~~7i~%x(0",7,V). The 
result is 

U ~~7ii~h(0",7,V) = - [( 7 - v) (0" - 7 + 1) (0" + 7 + 3 )/(27 + 3) ]II2X (0",7 - l,v) 

+ [(0" - 7)(0" + 7 + 4)/(27 + 5)( 7 - V + 1) r 12/3(27 + 3)f2_ lX(0",7 + 1,v) 

- [2(v+ 1)(0"-7)(0"+7+4)/(27+5)] 1/2/(27+3)/+U'(0",7+ 1,v+ 1). 

In an analogous way one can finally prove that 

U \)i~i)i2)X(0",7,V) 

= [v(O" - 7 + 1)(0" + 7 + 3 )/(27 + 3)] 1/2X (0",7 - l,v - 1) 

- [v(O" - 7)(0" + 7 + 4 )/(27 + 5)( 7 - V + 1) (1" - V + 2) ]1/2/3(27 + 3 )f2_ IX(0",7 + l,v - 1) 

- [(0" - 7)(0" + 7 + 4)/2( 7 - v + 1 )(27 + 5) r/2(27 - 2v + 3)/(27 + 3)/+U'(0",7 + l,v). 

(5.26) 

(5.27) 

At this point we have at our disposal all the intermediate results required to apply the Hill-Wheeler projection30 onto the 
physical basis. 
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VI. SO(6) GENERATOR REPRESENTATION IN THE 
PHYSICAL BASIS 

We have arrived at the point whereby we can comple
ment the results of Williams and Pursey16 for SOC 5) genera
tors, with the explicit matrix elements in the physical basis 
(2.11) of the SO(6) generators P/1 (p = - 2, - 1, ... ,2) 
which are not contained in SO (5). In fact, the physical states 
are projected out of the intrinsic states by means of an invar
iant integral over the group manifold ofSO(3), i.e., 

Po I O',1',v,l,m) 

f " = D mK (O)PoXn(O',1',v)dO 

=I(lm20I/'m)(IK2pl/'K+p) 
/1,1 ' 

X f D ~:K +/1 (O)P/1 (O)Xn (O',1',v)dO 

(K=1'-3v). (6.3 ) 

J r 100,1',v,l,m) = D m,K (fOXn (O',1',v)dO, (6.1 ) 

whereby D ~.K (0) is an ordinary rotation matrix and 
Xn (O',1',v) is the intrinsic SU(2) X SU(2) state on which the 
rotation 0 is applied. From (6.1) 

But actually, we know how to express the action of all the 
P/1 (0) upon Xn (O',1',v) [or, what amounts to the same 
thing, the effect of all P/1 upon X (O',1',v) ], in terms ofintrin
sic states or of angular momentum operators acting upon 
intrinsic states. By substituting into the rhs of (6.3) the in
termediate results (5.17), (5.18), (5.19), (5.26), and 
(5.27), after having made the changes of notation according 
to (3.1), what remains to be done is the calculation of inte
grals of the type 

X(O',1',v) = I (21 + 1) 100,1',v,l,m) ( 6.2) , Y~) = f D ~:K +/1 (0) (I ± 1 )aXn (O',1',v)dO 

(aE{1,2}). (6.4 ) 

follows as a trivial corollary. Now the action of a particular P 
component, say Po' can be brought into the following form: 

With the help of (6.2) we obtain in a straightforward man-
ner: 

I 

Y~) = [/'(1' + 1)]1/2(/' K +p+ 11 ± III' K +p)IO',1',v'/',m), 

Y<';') =1'(1' + 1)(/' K +p+21 ± III' K +p+ 0(/' K +p+ 11 ± III' K +p)IO',1',v,/',m). 

It is now readily established by means of (6.3) that 
PoIO',1',v,l,m) 

= f. (l m 2 aiI'm) { (I K 221/'K + 2) [ [v(O' - l' + 1)(0' + l' + 3 )/(21' + 3)] 1/210',1' - 1,v - 1,/ ',m) 

- [I' (I' + 1 )/3(21' + 3)][ v(O' - 1')(0' + l' + 4 )/(21' + 5)( l' - V + 1)( l' - V + 2)] 1/2 

X (I' K + 4 1 - 111' K + 3) (I' K + 3 1 - 111' K + 2) 10',1' + 1, v-1,/ ',m) 

- [l' (l' + 1) (0' - 1')( 0' + l' + 4) 12 ( l' - V + 1)( 21' + 5) ] 1/2 (21' - 2 v + 3) 1 (21' + 3) 

x(/' K + lIlli' K + 2)10',1'+ 1,V,l',m)] 

+ (I K 2 111' K + 0 [( l' + 1 - v)(O' - 1')(0' + l' + 4 )/(21' + 5)] 1/210',1' + 1,v,/ ',m) 

+ (l K 2 all' K) [l' (l' + 1)(0' - 1')(0' + l' + 4 )/3(21' + 5)( l' - V + 1)] 1/2 

x(/' K + 11 -III' K)IO',1'+ 1,v,l',m) 

+ (IK2 -lK-O[ - [(1'-v)(O'-1'+ 1)(0'+1'+3)/(21'+3)] 1I210',1'-1,v,l',m) 

+ [l'(I'+ 1)/3(21'+ 3)][(0'-1')(0'+1'+4)/(21'+ 5)(1'-v+ 1)]1/2 

X(/' K + 11 -III' K)(/' K II-III' K -010',7+ 1,v,l',m) 

- [2/'(/'+ l)(v+ 1)(0'-1')(0'-1'+4)/(21'+5)]112(21'+3) 

X (I' K - 21111' K - 1)10',7 + 1,v + 1,1',m)] 

( 6.5) 

+ (I K 2 - 21/' K - 2)[ (v + 1) (0' - 7)(0' + l' + 4)/(27 + 5)] 1/210',1' + 1,v + l'/',m)} (K = l' - 3v). (6.6) 

Since the physical basis is nonorthonormal in all the labels, we have to take into account the overlap integrals A I( v',v) in 
(2.12) in order to derive a formula for the reduced p-matrix elements which is completely analogous to (2.14) and (2.15). 
The final result reads 
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(21' + 1) -1/2(U 7' V' I '1!Pllu 7 V I) 

= DT',T+ 1 [(U - 7)(U + 7 + 4 )/(27 + 5)] 1/2{ - [I' (I' + 1)/3(27 + 3)] 

X [ vi ( 7 - V + 1)( 7 - V + 2) ] 1/2 (I K 2 211' K + 2) (I' K + 4 1 - 111' K + 3) 

X (I' K + 31 - 111' K + 2)A r+ I(V',V - 1) 

+ (7 - V + 1) -1/2[ - [I '(I' + 1 )/2] 1/2(27 - 2v + 3)/(27 + 3) (I K 2211' K + 2) (I' K + 1 1 III' K + 2) 

+ (7-V+ 1)(IK211/' K + 1) + [1'(1' + 1)/3]1/2(IK201/' K)(/' K + 11 -III' K) 

+1'(I'+1)/3(27+3)(IK2 -11/'K-l>(/'K+l1 -ll/'K)(/'Kl -ll'K-l)]A['.+I(v',v) 

+ (v+ 1)1/2[ - [21'(1' + 1)]1/2/(27+ 3)(IK2 -III' K-1) 

X (I' K - 2 1 111' K - 1) + (I K 2 - 211' K - 2)]A 1'+ 1 (v',v + I)} 

+ DT',T-l [(u - 7 + l)(u + 7 + 3)/(27 + 3) P/2{v l
/
2(1 K 2211' K + 2)A 1.-1(V',v - 1) 

- (7-v)I12(IK2 -11/'K-1)A['.-I(v',v)} 

(K = 7 - 3v; vE{O,I, ... ,[r/3]); IE{2K,2K - 2,2K - 3, ... ,K}), (6.7) 

where one possible expression of the function A I( v',v) has 
been given in (2.13). 

VII. CONCLUSIONS 

We have succeeded in establishing all the matrix ele
ments of the generators of the SO (6) Lie algebra in the phys
ical SO( 3) basis. For those interested in extending the inter
acting boson model, these matrix elements are of great 
importance for the computation of the eigenvalues of SO (3 ) 
scalars in the enveloping algebra of SO ( 6). As an example 
there exists an SO (3) scalar of third degree in the generators 
of the form (pi) 11)0 and its eigenvalues are upon a global 
I-dependent factor derived by diagonalizing with respect 
to the labels 7 and V the reduced matrix elements 
(u,7',v',l11 p Ilu,7,v,/). The calculation of the spectra of other 
SO (3) scalars will require the nondiagonal elements with 
respect to the labell, and also the reduced matrix elements of 
the q generators which belong to the SO(5) subalgebra. 

Hence, by the present work we have achieved results 
which permit to treat the two dynamical symmetries SU (3) 
and SO(6) in a similar way. There now remains to analyze 
the dynamical symmetry SU (5). We hope to report on this 
case in the near future. 
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Theorems on the Jordan-Schwinger representations of Lie algebras 
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The Jordan-Schwinger representations of Lie algebras are discussed based on the mixed sets of 
creation and annihilation operators of boson or fermion type. When the representation is 
Hermitian, the Lie algebra is shown to be unitary for the fermion case and pseudounitary for 
the boson case. It is also shown that the representation of a Lie algebra leads to a projective 
representation of the Lie group corresponding to the Lie algebra. 

I. INTRODUCTION 

In 1935, Jordan j,2 introduced the so-called Jordan map
ping which is a mapping from a one-particle realization of 
the kinematic symmetry into field operators of either boson 
or fermion type. The characteristic property of the mapping 
is that it preserves the action of commutation of matrices. In 
1952 Schwinger3 introduced a highly ingenious treatment of 
the rotation group by representing tjIe matrix generators 
{T} in terms of their bilinear forms {T} with respect to bo
son annihilation and creation operators. Since this represen
tation is equivalent to the Jordan mapping it is often called 
Jordan-Schwinger mapping or simply Schwinger represen
tation. It has been widely used to provide a fairly effortless 
treatment of representations of Lie groups. For example, a 
great deal of work has been carried out on the mean field 
Hamiltonian if of a many body system in the second quan
tized field formalism, by regarding it as the Schwinger repre
sentation of a matrix generator H of the spectrum generating 
algebra (SGA).4,5 Recently, the Schwinger representation 
has also been used to construct the algebraic Hamiltonian of 
the vibron models which describe the rotation-vibration 
spectra of nuclei6 and the rotation-vibration spectra of mole
cules. 7

-
9 

In the present paper we shall discuss some of the basic 
properties of the Schwinger representation of a Lie algebra 
Y (s) of s XS matrices based on either fermion or boson oper
ators. In spite of the difference in their commutation rela
tions, the general properties of the two cases are very much 
parallel, in particular, if each set of particle operators de
scribing the representation is pure, i.e., all members of each 
set are either annihilation operators or creation operators. 10 

However, if the representations are based on mixed sets of 
annihilation and creation operators [see (2.4) or (3.2)], 
some of the properties (in particular the symmetry proper
ty) are affected by the difference in the commutation rela
tions. For example, let Tbe a basis element of Y(S) then if 
the fermion representation T is Hermitian, the corr~spond
ing matrix generator Tis also Hermitian, whereas if the bo
son representation Tis Hermitian, the corresponding matrix 
Tis pseudo-Hermitian (p-Hermitian). This means that the 
spectrum generating algebra (SGA) of T is unitary and 
compact for the former, whereas it is pseudounitary (p-uni
tary) and hence noncom pact for the latter. It will be shown 
also that a Schwinger representation of an algebra Y(S) 

leads to a projective representation of the corresponding 

group L (s) in either case, even though there exists an impor
tant simplification for the fermion representation of the sim
ple orthogonal group SO(s). 

The outline of the content is as follows. In Sec. II, we 
shall first discuss the boson representations based on a mixed 
set of boson annihilation and creation operators [see (2.4) ] . 
For this purpose it is necessary to introduce an annihilation
like operator set Band creationlike operator set B 'F , which 
are defined to satisfy the boson-type commutation relations 
and yet they are not mutually Hermitian conjugate. This 
complication arises from the fact that a commutator of two 
noncommuting operators is antisymmetric with respect to 
their exchange. Then we shall discuss the symmetry proper
ties of the representations, transformations of the particle 
operators, diagonalizations of the bilinear forms, and the 
projective representations of Lie groups L (s) • In Sec. III we 
shall discuss the fermion representations in a parallel man
ner as the boson case. Here we have a simplifying feature 
over the boson case; i.e., the mixed sets of particle operators 
do satisfy the anticommutation relations as in the case of 
pure sets. In the final section (Sec. IV), we shall discuss a 
couple of well-known examples guided by the general theo
rems developed in the previous sections. 

II. BOSON REPRESENTATIONS 

Let {b j,b2, ... ,bs } and {b t,b! , ... ,b n be sets of boson 
annihilation and creation operators satisfying the commuta
tion relations 

[bj,bJ] =oij' [bubj ] = [b;,bJ] =0. (2.1) 

Let B = {Bl>B2, ... ,Bs } be a mixed set of annihilation and 
creation operators where Bi = bi or b;' Then [BoB n = I 
or - 1. To avoid this complication we introduce an addi
tional set of operators B =+= = {B i=+= } defined by 

B =+= = ()'B + or B i=+= = ()iB;, i = 1,2, ... ,s, (2.2) 

where () = II()A; II is a diagonal matrix with the diagonal 
elements, 

(). = {I, if Bi = bi' 
I _ 1, if Bi = b; . 

Since these satisfy the boson-type commutation relations, 

[Bi,Bll =oij' [BoBj] = [Bi'F,Bll =0, (2.3) 

we may call the set B = {Bi } the annihilationlike operator 
set and B =+= = {B i=+=} the creationlike operator set. Let 
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[em) be the number of annihilation (creation) operators 
contained in B = {B;}, then [ + m = s. Without loss of gen
erality, we may take r~m and the modified sets of the opera
tors may be given explicitly as follows: 

{BJ = (b l,b2,···,b1,bi+l b i+2,···,bI}, (2.4) 
{B ;'f'} = {b t,b L· .. ,b r. - b1+ I' - b l + 2"'" - bs }· 

It will be shown that these sets are particularly effective in 
describing pseudounitary (p-unitary) algebra u(/,m) or its 
subalgebra. With this much preparation we shall now de
scribe the definition of the Jordan-Schwinger representation 
based on the boson operators and its properties in the follow
ing. 

Let us denote a Lie group of s-dimensional matrices by 
L (s) and the corresponding Lie algebra by .,:e (s). Let 
T = Iltij II be a generator of L (s) and define its boson repre

sentation Tby 

T=B'f' ·T·B= IB;'f'tijBj' (2.5 ) 

then the set of the bilinear forms {T} for a basis {T} of .,:e(s) 

defines the Schwinger representation of .,:e(s) • The basic 
properties are the following. 

(i) It provides a faithful representation of .,:e(s) • 

(ii) The basic commutation relations of T with the par
ticle operators are 

[T,B;] = - I tijBj , 

[T, B j'f'] = I B l tjO 

(2.6a) 

(2.6b) 

where i = 1,2, ... ,s. The set of equations (2.6a) is very useful 
for finding a closed set of mixed operators {B j } from a given 
bilinear form expressed in terms of the original particle sets 
{b j } and {b j}. This is particularly so for a mean field Hamil
tonian H in a second quantized formalism, since it is infinite 
dimensional and may be expressed by a sum of commuting 
bilinear forms of finite dimensions with use of (2.6a). It 
should be noted, however, that this procedure determines H 
up to an additive constant, since addition of a constant to T 
on the left-hand side of (2.6) does not affect the right-hand 
side. 

(iii) Let us assume that each element U of the group 
L (s) can be represented by an appropriate generator T of 
L (s) in an exponential form U = exp [ - i T]. Then the 
Schwinger operator corresponding to U is defined by 

U = exp [ - iT] . (2.7) 

Under a similarity transformation by U, the particle opera
tors transform as follows: 

UBjU- 1 = I (U-1)ijBj , UBj'f'U- I = IBl~j, 

(2.8 ) 

which follow from the basic commutation relations (2.6). 
These mean that B = {B;} and B 'f' = {B ;'f'} transform 
contragrediently. An immediate consequence of (2.8) is that 
the bilinear form corresponding to the unit matrix 

B 'f"B= ~ bte.b-m L I I 1 
(2.9) 
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v 
is invariant under a similarity transformation with U. In 
fact, it commutes with any bilinear form T of L (s) since it is a 
representation of the unit matrix. One of the most important 
bilinear forms we encounter in the representation is a num
ber operator N; = b ib j of the ith particle. The total boson 
number operator N is defined by 

(2.10) 

It is not an invariant of the group unlessL (s) = L(l) XL(m), 

since [T,N] = 0 requires that [T,e] = O. In a special case of 
a simple orthogonal group SO(s) where e = 1, we have ad
ditional invariants 

Bt'Bt, B'B, 

which are important in constructing the algebraic Hamilto
nians for vibron models.9 

(iv) Let Tbe a Hermitian bilinear form, then its spec
trum generating algebra is a pseudounitary algebra u(i,m) 
(or its subalgebra) since the corresponding matrix generator 
Tis pseudo-Hermitian, satisfying II 

Tt = e Te, (2.11a) 

where e is the diagonal matrix defined in (2.2). The trans
formation operator U = exp [ - i T] is obviously unitary 
but the corresponding matrix U = exp [ - i T] is pseu
dounitary, satisfying 

ut eu = e. (2.11b) 

Note also that the matrix corresponding to (U) t is given by 
U - I = e ut e. 

(v) The transform of a bilinear form H = B 'f' . H· B of a 
matrix H under U is given by the bilinear form of the trans
formed matrixH' = U H U-I, i.e., 

UH U- I =B 'f'·H'·B. (2.12) 

This equation is essential for diagonalization of the operator 
H through diagonalization of its matrix H. 

Let Hbe a Hermitian operator, then His p-Hermitian. If 
H is diagonalized by a unitary operator U = exp ( - i T) 
then H is diagonalized by a p-unitary matrix U 
= exp( - i T) (and vice versa). Since a p-Hermitian ma

trix remains so under a p-unitary transformation, a neces
sary condition for a p-Hermitian matrix H to be diag
onalized by a p-unitary transformation is that the 
eigenvalues of H are all real. This follows since the diagonal 
elements of a p-Hermitian matrix are all real as in the case of 
a Hermitian matrix. The necessary condition is not always 
satisfied by a p-Hermitian matrix; e.g., the matrix Kx 
= [? ~ ] is p-Hermitian but its eigenval~s are all imaginary. 

This means that a Hermitian operator H may not be neces-
sarily diagonalized by a unitary operator U. (See example A 
in Sec. IV.) This is closely related to the fact that a compact 
generator cannot be transformed to a noncom pact generator 
by a unitary transformation. 

(vi) If there exists a transformation matrix U which 
diagonalizes H we have 
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(

A 1) 1 
= I Ojh j N j + 2 - 2 tr H, (2.13 ) 

where hj is an eigenvalue of Hand Nj = b ; bj is the number 
operator. It is often more convenient to introduce the ca
nonical set of particle operators for H by 

(2.14 ) 

then we have a canonical form of H, equivalent to (2.13), 

H=" B'+hB =" O.h(N +~) -~trH 
L..JIII L..JII 122 ' 

(2.15) 

where Nj is the canonical number operator equivalent to Nj • 

Note that Ojh j plays the role of hj of the pure case. It should 
also be noted that Bj and OJ B j'+ are not mutually Hermitian 

v 
adjoint unless U is unitary and their vacuum state is defined 
by 

10)' = U-110), (2.16 ) 

where 10) is the vacuum state for the original particle opera
tors, {bi ,b ;}. 

(vii) The reverse operator of T is defined by reversing 
the order of the particle operators in T, 

Rev T=B' T·B '+ = T + tr T. (2.17) 

The additive constant vanishes if T belongs to a pseudo-or
thogonal algebra so (I,m), i.e., 

T- = - () TO, (2.18 ) 

where T- is the transpose of T. The concept of the reverse 
operator (first introduced by Dirac l2

) seems to give very 
little effect on the boson representation but it provides a far 
reaching consequence for the fermion representation of 
so(s) algebra as will be discussed in the next section. 

(viii) The operator U provides a projective representa
tion of U EL (s) • Let U, V, W EL (s) then 

UV=k W, if UV= W, (2.19) 
v v 

where k is a constant called the projective factor of U and V. 
,!:-he pt:9oj'is simple; by repeated use of (2.8) one shows that 
W -I U V commutes with all the particle operators 
{BuB j'+} and hence is a constant. For a special case of a 
p-unitary group U (I,m) we have 

Ikl = 1 (2.20) 

since U, V, and Ware all unitary. The properties of the factor 
system for (2.20) are still under investigation. 

III. FERMION REPRESENTATIONS 

The representation based on bosons discussed in the pre
vious section will be extended to the representation based on 
fermion operators {ai' a;; i = 1,2, ... ,s}, which satisfy the an
ticommutation relations, 

[auaJ] + =oij' [aj,aj ]+ = [a;,aJ] + =0. (3.1) 
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Since the anticommutators are symmetric with respect to the 
annihilation and creation operators, a mixed set defined by 

(3.2) 

automatically satisfies the anticommutation relations 

[Ai,A J] + = oij' [Aj,Aj] + = [A;,A J] + = O. (3.3) 

Here the set {A n plays the role of the set {B j'+} in the boson 
case and most of the results obtained in Sec. II hold for the 
present case if we replace {Bj,B j'+} by {Aj,A n (except for 
the symmetry properties of the representations) with trivial 
modifications. 

Let us define the fermion representation of a matrix 
TEL(S) , analogously to the boson representation (2.5), by 

(3.4 ) 

Then, if T is Hermitian, so is the matrix T and hence the 
transformation operator U = exp [ - i T] and the corre
sponding matrix U = exp [ - i T] are both unitary. Thus 
the spectrum generating algebra of a Hermitian operator H 
is a unitary algebra u(s) and H can be always diagonalized 

by a unitary operator U corresponding to a transformation 
matrix U which diagonalizes H. 

The basic commutation relations corresponding to 
(2.6) are 

Thus one can write down the transformation law of the parti
cle operators under U = exp[ - i T] analogous to (2.8). 
The invariant bilinear form corresponding to (2.9) takes the 
form 

At ·A = I aTOja j + m, (3.6) 

where OJ = 1 if Aj = aj and OJ = - 1 if Aj = aJ. The total 
fermion number operator is given by 

(3.7) 

The canonical set tl} ofthe particle operators for a Hermi
tian bilinear form H = At. H·A is defined by, analogous to 
(2.14), 

(3.8 ) 

where U is the unitary matrix which diagonalizes H. These 
may be written explicitly, as follows: 

(3.9) 

where ii j and ii; are the annihilation and creation operators 
which act on the canonical vacuum state ut 10). Thus the 
bilinear form takes the form 

(3.10) 

where h j is an eigenvalue of Hand Ni = iiT iii is a canonical 
number operator. Note that Eqs. (3.6), (3.7), and (3.10) 
have the same forms as those of corresponding equations 
(2.9), (2.10), and (2.15) of the boson case, respectively, 
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except for the opposite signs of the additive constants. Note, 
in particular, that eihi plays the role of hi of the pure case as 
in the boson case. 

Now, in general the Schwinger operator U 
= exp [ - iT] provides a projective representation of 
U = exp[ - i T]EL(S); 

(;'V=kW, if UV=W, (3.11) 

which may be proved analogously in the case of boson opera
tors. The projective factor k satisfies 

Ik 1= 1 (3.12) 

for a unitary group. In a further special case of SO(s), U 
provides a double-valued representation with 

k= ± 1. (3.13 ) 

We shall prove this important result based on the concept of 
reverse operators introduced by Dirac l2 for the theory of 
spinor representation. 

For any operator ° defined as a function of the noncom
muting operators, its reverse operator 0- is obtained from 
° by reversing the factors in every product in 0. The same 
symbol - is used for the reverse of an operator as for the 
transpose of a matrix because there is the same product law, 

(010 2 )- =0:;0\, 

(0 -1)- = (0- )-1. 

For a bilinear form T = At. T· A we have 
A A 

(T)-= -T+trT. 

(3.14 ) 

(3.15 ) 

Let T be an antisymmetric matrix then the transformation 
matrix U = exp [ - i T] belongs to SO (s) and the 
Schwinger operator U satisfies 

(3.16 ) 

~0't (3.13) [ollows from (3.11) and its reverse equation 
V- U- = k W- and (3.16) (Q.E.D.). The double-valued 
representation does not hold for the boson c~se, simply be
cause the reverse operation has little effect on T for the boson 
case as has been mentioned in (vii) of Sec. II. 

IV. EXAMPLES 

To show the effectiveness of the general theorems devel
oped for the Schwinger representation in the previous sec
tions we shall discuss some well-known examples, the boson 
representation of the SU ( 1.1) group and the fermion repre
sentation of the SU (2) group, guided by the general theo
rems. 

A. SU(1.1) boson model 

The matrix generators of SU ( 1.1) may be defined by13 

(0 i) (0 1) (1 
KI = i 0' K2 = _ 1 0' K3 = 0 

These matrices are p-Hermitian, satisfying 

K t = eKe. e = (1 0) 
I I , 0 _ 1 . 

~J. 
(4.1 ) 

(4.2) 

Following (2.4), the sets of mixed operators are chosen as 
follows: 
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B = (B I ,B2 ) = (bl>b 1), 
(4.3) 

B =F = (B ~ ,B l) = (b r. - b2 ). 

Then the boson representation of the basis {KI,K2,K3} is 
given by a set of Hermitian bilinear forms Ki = B =F • K, . B 
or explicitly by 

A • t t K I =I(b l b 2 -b2b l ), 

A t t K2 = bib 2 + b2b l , (4.4) 

K3 = bTb l + b2bi. 
A A 

The operators K J and K2 are noncompact since the eigenval-
ues of KI and K2 are imaginary whereas the operator K3 is 
compact since K3 has real eigenvalues. 

The most general Schwinger generator of SU ( 1.1 ) 
which is Hermitian is given by 

M = SIKI + S2K2 + EK3. (4.5) 

This operator is compact or noncompact depending on the 
relative magnitudes of the real coefficients (SI,S2,E). To 
have some physical feeling, this generator must be compared 
with the Bogoliubov Hamiltonian4

•
14 for the superfluid bo

son model given by 

H= I H(k), 
k>O 

H(k) =s(k 2 )(btbk +b_kb t_ k ) (4.6) 

+ t(k 2)(b tb t_ k + b _ kbk), 

where S(k2) and t(k 2
) are scalar functions of the wave vec

tor k. Then H(k) is a special case of M with b l = bk , 

b2 = b _ k andSI = 0, S2 = t(k 2), E = s(k 2). For this mod
el M is compact since Is(k 2) I > t(k 2) I. 

The matrix M corresponding to M is given by 

M = SIKI + S2K2 + EK3 

(4.7) 

which is p-Hermitian. By a Bogoliubov transformation, the 
matrix M can be diagonalized into the form 

UMU- I =EK3, E=(E2 _lsI2)1I2. (4.8) 

Here if lEI> Is I, Eis real and its sign can be chosen such that 
E E> 0, whereas if lEI < Is I, Ebecomes imaginary and we set 
E = ilE I. In either case, the transformation matrix U may be 
given by a quasirotation 15 about a unit vector n = (S 21 
Is I, - Sills 1,0) through an "angle" X = tanh- I (Is liE), 

(4.9a) 

or explicitly by 

U = N(E + E S )=(u VI), (4.9b) 
S· E + E V2 U 

where N -2 = 2E(E + E) and u2 - V IV2 = 1. Note that 

U- I = eute. (4.10) 

It is also noted that the explicit form (4. 9b) can be directly 
obtained by means of a general theory of matrix diagonaliza
tion developed by the author. 16 

When lEI> Is I, the angle X is real so that U is unitary, 
and hence Uis p-unitary, i.e., ut = e u-Ie. This is expected 
since both Mand K3 are compact. When lEI < Is I, the angle X 
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becomes complex so that fj cannot be unitary. This is also 
A 

expected since M is noncom pact this time. This is a direct 
consequence of the statement given in (V) of Sec. II that a p
Hermitian matrix M with complex eigenvalues cannot be 
diagonalized by a p-unitary matrix. It is also noted that the 
noncom pact M can be transformed to the noncom pact oper-

ator IE I (SJ<1 + s2K2)/lsl by a unitary operator fj with 
X = tanh-l(dls j) in (4.9a). 

In terms of the matrix U of (4. 9b) which diagonalizes 

M, the canonical set of the particle operators for M is given 
by, using (2.14), 

- t - t BI ubI + vlb 2' B2 = v2b l + ub 2' 

B;'F = ub T + v2b2 , B 2=F = - vlb r - ub2• 

The canonical form of M is given by 

M=E(B ;'FBI -BIBz ) E(NI +Nz + 1), 

(4.11 ) 

(4.12 ) 

which is consistent with the general expression (2.15). 

8. The SU(2) fermion model 

The mean-field Hamiltonian H for the Bardeen-Coo
per-Schrieffer (BCS) models.l ? is given by 

(4.13 ) 

+a(k)aLat kl +a*(k)a_klakl' 

where c(k) is one-particle energy and a(k) is the energy gap 
function of the wave vector k; ak 1 and all are annihilation 
and creation operators of the electron with spin up. By ap
plying (3.5) to the bilinear form H(k) of (4.13), one can 
express it in the form H(k) = A t 'H(k)'A with 

A = {A 1,A2} {ak pat kJ (4.14) 

and 

( 4.15) 

where a = a l + ia2, and (0"],0"2,0"3) are the Pauli matrices 
and we have suppressed the k depe!!.dence of c and a. 

Since the given bilinear form H(k) is Hermitian, the 
matrix H(k) is also Hermitian as it should be and hence 
H(k) can be diagonalized by a unitary transformation as 
follows: 

u H(k) ut = E0"3' E = (c2 + lal 2
) 1/2, cE> 0. 

(4.16) 

Ihe spectrum generating algebra (SGA) of the Hamiltonian 
H(k) is su(2) with the basis (0"1,0"2,0"3)' The unitary matrix 
Uwhich diagonalizes H(k) in (4.16) is given by a rotation 
about a unit vector n = ( a2/1al, - al/lal,O) through 
an angle ~ = tan-I( lal/c), 

(4.17a) 

or explicitly byl6 

U=N(c+E a )=( u v) (4.17b) 
- a* c + E - - v* u ' 

where N -2 = 2E(c + E) and u2 + Ivl 2 = 1. From (3.8) 
and (4.17b) the canonical set of the particle operators 
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{AI,A) {al,an is given by 

a] = u ak 1 + vat_ kJ' 

al = - v*ak1 + uat_kP (4.18) 
A 

and the canonical form of H(k) is given by 

H(k) =E(a!al -a2ai) =E(NI +N2 -1), (4.19) 

which is consistent with (3.10). 
An easy application of ( 4.19) and the canonical opera

tors of (4.18) is to calculate the thermal average of an off
diagonal element over the canonical distribution with tem
perature T (with energy measured from the Fermi surface) 

(a k1 a-kJ) =(a(k)/2E(k»)«(1-NI (k) -N2 (k»)) 

= (a(k)/2E(k»tanh[E(k)/2kB T], 
(4.20) 

where we have used the inverse transformation of (4.18) and 
restored the k dependence. As is well known, the gap func
tion a(k) in the mean-field Hamiltonian is determined self
consistently from] 8 

( 4.21) 

where the Vkk , are the potential parameters which are non
zero only in the vicinity of the Fermi surface. 

Finally, the ground state of H(k) is given by the canoni
cal vacuum state fjt 10) of {Ai}, which is a coherent statel9 

ofSU (2). Using the Baker-Campbell-Hausdorff formula, II 
it is rewritten in the more familiar form 18 

utlO) = K(U vaL at_ kl ) 10), IKI = 1, (4.22) 

where the coefficients u,v are defined by (4.17b) and the 
phase factor K is due to the projective factor which arises 
since U is a projective representation of UE SU (2) . 

V. CONCLUDING REMARKS 

In terms of mixed sets of boson annihilation and cre
ation operators we have introduced an annihilationlike oper
ator set B = {B j } and a creationlike operator set 
B =F = {B j=F} which satisfy the bosonlike commutation re
lations. The Schwinger representations of Lie algebra y(S) 

based on these sets are discussed. It has been shown that a 
Hermitian bilinear form H with respect to Band B =F be
longs to a pseudounitary algebra and thus it may not be nec
essarily diagonalized by a unitary operator. In the case of 
fermion representations, a Hermitian form H always belongs 
to a unitary algebra and can always be diagonalized by a 
unitary operator U. 

v A 

The Schwinger operator U = exp[ - i T] with bosons 
or fermions is shown to provide a projective representation 
of an element U = exp [ - i T] of a Lie group L (s) • It be
comes a double-valued representation for SO(s) in the case 
of fermion operators. The properties of the factor system will 
be discussed in a forthcoming paper. 
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A nonrelativistic and a relativistic classical Hamiltonian model of two degrees of freedom are 
considered describing the plane motion of a particle in a potential V(X I ,X2 ) [(X I,X2) 

= Cartesian coordinates]. Suppose V(X I ,X2 ) is real analytic in its arguments in a 
neighborhood of the line X 2 = 0, one-periodic in x I there, and such that the average value of 
JV(x l ,0)IJx2 vanishes. It is proved that, under these conditions and provided that the particle 
energy E is sufficiently large, there exist for all time two distinguished solutions, one satisfying 
the equations of motion of the nonrelativistic model and the other those of the relativistic 
model, whose corresponding configuration-space orbits are one-periodic in XI and approach 
the line X 2 = ° as E -+ 00. The main theorem is that these solutions are (future) orbitally stable 
at large enough E if V satisfies the above conditions, as well as natural requirements of linear 
and nonlinear stability. To prove their existence, one uses a well-known theorem, for which a 
new and simpler proof is provided, and properties of certain natural canonical maps 
appropriate to these respective models. It is shown that such solutions are orbitally stable by 
reducing the maps in question to Birkhoff canonical form and then applying a version of the 
Moser twist theorem. The approach used here greatly lightens the labor of deriving key 
estimates for the above maps, these estimates being needed to effect this reduction. The present 
stability theorem is physically interesting because it is the first rigorous statement on the 
orbital stability of certain channeling motions offast charged particles in rigid two-dimensional 
lattices, within the context of models of the stated degree of generality. 

I. INTRODUCTION 

In a previous paper, I we initiated the rigorous study of 
the orbital stability of certain rectilinear motions occurring 
in the context of nontrivial classical Hamiltonian models of 
channeling in rigid two-dimensional crystals. In the present 
paper, we extend these results to a more general class of 
models of this type in which one cannot infer the existence of 
certain distinguished motions by symmetry arguments. 2 A 
typical example is as follows. Suppose that a fast charged 
particle is injected into a square array of atoms along a line 
parallel to the (1,1) atomic strings and lying midway 
between two such strings. Under reasonable hypotheses on 
the repulsive interactions between the atoms of the array and 
the fast particle, does there exist a semi-infinite trajectory 
which remains close for all future times to this midline, and 
is the corresponding motion stable in some sense? Many nu
merical studies3

,4 suggest that the answers to questions of 
this type are affirmative. The purpose of this paper is to show 
rigorously that this is the case within the framework of the 
above generalized Hamiltonian models. 

Such generalized two-dimensional models are of phys
ical interest because they describe a rich variety of channel
ing phenomena occurring in three-dimensional crystals, 
within the domain of validity of suitable continuum-model 
approximations. They are of mathematical interest because 
it is nontrivial that such semi-infinite trajectories exist in the 
context of the present models, and if they do whether they 
are stable or unstable in some well-defined sense. 

One of the two generalized models considered here is 
nonrelativistic (NR model) and the other relativistic (R 
model). They are described by the respective Hamiltonians 

H NR and H R' which are smooth real-valued functions de
fined at each (X I ,X2,PI,P2)E]R4 such that (X I ,X2) is in an ap
propriate neighborhood of the line X 2 = ° (center of a chan
nel) in]R2 (see Ref. 5): 

HNR (X I ,X2,PI,P2) = ~ (pi + p~) + V(X I ,X2) , (1.1a) 

HR (X I ,X2 ,PI,P2) = ~pi + p~ + 1 + V(X I,X2)· (1.1b) 

In Sec. II, we state our principal results, Theorems 1 and 
2, and discuss the strategy of their proofs. Let the potential 
Vex I'X2 ) be a real-valued function which is analytic in X I,X2 
jointly in the above neighborhood of the line X 2 = 0, one
periodic in x I there, and such that the X 2 component 
- JV(X I ,x2 )IJx2 of the force on the particle of interest van-

ishes on the average along this line. Theorem 1 asserts that 
under these conditions and provided that E is sufficiently 
large there exists for the NR model and the R model a distin
guished solution of the respective equations of motion, 
whose phase-space orbit is one-periodic in XI and whose X 2 

and P2 coordinates tend to zero as E -+ 00. The last condition 
on V is substantially weaker than the corresponding one im
posed in Ref. 1 that this force component vanish pointwise 
for X 2 = 0. We also remark that under the assumptions of 
Ref. 1 these distinguished solutions reduce to the corre
sponding rectilinear ones considered there. If V satisfies the 
conditions of Theorem 1 plus certain natural requirements 
of linear and nonlinear stability, Theorem 2 asserts the (fu
ture) orbital stability of the distinguished solutions in ques
tion at sufficiently large E. This is our main result. 

We prove Theorems 1 and 2 in Sec. III for the NR model 
and in Sec. IV for the R model. We show the existence of the 
latter solutions by using Theorem A.l of Appendix A, which 
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is a version of well-known mathematical results,6.7 originally 
derived by averaging-theory methods. A simple proof of 
Theorem A.l not appealing to such methods is given in that 
appendix for the sake of completeness. In the proofs ofTheo
rems 1 and 2, we use properties of two natural canonical 
maps from a neighborhood of 0 ER2 into R2, one of which 
corresponds to the NR model and the other to the R model. 
At large enough E, these maps can be reduced to maps in 
Birkhoff normal form having the properties assumed in the 
version of Moser's twist theorems stated as Theorem B.l in 
Appendix B. The application of this version to the latter 
maps and elementary arguments complete the proof of 
Theorem 2. In order to show that the Birkhoff normal forms 
of the above maps have these properties, one needs estimates 
of certain of their derivatives at the relevant fixed points in 
the limit E -+ 00. The derivation of these estimates is consid
erably shorter by the power-series approach of the present 
paper than by the methods of Ref. 1. 

Ellison and his collaborators9 have derived important 
rigorous results on channeling motions by averaging-theory 
arguments. The theory of averaging is of very general appli
cability in a channeling context, but save in exceptional cir
cumstances its conclusions are only known to hold for finite, 
although typically long-time intervals, as is the case for the 
results derived in Ref. 9. On the other hand the canonical 
map approach advocated in the present paper leads to stabil
ity theorems obtaining over infinite time intervals, but up to 
now it has only been possible to apply it to rather special 
channeling motions. It is natural to conjecture that much 
could be gained in our theoretical understanding of channel
ing by an adroit combination of these two methods. 

II. STATEMENT OF MAIN RESULTS AND STRATEGY OF 
PROOF 

A. Main results 

We begin by stating more precisely the conditions im
posed on the potential V occurring in (l.1a) and (1.1b). In 
the majority of our discussions, it will be assumed to possess 
the following two properties. 

(I) V(X I,X2) is a real-valued function which is analytic 
in the real variables XI' X2 (Ref. 10) in the closed strip 

Y = {(X I,X2)ER2
: Ix2 1..;;ao} , (2.1) 

for some constant ao > O. 
(II) In the strip (2.1), V(X I,X2) is periodic in XI with 

period unity and 

AI=O, 

where 

Aj = ( aj V(xl,O) dX
I 

. 
Jo ax'2 

(2.2) 

(2.3 ) 

In the proof of our main result-Theorem 2-we will 
also assume the following. 

(III) The inequalities 

A 2 >0, 

A~4-jA~#0 

hold. 
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(2.4a) 

(2.4b) 

Properties (I) and (III) were also assumed in Ref. 1, 
where their motivation was discussed. In particular, Eqs. 
(2.4a) and (2.4b) are conditions of linear and nonlinear sta
bility conditions, respectively. Property (II) obviously 
states that the X 2 component of the force on the particle of 
interest vanishes on the average along the line X 2 = O. 

Unless an explicit statement to the contrary is made, the 
symbol H in the following discussions stands for H NR or HR' 

Let V have property (I). Then at each quadruplep, S, 7], 
E of real numbers with (p,S)EY for which it exists, we de
finexf U;z,E),pfU;Z,E) U = 1,2) as a solution of the Hamil
tonian equations of motion 

Xi = aH, Pi = _ aH, i= 1,2, 
api aXi 

(2.5) 

at each t of a maximum interval in R containing t = 0, satis
fying the initial conditions 

x~(O;Z,E) =p, x~(O;z,E) = S, (2.6) 
p~(O;z,E) >0, p~(O;z,E) = 7], 

and such that at each t in this interval (x~ (t;z,E), x~ (t;z,E) , 
p~ (t;z,E) , p~ (t;z,E») lies on the energy surface H = E in R4 
and (X~U;Z,E),X~U;Z,E»)EY. Here z = (p,;), where 
; = (S,7]). This solution is unique in view of the smoothness 
properties of the right sides of these equations of motion 
when V has the assumed property (I). 

If V(X I,X2 ) has this property and in addition is one
periodic in X I' we see by the results of the last paragraphs of 
Sees. III A and IV A that there exist a neighborhood ~ C R2 
of the origin [ ~ is the same for H = H NR and H = H R; see 
(3.7b) 1 and a positive constant E{! such that for zERx ~, 
E> E {!, system (2.5) has precisely one solution xf (t;z,E) , 
pf U;z,E) U = 1,2) on suitable time intervals. Moreover, by 
the properties of the diffeomorphisms (3.8a) and (4.7a) 
stated in these respective subsections, there is at each such 
z,E a unique time 7H (z,E) at which this solution of (2.5), 
which emerges from the hyperplane X I = P at t = 0, pierces 
the hyperplane XI = P + 1, i.e., 

X~(7H(Z,E);z,E) =p + 1. (2.7) 

Our principal result asserts that when V has properties 
(1)-(111) certain distinguished solutions of system (2.5) for 
H = H NR' H = H R' which exist at all times and whose 
phase-space orbits are close to the hyperplane X 2 = P2 = 0 at 
sufficiently high E, are orbitally stable at such E values. 
These solutions are defined in the next theorem. There and 
elsewhere in this paper, the notion of orbital stability is un
derstood as follows. 

Definition: Let & + (z,E) be the phase-space orbit, if it 
exists, swept out during the time interval t;;;~0 by a particle of 
energy E subject to the initial conditions (2.6), i.e., 

& + (z,E) = {(XI U;z,E) ,x2U;z,E) ,PI (t;z,E),P2U;z,E») , 

O..;;t< 00}CR4
• 

Suppose that the solutionxfU;z,E),pfU;z,E) U= 1,2) ex
ists at some Z = (p,t), E for all t;;;,O. This solution is said to 
be orbitally stable if for all E> 0 there exists 8 = 8(E,ji,E) 
such that & + (z,E) exists and each of its points p satisfies 
d (p, & + (z,E») < E if d (z,E), (z,E») < 8 where d is the dis-
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tance function appropriate to the usual norm on R4 (see Ref. 
5 ). 

Theorem 1: Let Vobey conditions (I), (II), and 

A 2 #0. 

Then there exist a positive constant E H and a neighborhood 
fiJ Hew OfOER2, such that at eachp, ER, E>EH: 

(1) There is exactly one point ZH (p,E)EfiJ H with the 
properties that for S = ZH (p,E) the solution x[IU;z,E) , 

p[IU;z,E) (i = 1,2) exists for all tER and thatxf"U;z,E) [and 
hence pf" (t;z,E) 1 is periodic in t with period 
TH «(P,ZH (p,E»),E). 

(2) This periodic solution IS not orbitally stable if 
A 2 <0. 

(3) Writing ZH (p,E) = (XH (p,E) ,PH (p,E»), X H, PH 
are analytic functions of p, E at each such p, E and have the 
asymptotic behavior 

XH(p,E)=O(E-'), H=HNR,HR , (2.8a) 

_ {(2E)-1I2h(p) +O(E-'), H=HNR , 
PH(p,E)- h(p)+O(E- I ), H=HR , 

(2.8b) 

for E -+ 00, uniformly with respect to p on R, where 

h(p) = _ (P+ I U JV(u,O) du. (2.9) 
Jp JX2 

Remark: Assertion (2) is intuitively obvious. By the 
Hartman-Grobner theorem, II in order to prove this state
ment it essentially suffices to establish the hyperbolicity of 
the appropriate fixed point of the maps &' NR (p,E), 
&' R (p,E) defined in Secs. III B and IV B, respectively (see 
also Sec. II B). On the other hand, the proof of the orbital 
stability property asserted in Theorem 2 for the case when 
A2 > 0 is much more involved, since the stability of solutions 
of nonlinear Hamiltonian systems cannot in general be 
proved on the basis of linearized treatments. 

We will denote by x[IU;p,E) , fJ[IU;p,E) (i = 1,2) the 
unique solution of (2.5) in assertion (1) of Theorem 1 satis
fying (2.6) with S = ZH (p,E). 

Theorem 2: Let V satisfy conditions (1)-(111). Then 
there exists a constant E ~ ,;;>E H such that the solution 
x[I(t;p,E), fJ[IU;p,E) (i = 1,2) is orbitally stable for pER, 
E>E~. 

B. Strategy of proof 

We will only explain it for the NR model, since the 
proofs for the R model are similar. All subsequent remarks 
in this subsection refer to the case H = H NR . 

In this case, we denotex[IU;z,E),p[I(t;z,E) by Xi (t;Z,E) , 
Pi (t;Z,E) , respectively, for E> 0, where E, defined at each 
such E by (2E) - 112 for the NR model, is a more convenient 
variable than E for the present and later discussions. Intro
ducing the new independent variable u = X I (t;Z,E) , one can 
perform an isoenergetic reduction l2 of system (2.5) for 
H = H NR to a system of two first-order non autonomous 
Hamiltonian differential equations satisfied by X(U;Z,E) 
= X 2 (t;Z,E), P(U;Z,E) = p 2 U;Z,E). In this paper we proceed 

oppositely. We defineX(u;z,E), P(U;Z,E) as solutions of this 
non autonomous system obeying appropriate initial condi-
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tions and express the solution Xi U;Z,E) , 
Pi U;Z,E) (i = 1,2) in terms of the first solution and the in
verse mapping Uf--+t, which exists for sufficiently small E> 0 
and suitable u,z. In contrast to the latter solution of (2.5) for 
H = H NR' the functions X,P are analytic at E = 0 for appro
priate U,Z, and hence can be expanded in power series in E 

having nonzero radii of convergence at these u,z. The coeffi
cients in these power series can be evaluated systematically 
with relatively modest labor by using the integral equations 
for X,P which are equivalent to the corresponding differen
tial equations plus the pertinent initial conditions. 

Given that V satisfies (I) and is one-periodic in X I' it is 
natural to define a canonical mapl3 &' NR (p,E) which sends 
points (S,7])ER2 to (5/ =X(p + l,z,E), 7]/ =P(p + l;z,E»). 
This map is well defined for (5,7]) sufficiently close to the 
origin, provided that E';;>O is small enough. 

Our strategy for proving Theorem 1 for H = H NR in 
Sec. III C is very straightforward. An essential step in the 
proof is to show that under the hypotheses of the theorem 
&'NR (p,E) has exactly one fixed point ZI(p,E) = (X, (p,E), 
P, (p,E») in a certain p,E-independent neighborhood of the 
origin for EW. In the notation of Theorem 1, 
ZH(p,E) =Z,(p,E), XH(p,E) =X,(p,E), PH (p,E) 
= PI (p,E) for E> 0, H = H NR' The existence and unique

ness of ZI (p,E) follow by applying Theorem A.l of Appen
dix A, while the desired analyticity properties of XI' PI' for 
small enough E';;>O follow by using Theorem A.2 of that ap
pendix. From this and the existence and properties of the 
diffeomorphism Uf--+t, we infer the existence of the unique 
solution x[IU;p,E), fJ[I(t;p,E) (i = 1,2) at the stated p, E 
values. The orbital instability of this solution for A2 < 0 is 
proved by showing that Z I (p,E) is a hyperbolic fixed point at 
sufficiently small positive E. Finally, Eqs. (2.8a) and (2.8b) 
are proved very easily for the present case H = H NR by us
ing, in particular, the above power-series expansion formu
las for X and P. 

To prove Theorem 2 for H = H NR' we reduce 
&' NR (p,E) to Birkhoff normal form. To accomplish this re
duction, we first define a map &' p,E conjugate to &' NR (p,E) 
and which exists for pER, 0 < E<E3, where E3 is a sufficiently 
small positive constant. Indeed, at each pER, 0 < E<E3, this 
map has an elliptic fixed point at S = 0 corresponding to the 
elliptic fixed point of &' NR (p,E) at S = Z, (p,E), the Floquet 
multipliers of &' p,E at S = 0 are nonreal, of the formA (p,E), 

A (p,E) , unimodular, and satisfy certain nonresonance con-
ditions, and this map has certain analyticity properties. 
These facts entail that at the latter p,E values &' p,E' and 
hence &' NR (p,E) is conjugate to a map (z,z) ..... (z* ,z*) in 
Birkhoff normal form: 

Z* = A(p,E)z[ 1 + j.1(p,E) Iz12] + O( IzI 4
), z ..... O, 

(2.10) 

where Z is a complex variable. Moreover, the first twist coef
ficientj.1(p,E) is nonzero for pER, 0 <E<E3 • 

These properties of &' p,E were derived by estimating suf
ficiently accurately in the limit E W the derivatives of 5/,7]/ 

with respect to 5,7] of orders 1 <n < 3 at S = Z\ (p,E). These 
estimates were readily obtained by differentiating the perti
nent coefficients (obtained by the above systematic proce-
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dure) of the power series in E of X,P and by using a crude 
estimate for ZI (p,E) in the latter limit. 

The stated attributes of the map (2.10) and analyticity 
and domain properties thereof allow us to apply the version 
of the twist theorem in Appendix B to it. By this application 
and simple additional arguments, we infer that the orbital 
stability property asserted by Theorem 2 holds under the 
stated conditions for the case H = H NR . 

III. PROOF OF THEOREMS 1 AND 2 FOR THE NR MODEL 

It is mathematically natural and convenient to replace E 
in this paper by a suitable parameter E, which in this section 
is defined by 

E= (2E)-1/2 (3.1) 

for E> O. In discussing the analyticity of certain functions, 
we will allow E to vanish. 

This section consists ofSecs. III A-III C. In Sec. III A, 
we collect certain existence, uniqueness, and analyticity re
sults and state certain integral equations that playa central 
role in Secs. III and IV. In Sec. III B, we define more precise
ly the canonical map 9 NR (p,E) introduced in Sec. II Band 
we derive an asymptotic formula for the image 9 NR (p,E) 

X (s, rO of points (s, YJ) near the origin for E to. The latter 
formula is essential in the proof of Eqs. (2.8) for the case 
H = H NR in Sec. III C, where we prove Theorem 1 for this 
case. 

A. Auxiliary considerations 

Our only assumptions on V(x\>x2 ) in the present sub
section is that it has property (I) and is one-periodic in x I in 
the strip (2.1). 

As in Sec. II B we denote the solution xf (t;z,E) , 

pf(t;z,E) (i = 1,2) defined in Sec. II A by Xi (t;Z,E) , 

Pi (t;Z,E) in the case H = H NR for E> o. 
We will not work directly with this solution, but rather 

with the functions 

X(U;Z,E) = X2(t;Z,E) , 

P(U;Z,E) = P2(t;Z,E) , 

where u is a new independent variable given by 

u = XI (t;Z,E) . 

By (2.6) and (3.2), 

X(p;Z,E) = s , 
P(p;Z,E) = YJ • 

(3.2a) 

(3.2b) 

(3.2c) 

( 3.3a) 

(3.3b) 

By the definition of the solution Xi (t;Z,E), Pi (t;Z,E) 
(i = 1,2) [and particularly the condition PI (t;Z,E) > 0] to
gether with (3.2), if follows that at those zER3

, E> 0 with 
(p,S)E..Y [see (2.1)] at which this solution exists, X(U;Z,E), 
P(U;Z,E) satisfy the isoenergetically reduced system of Ham
iltonian differential equations corresponding to (2.5) for 
H=HNR : 

dX P 
-=E , 
du O"(U,Z,E) 

(3.4a) 

dP f(u,x) 
-=E , 
du O"(U,Z,E) 

(3.4b) 

where Z = (X,P) and 

2549 J. Math. Phys., Vol. 28, No. 11, November 1987 

O"(U,W,E) = {I - E2[2V(u,w l ) + W~ ]}1/2, ( 3.5a) 

1:( ) __ aV(XI,X2) 
J,X I ,X2 - , 

aX2 

(3.5b) 

with W = (W I ,W2 ). Notice that the denominators in (3.4) 
have the property that O"(u,Z(U;Z,E),E) = EPI(t;Z,E) >0 
when Xi (t;Z,E) ,Pi (t;Z,E) (i = 1,2) exist at given t,z,E > 0 val
ues. HereZ(u;z,E) = (X(U;Z,E),Y(U;Z,E»). 

The integral equations 

X(U;Z,E) = t + E (U :(U,~,E) du' , 
Jp O"(u ,Z(u ;Z,E) ,E) 

(3.6a) 

P( ) + l u f(u',x(u';z,E») d ' 
U;Z,E = YJ E U , 

p O"(U',Z(U';Z,E) ,E) 
(3.6b) 

which incorporate conditions (3.3), will be very useful in 
this section. 

Instead of deriving the relevant properties of X(U;Z,E) , 

P(U;Z,E) from those of Xi (t;Z,E) ,Pi (t;Z,E) (i = 1,2) as in Ref. 
1, it is more convenient here to proceed in the reverse order. 
Let V possess property (I). Then at each zER3

, E;>O with 
(p,S)E..Y at which it exists, we henceforth define X(U;Z,E), 
P(U;Z,E) as a solution of (3.4) at the points U in a maximum 
interval in R containing U = p, which satisfies the conditions 
(3.3) and is such that (u,x(U;Z,E»)E..Y and 
O"(u;Z(U;Z,E),E»O at each U in this interval. By this defini
tion and the smoothness properties of the right sides of Eqs. 
(3.4) under the present hypothesis that property (I) of V 
obtains, it follows that this solution is unique. 

We will need the following version of the usual theorems 
on existence and analyticity of solution of ordinary differen
tial equations. 

Lemma 3.1: Let Vobey (I) and be one-periodic in the 
strip (2.1). Choose positive constants a, b with a < ao, b < bo, 
ao being as in (2.1) and bo arbitrary. There exists a positive 
constant Eo such that X(U;Z,E), P(U;Z,E) exist for UEJ(p,E), 

Z = (p,t)E'Y, O<E<Eo. In particular, Eo is small enough so 
that O"(U,W,E) > C > 0, where c is a constant; 
J(p,E) = [p-CIE, p+CIE]~[p,p+ 1] for pER, O<E 
<Eo, and J(p,O) = R for pER, C being a constant; and 

'Y = RX ~ , (3.7a) 

~ = {(UI,U2)ER2: lull<a, lu 21<b}. (3.7b) 

Moreover, at each such U,z,E the functions X( U;Z,E) P( U;Z,E) 

are real analytic in these variables and such that 

(X(U;Z,E),P(U;Z,E) )E~ 0' 

where ~ 0 is ~ with a,b replaced by ao, bo, respectively. 
Remark: The analyticity of X(U;Z,E) , P(U;Z,E) at E = 0 

at the relevant U,Z, values will be basic in what follows. The 
fact that these two functions can be continued analytically to 
suitable negative E values is of no interest here. 

Proof of Lemma 3.1: It is based on the fact, implied by 
(3.5) and our hypothesis on V, that the right sides of (3.4) 
are real analytic in their arguments for (U,Z,E)ERX ~ 
X [O,Eo] and one-periodic there, provided that Eo is small 
enough, and on applying the usual successive-approxima
tion method to (3.6) in the complex domain. • 

We now define a mapping which is the inverse of the 
formally defined mapping (3.2c). At eachzE'Y, 0 < E<Eo, let 
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( 3.8a) 

be the diffeomorphism from J(p,E) onto a closed interval in 
R, with 

l
u 1 

t = E du' = g(U;Z,E) . 
p a(U',Z(U';Z,E) ,E) 

(3.8b) 

That this is a diffeomorphism follows sinceg(u;z,E) is strict
ly increasing in u onJ(p,E) at each suchz,E and is real analyt
ic in its arguments at these U,Z,E, and by invoking the implicit 
function theorem. These properties of g follow by (3.5a), 
(3.8b), and Lemma 3.1. Hence g-I(t;Z,E) (g-I 
= inverse of g) is analytic in its arguments for (t,z,E) 

Eg(J(p,E);Z,E) X rX (O,Eo] (g(J(p,E);Z,E) = image of J(p,E) 
under UJ---+t at given Z,E) . 

At the latter t,z,E, define XI(t;Z,E) =g-I(t;Z,E), 

PI (t;Z,E) = XI (t;Z,E) , and define X2(t;Z,E), P2(t;Z,E) there by 
(3.2a) and (3.2b). Then Xi (t;Z,E),Pi (t;Z,E) U= 1,2) exist 
and constitute the unique solution of (2.5) satisfying (2.6) 
at each such t,z,E. Moreover, these four functions are analyt
ic in their arguments at these t,z,E values and agree there with 
the respective functions defined earlier in this subsection. 
These results follow easily, in particular by Lemma 3.1 and 
the stated properties ofthe diffeomorphism (3.8a). 

B. Definition of the map &'NR{p,e) and formulas for this 
map for e!O 

In this subsection, we assume that V has properties (I) 
and (II). 

Definition: For each pER, O<:;;E<:;;Eo, &' NR (p,E) is a map
ping with domain CZt [see (3. 7b )] which sends each 
(5,1]) E CZt into 

(5',1]') = (X(p + l,z,E),P(p+ l,z,E»)ER2 . 

Remark: &' NR (p,E) is well defined and is a (local) ca
nonical map.13 Indeed,s', 1]' are analytic in Z,E for 
(Z,E)ErX [O,Eo] and one-periodic in p there. These analy
ticity and periodicity properties follow by the analyticity at
tributes of X(U;Z,E), P(U;Z,E) stated in Lemma 3.1 and the 
fact that these two functions are invariant under the substi
tutions u--u + 1, p--p + 1 for UE[p,p + 1], (Z,E)Er 
X [O,Eo] [see the sentence of Appendix A containing 
(AI2) ]; and the canonical nature of &' NR (p,E) by, in par
ticular, the Hamiltonian character of Eqs. (3.4) and a well
known theorem. 14 

The next lemma will be of central importance in this 
section. 

Lemma 3.2: For ZEr, 

X(p + l;z,E) = 5 + E1] + E2 J;+ I (p + 1 - u)f(u,s)du 

+ E3[ 1]g(p,t) + :3] + 0(E4) , (3.9a) 

pep + l;z,E) 

(P+I r+1 
=1]+EJ

p 
f(u,s)dU+C1]J

p 
(u-p)j'(u,s)du 

+ E3 [h(p,s) + 1]2j(p,S)] + 0(E4) , (3.9b) 
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as Eta, uniformly in z, where j'(u,s) = af(u,s)/as, and 
where g,h,j are bounded analytic functions of p,s for pER, 
151 <:;;a (a is as Lemma 3.1) which are 1],E-independent. 

Remarks: (1) In what follows, equations in which the 
symbolsp and/or Z appear should be regarded as holding for 
pER and/or ZEr, respectively, and estimates involving 
O(En

) symbols should be understood to hold for E!O, uni
formly with respect to the remaining variables, even if this is 
not mentioned explicitly. 

(2) The obvious reason why the limit Eta, rather than 
the two-sided limit E --° occurs in this paper is that we did 
not choose to extend the relevant functions to negative val
ues of E. We stress that this is a question of personal taste 
which is of no mathematical importance here. 

Proof of Lemma 3.2: Since X(U;Z,E), P(U;Z,E) are ana
lytic in Eat E = ° for UE [pop + 1], ZEr, we can expand these 
functions in convergent power series in E at such U,Z. Insert
ing these series in (3.6a) and (3.6b) and equating coeffi
cients of equal powers of E, one sees that the coefficients can 
be calculated inductively. The coefficients of the powers 
Er (r<:;;3) in (3.9a) and (3.9b) were calculated in this way 
with relatively little labor. The stated properties of g,h,j fol
low from the explicit forms of these coefficients (which we 
omit) and analogous properties of V. 

Consider the Taylor series in E of X(p + l;z,E), 
pep + 1;Z,E) with O(En

) remainders. Since X(p + l;z,E), 
pep + l;z,E) are analytic in Z,E and one-periodic in p if 
(Z,E)ErX [O,Eo]' and since the periodicity region 
[0,1] X CZt X [O,Eo] is compact, they are also bounded over 
rX [O,Eo]' Therefore each such remainder is the product of 
~ by a function of Z,E analytic in these variables over 
rX [O,Eo] and bounded there, whence the uniformity of the 
estimates (3.9) in Z follows. • 

For later use, we record the following equations, en
tailed by (3.9) in view of the stated properties ofg,h,j, the 
analyticity and boundedness of f( u,S) for uER, 151 <:;;a, the 
boundedness of CZt [see (3.7b)], and the structure of the 
terms 0(E4) in (3.9) according to the last paragraph: 

aX(p ;sl;Z,E) = 1 + C [+ I (p + 1 - u)j'(u,s)du 

+ 1]0(E3) + 0(E4) , (3.lOa) 

aX(p + l;z,E) = E + O(~) , (3.lOb) 
a1] 

ap(p + 1;z,E) = E (P+ Ij'(u,s)du + 1]O(E) + O(~), 
as Jp 

(3.lOc) 

ap(p + l;z,E) = 1 + c (P+ I (u _ p)f'(u,s)du 
a1] Jp 

+ 1]0(~) + 0(E4) . (3.lOd) 

c. Proof of Theorem 1 for H=HNR 

In this subsection, we assume that V satisfies conditions 
(I), (II), and that 

(3.11 ) 

We begin by stating and proving Theorem 3.1. As ex
plained in the next Remark, this theorem and simple addi-

A. W. Saenz 2550 



                                                                                                                                    

tional arguments entail the assertions of Theorem 1 for the 
case H = H NR , except that it furnishes a rougher estimate of 
ZH (p,E) in the limit E!D for this case than do Eqs. (2.8). 
ForH = HNR,E>O, wewriteZI(p,E) = ZH (p,E). Theder
ivation of the results (2.8) pertaining to the NR model will 
be given in this section after the proof of the next theorem. 

Theorem 3.1: Let V have properties (I), (II), and 
(3.11). Then: 

(1) There exist positive constants a.;;;min{a,b}, EI ';;;Eo 
with a, b as in Lemma 3.1, such that for o <E';;;EI there is 
exactly one solution XI (U,E), PI (U,E) of Eqs. (3.5) which 
exists for all ueR, is one-periodic in u, and has the property 
that ZI(U,E) = (XI(U,E), PI(U,E») has norm IIZI(u,E)II.;;;a 
at all such u. [Note that ZI (p,E)eutl at these p, E.] 

(2) The estimate 

(3.12) 

holds uniformly with respect to u on R in the limit E!D. 

(3) At each 0 < E';;;EI , the above periodic solution is el
liptic (resp. ordinary hyperbolic) if A2 > 0 (resp. A2 < 0). 

(4) XI (U,E), PI (U,E) are real analytic functions of their 
arguments for ueR, 0 < E';;;EI and have real analytic exten
sions to ueR, O';;;E';;;EI, which will be denoted by the same 
respective symbols. 

Remark: Theorem 1 for H = H NR, except for the indi
cated estimate, follows easily from Theorem 3.1, supple
mented in particular by Lemma 3.1 and the fact that (3.8b), 
with Z(U';Z,E) replaced by ZI (U',E), defines a global diffeo
morphism Ut---+t from R onto R at each (p,e)eRX (O,Ed. 

Note especially that xf(t;p,E) =XI(U,E), Pf (t;p ,E) 
=PI(U,E) for the NR model if (p,u,E)eRXR 
X (O,E I]' where t is given by this global diffeomorphism. 

Proof of Theorem 3.1: It will be effected in three major 
steps: (a) proof of (1) and (2); (b) proof of (3); (c) proof of 
(4 ). 

(a) To prove existence and uniqueness we write Eqs. 
(3.4) in the form 

dZ 
- = El/J(U,Z,e) , (3.13a) 
du 

where Z = (X,P) as before and 

l/J(U,W,E) = (w2Iu(u,w,E),f(u,wI)lu(u,w,E») , 

where w = (W I,W2 ) as previously. Hence 

f l/J(u,O,O)du = 0 , 

(3.13b) 

( 3.14a) 

I I al/J(u,O,O) du = [ 0 01] =N, (3.14b) 
o aw -A2 

by (2.2), (2.3), (3.5), and (3.13b). In view of (3.13a), 
(3.14a), and the facts that N in (3.14b) in nonsingular and 
that l/J(U,W,E) is one-periodic in u and real analytic in U,W,E 
in a neighborhood of the subset {(u,w = 0, 
E = 0), ueR} C R4

, we can apply Theorem A.l of Appendix 
A and the remark thereto to prove assertions (1) and (2). 

(b) Let MI (p,E) denote the Jacobian matrix 
a.9 NR (p,E)(;vatofthe map .9 NR (p,E) at its fixed point 
t = ZI (p,e). By, in particular, the definition of this map 
together with (3.lOa), (3.lOd), (3.12), the fact that 

/,(u,g) =/,(u,O) + gj"(u,eg) (3.15) 
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at the u,S of interest, where e = e(u,S)e(O, 1), the bounded
ness ofj"(u,S) = a2f(u,s)laS2 for ueR, Is I';;;a, and (2.3) 
and (3.5b), we obtain 

Tr MI(p,E) = 2 -A2~ + O(~) (3.16) 

for peR. Whence we can assume without loss of generality 
that the constant el > 0 in assertion (1) is so small that for 
(p,E)eRX (O,Ed we have 0 < Tr MI (p,E) < 2 if A2 < 0 and 
Tr MI (p,E) > 2 ifA2 > O. Since det MI (p,E) = 1 at each such 
p,E, ZI (p,e) is an elliptic (resp. ordinary hyperbolic) fixed 
point of .9 NR (p,E) at these p,E values when A2 > 0 (resp. 
A2 <0). Hence (3) has been proved. 

(c) Specializing Theorem A.2 of Appendix A to the 
present situation, (4) follows. • 

By the definition of .9 NR (p,E), teutl is a fixed point of 
.9 NR (p,e) at given peR, O';;;E';;;EI iff 

X(p + 1;Z,E) = s , 
pep + l;z,E) = 1] . 

(3.17a) 

(3.17b) 

These equations yield each coefficient in the power series 
expansion in e of Z I (p,E) in terms of coefficients of the rel
evant series for X,P. Here our goal is the more modest one of 
showing that XI (p,e) , PI (p,E) are given by the right sides of 
(2.8a), (2.8b), respectively, appropriate to the case 
H = H NR' This will be done by specializing (3. 9a) and 
(3.17a) to ~ = ZI (p,e), dividing by E, applying the mean
value theorem analogously to how it was applied in (3.15), 
and using the pertinent boundedness properties of/, and g as 
well as (II), (2.9), (3.5b), and (3.12), thus obtaining 

PI(p,E) = - E J:+ I (p + 1- u)f(u,xl(p,E»)du + O(~) 
= Eh(p) + O(~) . (3.18a) 

Similar arguments, making use of (II), (2.4a), (3.5a), 
(3.12), and (3.17b) in particular, yield 

XI (p,E) = O(E2) , (3.18b) 

and hence we have proved the desired asymptotic result for 
ZI (p,E). 

D. Proof of Theorem 2 for H=HHR 

In this subsection, V is assumed to possess properties 
(1)-(111). 

LetpeR, O';;;E';;;EI . We define .9 p.E as a map conjugate to 
.9 NR (p,E) by a translation / P.E: tt---+t - Z I (p,E) : 

.9p.E(t) =/p~Elo.9NR(P,E)O/P.E(t), (3.19) 

for teutl -ZI(p,E). Since t=ZI(p,E) is a fixed point of 
.9 NR (p,E), ~ = 0 is a fixed point of .9 p.E' Moreover, writ
ing (g*,1]*) = .9p.E(S,1]), we have 

S * = f I [ (n - s)!s!] - I ( ~ "!. ' S ) S n - S1]S , 
n = 0 O<s<n as a1] I 

(3.20a) 

1]* = I I [en -S)!S!]-I n-~ S Sn-s1]s, 00 ( an' ) 

n = 0 O<s<n as a1] I 
(3.20b) 

where at the latter p,E the series converge for (S,1]) in a p,E
independent rectangle centered at t = 0, where 
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S / = X(p + 1;Z,€), r/ = P(p + 1;Z,€), as before, and where 
the subscript 1 means that the derivatives are evaluated at 
; = Z 1 (p,€). The existence of such a rectangle follows from 
the facts that S * ,T}* are analytic functions of P,Z,€ on 
R X ~ X [O,€ d and are one-periodic in p there, so that the 
periodicity region [0,1] X ~ X [O,€ I] is compact. 

An essential step in the proof of Theorem 2 for 
H = H NR is the reduction of 9 p,E to Birkhoff normal form 
for small enough € > O. In order to perform this reduction, 
one needs to know sufficiently accurately the behavior of the 
derivatives 

( a nS / ) ( a nT}/ ) , (O.;;;s.;;;n) , 
as n - S aT}s 1 as n - S aT}s 1 

for l.;;;n.;;; 3 in the limit €!D. This behavior is dealt with in the 
next lemma. 

Lemma 3.3: The following equations hold uniformly in 
ponR: 

( as /) =l+c (P+I(l+p-u)/,(u,0)du+O(€4), 
as 1 Jp 

(as/) = € + O(~), 
aT} 1 

- = -€A2+0(~), (
aT}') 
as 1 

(3.21a) 

(3.21b) 

(3.21c) 

( aT}') = 1 + c (P+ 1 (u _ p)/,(u,O)du + O(€4) , 
aT} 1 Jp 

(3.21d) 

and for n = 2,3, 

(3.22a) 

(3.22b) 

(3.22c) 

l,;;;s';;;n. (3.22d) 

Proof of Lemma 3.3: Equations (3.21) follow immedi
ately by (3.10), (3.15), (3.18), and the one-periodicity of 
V(X I ,X2 ) inx l • Similar considerations, using Lemma 3.2 and 
(3.18) in particular, yield (3.22).15 • 

There exists a sufficiently small positive constant €2';;;€1 
such that the eigenvalues (properly labeled) of the Jacobian 
M1(p,€) of the map 9 NR (p,€) atZI(p,€), and therefore of 
the map 9 p,E at; = 0 have the following properties for pER, 
o <€';;;€2: (i) they are of the form A (p,€), A(p,€) with 
1m A (p,€) > 0, 1..1. (p,€) 1 = 1, and A is an analyticfunction of 
P,€ at each such P,€ which is one-periodic in p; (ii) 
A 3(p,€), A 4(p,€) # 1. 

In view of the fact that ZI (p,€) is an elliptic fixed point 
of 9 NR (p,€) at the latter P,€ values [see part (b), proof of 
Theorem 3.1], we only have to prove the stated analyticity 
property of A (p,€) and property (ii). This can be done by 
arguments of the same type as those used in a similar connec
tion in Ref. 1. Notice that 
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(3.23 ) 

Let pER, 0 < €';;;€2' By the theory of reduction to Birk
hoff normal form, 16,17 the facts that at suchp,€the map 9 p,E 
is canonical and that 9 p,E (;) is analytic in P,€,; and one
periodic in p for; in a p,€-independent neighborhood of the 
origin, properties (i) and (ii) ofA(p,€), (3.21) and (3.22), 
and additional considerations of a straightforward type, 
9 p,E is conjugate to a canonical mapping f!2 p,E of the latter 
form at every such P,€: 

f!2 p,E =rpP~Elo9p'EOrpP'EIBp,E' (3.24) 

At the latter P,€, rpp,E is a diffeomorphism from an open ball 
Bp,E = {(x,Y)ER2: II(x,y)11 <rp,E}' rp,E >0, onto an open 
neighborhood OfOER2 and is one-periodic inp there. In more 
detail, rpp,E (x,y) = (rpl (x,y;p,€), rp2 (x,y;p,€»), rpP~EI (x/,y/) 
= (tPl(x/,y/;p,€), tP2(X',y';p,€»), where rp;,tP; (i = 1,2) are 

analytic in their arguments for pER, o <€';;;€2, (x,y)EBp,E' 
(X',Y')Erpp,E (Bp,E)' By these analyticity and periodicity 
properties of rp p,E' it follows that for each pER and € in a 
compact subset of (0'€2] this function is defined on a P,€
independent neighborhood for the origin. So is f!2 p,E at each 
such P,€ because of this domain property of rp p,E' the fact that 
9 p,E has the same property, and (3.24). Write 

(x*,y*) = f!2 p,E(X,y), 
(3.25a) 

z = x + iy, z* = x* + iy* . 

Then 

z* = A(p,€)z[ 1 + ,u(p,€) Iz12] + O( IzI 4
), z->O, 

(3.25b) 

at each such P,€. Here,u (p,€), the first twist coefficient of 
f!2 p,E' is real-valued at the latter P,€· 

This twist coefficient depends on how the matrix C(p,€) 
diagonalizing M J (p,€) = aP NR (P,€)(ZI (p,€»)la; for pER, 
0< €';;;€2, i.e., 

_I (A (p,€) 
C(p,€) M J (p,€)C(p,€) = 0 A(~,€J ' 

(3.26) 

is normalized. We can (and will) select C(p,€) so that at 
eachp,€ its entries are analytic in these variables, one-period
ic in p, and normalized as was the corresponding matrix 
C(E) in Ref. 1 [see Eqs. (3.33) and (3.34) therein]. Then 
,u (p,€) has these same analyticity and periodicity properties 
at the latter P,€ and 

,u(p,€) = AA 2-2(AzA4 - jA;) + O(c) (3.27) 

for €~O, uniformly in p on R. Except for this uniformity, 
(3.27) is the same result obtained in Ref. 1 [see (3.31) there
in] for the first twist coefficient pertaining to a map [called 
9 NR (E) there] which is 9 p.E specialized to the case 
ZI (p,€) =0. This should be clear from the following facts: 
(1) the derivatives in Eqs. (3.21) and (3.22), whenevaluat
ed at; = 0 rather than at; = ZI (p,€), are also given by the 
right sides of these equations, which leads to results for 
A(p,€) [see (3.23)] and C(p,€) which are the same, except 
for uniformity, as (3.23) and (3.35) of Ref. 1, respectively, 
to within the desired accuracy; (2) Eq. (3.30) of Ref. 1 un
derstood in the present context. By this version of the latter 
equation and the facts that A(p,€) and C(p,€), as chosen 
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here, have extensions that are real analytic in p,E and one
periodic inp for pER, 0<;E<;E2, /-l(p,E) has the same proper
ties, whence the stated unformity of (3.27) follows by an 
argument of the same type as one used to prove that of the 
estimates (3.9). 

ProofofTheorem 2for H = H NR : By (2.4) and (3.27), 
there exists a positive constant E3 <;E2 such that/-l(p,E) f'Ofor 
pER, 0 < E<;E3• Choose any pER, any compact subset 
KC (0,E3 ], and any interior point 'i:EK. By (3.24) and 
(3.25), the fact that for (p,E)ERxK the map £? p,E is canoni
cal and is defined on a p,E-independent neighborhood of the 
origin (thereby having the intersection property in the sec
ond paragraph of Appendix A), the above analyticity prop
erties of rpp,E' rpp~EI, Ap,E' and /-l (p,E), and the facts that at the 
latter p,E values 1,1 (p,E) I = 1 and/-l (p,E) is real and nonzero, 
we may apply Theorem B.l-the version of the twist 
theorem in Appendix B-to the map £? p,E' We thus con
clude that at each of the latter p, E there exists for each D > 0 a 
simple closed curve rp,E of the form (Bl) which is invariant 
under 9 p.E and lies in the punctured disk 0 < II; II < D. 
Hence, by (3.19) and the analyticity of ZI(p,E) in p, E, 

r p.E + Z I (p,E) is an invariant simple closed curve of 
9 NR (p,E) at each suchp,E which lies in the punctured disk 
O<II;-ZI(p,E)II<D and is of the form {(x,Y)ER2

: 

x = r(cp;p,E) , y = S(cp;p,E)}, with r, s 21T-periodic in cp on R 
for (p,E)ERxK and analytic in cp,p, Eon RXRXK. How
ever, what is really important here is that r, s are jointly con
tinuous in cp, p, E on RXRX K (see Ref. 10), rather than 
analytic. An elementary argument which uses this joint con
tinuity property entails that for (p, E)ERXK there exists a 
positive constant d = d(D,p,'i:) such that 

11(9 NR (p,E»)n (;)11 <D, n = 1,2, ... , 

if 

II (;,p,E) - (ZI (p,'i:),p,'i:)11 <d 

in terms of the usual R4 norm. By this stability result and a 
standard elementary argument of the same type as one used 
in Ref. 1, the orbital stability assertions of Theorem 2 follow 
for the case H = H NR . • 

IV. PROOF OF THE THEOREMS 1 AND 2 FOR THE R 
MODEL 

For E> 0, E is defined in the present section by 

E=E- I / 2 • (4.1 ) 

This section has a structure parallel to that of Sec. III, its 
four subsections, Secs. IV A-IV D, being similar in content 
to Secs. III A-III D, respectively. The results of the present 
section can be proved by arguments of the same type as those 
invoked in Sec. III, and hence will be stated mostly without 
detailed proofs. 

A. Auxiliary considerations 

In this subsection, our sole assumptions on Vex I'X2 ) are 
that it has property (I) and is one-periodic in XI in the strip 
(2.1 ). 

For H = H NR' E>O, the solution xf(t;z,E),pf(t;z,E) 
(i = 1,2), defined in Sec. II A, will be denoted by Xi (t;Z,E) , 

Pi (t;Z,E) (i = 1,2). 
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Instead of dealing with this solution directly, we will use 
the functions 

X'(U;Z,E) = X2(t;Z,E) , 

P'(U;Z,E) = P2(t;Z,E) , 

where U is a new independent variable given by 

U = XI (t;Z,E) . 

By (2.6) and (4.2), 

X'(p;Z,E) = t, 

P' (p;Z,E) = 1] . 

(4.2a) 

(4.2b) 

(4.2c) 

( 4.3a) 

(4.3b) 

By (4.2) and the definition of Xi (t;Z,E) , Pi (t;Z,E) stated 
in this subsection [recalling the condition PI (t;Z,E) > 0], it 
follows that at those zER3

, E> 0 such that (p,t)EY [see 
(2.1)] at which this solution exists, X' (U;Z,E), P' (U;Z,E) sat
isfy the isoenergetically reduced system 

dX' P' 
--=~----
du (J'I(U,Z',E) , 

(4.4a) 

dP' _ [1-~V(u,x')V(u,x') (4.4b) 
du (J'I (u,Z ',E) 

of Hamiltonian differential equations. Here Z' = (X' ,P'),J 
is defined by (3.5b) as before, and 

(J'I (U,W,E) = ([ 1 - ~V(U,WI)]2 - E4 (wi + 1) }1/2, 

( 4.5) 

where W = (WI>W2) as previously. For the denominators in 
(4.4), we have (J'1(u;Z'(U;Z,E),E) = ~PI(t;Z,E) >0 when 
Xi (t;Z,E),Pi (t;Z,E) (i = 1,2) exist for given t,Z,E> 0 values. 

The integral equations 

X'(U;Z,E) = t + ~ (pU P'(U';Z,E) du' (4.6a) 
L (J'1(u',Z'(U';Z,E),E) , 

P'(U;Z,E) 

= + (U [1 - ~V(u',x'(U';Z,E) V(u',x'(U';Z,E») du' 

1] Jp (J'I(U',Z' (U';Z,E) ,E) , 

( 4.6b) 

incorporating (4.3), will be as useful in the present section as 
Eqs. (3.6) were in the previous one. 

As in Sec. III A, we will follow a procedure inverse to 
that in Ref. 1. Given that V has property (I), for each zER3

, 

E;;;'O with (p,t)EY [see (2.1)] we define X'(U;Z,E), 
P'(U;Z,E) as a solution of (4.4) at all u in a maximum open 
interval in R containing u = p, which satisfies the initial con
ditions (4.3) and is such that (u,x'(U;Z,E»)EY and 
(J'I(U;Z' (U;Z,E),E) > 0 at each u in this interval. This definition 
and the smoothness properties of the right sides ofEqs. (4.4) 
when Vobeys (I) entail that this solution is unique. We will 
deduce the relevant properties of Xi (t;Z,E) , Pi (t;Z,E) 
(i = 1,2) from those of X' (U;Z,E), P' (U;Z,E). 

The following lemma, analogous to Lemma 3.1 and 
proved similarly, holds. 

Lemma 4.1: Let V(X I,X2) obey (I) and be one-periodic 
in XI in the strip (2.1). Choose positive constants a,b as in 
Lemma 3.1. There exists a positive constant Eb such that 
X'(U;Z,E), P'(U;Z,E) exist for uE.!'(p), Z = (p,E)E'Y [see 
(3.7)], O<;E<;Eb, J' (p) being an E-independent interval con
taining [p,p + 1] for all pER. Moreover, at each such U,Z,E, 
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the functions X'(U;Z,E) P'(U;Z,E) are real analytic in these 
variables and (X' (U;Z,E), P' (U;Z,E») is in the region ~ 0 de
fined in Lemma 3.1. 

Next we define a mapping which is the inverse of that 
defined formally by (4.2c). At every ZEr, O<E<Eb, let 

Ut---+t (4. 7a) 

be the diffeomorphism from J' (p) onto an interval in lR via 

_iU[I-~V(U',x(U';Z,E)]d'_ (. ) (47b) t- U -gl U,Z,E. . 
P O'I(u',Z'(U';Z,E),E) 

Arguments similar to those used in Sec. III A in an analo
gous connection, including the use of Lemma 4.1, show that 
this is indeed a diffeomorphism. In fact, gl (U;Z,E) is strictly 
increasing in U at the latter Z,E and real analytic in its argu
ments at the U,z,E at which we defined it. We conclude that 
g 1- 1 (t;Z,E) (g 1- I = inverse of g I) is analytic in its arguments 
for (t,z,E)EgtIJ'(p);Z,E) x rX (O,Eo] (gl(J'(p);Z,E) 
= image of J' (p) under Ut---+t at given Z,E). 

At each such (Z(t,E») we define XI (t;Z,E) = gl- I (t;Z,E) , 
PI (t;Z,E) = [E- V(XI(t;Z,E), Xz(t;Z,E»)]XI(t;Z,E), and de
fine Xz (t;Z,E) ,Pz (t;Z,E) by (4.2a) and (4.2b). By the proper
ties of gland Lemma 4.1 in particular, one can readily show 
that these functions Xi (t;Z,E) ,Pi (t;Z,E) (i = 1,2) are analytic 
in their arguments at these t,z,E values and agree there with 
the respective functions defined earlier in this subsection. 

B. Definition of the map &'R(p,E) and formulas for this 
map for E~O 

In this subsection, we will suppose that V satisfies (I) 
and (II). 

Definition: For eachpElR, O<E<Eb, .9 R (p,E) is a map
ping with domain ~ [see (3.7b)] which sends each 
(g,'Tj)E~ into 

(X'(p + I,Z,E), P'(p + 1,z,E»)ElRz . 

Remark: .9 R (p,E) is a well-defined canonical map and 
X'(p + l,z,E), P'(p + 1,z,E) have the properties attributed 
to g " 'Tj' in the Remark after the definition of .9 NR (p,E) in 
Sec. III B, but with Eo replaced by Eb. This follows by the 
analyticity properties of X'(U;Z,E), P'(U;Z,E) stated in 
Lemma 4.1, an invariance property similar to one mentioned 
in the latter Remark, and the cited theorem of the book by 
Arnold and A vez. 14 

The next lemma is analogous to Lemma 3.2 and plays a 
comparable role in this section to that played by the latter 
lemma in Sec. III. 

Lemma 4.2: For ZEr, 

X'(p + I,Z,E) 

I 3 

+ E4 L kr (p,g)'Tjr + E6 L Ir (p,g)'Tjr + O(Es ) , 
r=O r=O 

( 4.8a) 
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P'(p + 1;Z,E) 

='Tj+ f+lf(u,g)dU+~['Tj f+1 (u-p)f(u,g)du 

+ f+ I duj(u,g) f du' f(U',g)] 

z 3 

+ E4 L Mr(p,g)'Tjr + E6 L Nr(p,g)'Tjr + O(ES
) , 

r=O r=O 

(4.8b) 

where kr' In mn nr are analytic inp,g for pElR, Igl <a (a is as 
in Lemmas 3.1 and 4.1), are bounded there, and are 'Tj, E
independent. 

Proof Analogous to that of Lemma 3.2. In particular, 
one expands the right- and left-hand sides of (4.7) in even 
powers of E and equates coefficients. • 

Later on in this section, we will need the formulas 

aX'(p + I;Z,E) 

ag 

= I + EZ f+ 1 (p + 1 - u)f'(u,g)du + 0(E4) , 

(4.9a) 

aX'(p + 1;Z,E) = EZ + 0(E4) , (4.9b) 
a'Tj 

ap'(p Z 1;Z,E) = ff(U,;)dU + O(~), (4.9c) 

aP'(p + 1;Z,E) = 1 + ~ iP
+ 1 (u - p)f'(u,s)du + 0(E4) , 

a'Tj P 
(4.9d) 

which follow from (4.8) by arguments similar to those ad
duced to obtain (3.10) from (3.9). 

C. Proof of Theorem 1 for H=HR 

As in Sec. III C, we assume in the present subsection 
that V satisfies (I), (II), and (3.11). 

The principal result of this subsection is Theorem 4.1, 
which together with simple arguments easily implies 
Theorem 1 for the case H = H R, except that the former 
theorem gives a much cruder estimate for Z H (p,E) for E to in 
the case H = H NR than does the latter. These arguments are 
analogous to those outlined for the NR model in the Remark 
to Theorem 3.1. Henceforth, we will write Z; (p,E) for 
ZH (p,E) for H = HR' A proof that Z; (p,E) is given by the 
estimates (2.8) appropriate to the R model will be sketched 
very briefly after providing the next theorem. 

Theorem 4:1: Let V have properties (I), (II), and 
(3.11). Then: 

(I') There exist positive constants a' <min{a,b}, E; <Eb 
with a,b as in Lemma 3.1, such that for 0 < E<E; Eqs. (4.4) 
have exactly one solution X; (U,E), P; (U,E) which exists 
for all UElR, is one-periodic in u, and for which Z; (U,E) 

=(X;(U,E), P;(U,E») has norm liZ; (u,E)II<a' at each 
such u. [Note that Z; (p,E)E~ at these p, E.] 

(2') The estimates 

X; (U,E) = O(E) , 

P; (U,E) = 0(1) , 
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hold for E!D, uniformly in u on lR. 
(3') ForA 2 >0 (resp.A 2 <0) the ellipticity (resp. hy

perbolicity) assertion (3) of Theorem 3.1 and the analyticity 
assertion (4) of that theorem hold withXJ (U,E), P J (U,E), a, 
Ej replaced by X; (U,E), P; (U,E), a', E;, respectively. 

Proof: It consists of two major steps: (a') proof of (1') 
and (2'); (b') proof of (3'). 

(a') In order to prove the existence and uniqueness of 
the periodic solution in the theorem, we make the noncanon
ical transformation of coordinates 

X* =X', p* EP' (4.11 ) 

for E > 0, where the recall that for E > 0, E is defined by (4.1) 
of the present section. In terms of the new coordinates, Eqs. 
( 4.4) take the form 

dZ* 
--=E</J*(U,Z*,E) , 
du 

( 4.12a) 

whereZ* = (X*,P*) and 

</J*(U,W,E) = (wzlo1(u,w,E) , 

X [1 CV(u,Wj)] !Cu,wj)/o1(u,w,E») , 
(4.12b) 

with W = (w1,WZ ) and 

o1(u,w,E) = ([ 1 CV(U,Wj)]2-C(W~ +C)}1/2. 
(4.12c) 

Therefore 

f </J*(u,O,O)du 0, (4.13a) 

t a</J*(u,O,O) du N, (4.13b) 
Jo aw 

by (2.2), (2.3), (3.Sb), (4.12b), and (4.12c), whereNis as 
in (3.14b). Equations (4.11 )-( 4.13) and the facts thatNisa 
nonsingular matrix and that </J*(U,W,E) is one-periodic in U 
and analytic in U,W,E in a neighborhood of the subset 
{(u,w = O,E = 0), ueR}CR4 allow us to apply Theorem 
A.l of Appendix A and the remark thereto to the trans
formed system (4.l2a) and hence to conclude that asser
tions (1') and (2') of the theorem hold for the original sys
tem (4.4). 

(b') Let M; (p,E) denote the Jacobian a9 R (p,E) (;V 
a; of the map 9 R (p,E) at its fixed point; = Z; (p,E). By 
the definition of 9 R (p,E) and by (4.9a), (4.9d), (3.1S), 
and (4.lOa), 

(4.14) 

for pelR. By (4.14) and since the equation det M; (p,E) = 1 
holds at each such p for 0< E';;;Ei, where E; ';;;E~ is a suffi
ciently small positive constant, it follows by arguments vir
tually identical to the ones in part (b) of the proof of 
Theorem 3.1 that Z; (p,E) is an elliptic (resp. ordinary hy
perbolic) fixed point at each such p,E, if Az>O (resp. 
A z <0). 

(c') The analyticity assertion in (3') follows by using 
(4.10b), (4.11), and Theorem A2. • 

A systematic procedure for determining the coefficients 
of the series for X; (p,E), P ; (p,E) in powers of E is available, 
but we will confine ourselves here to proving that these two 
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functions are given by the right-hand sides of (2.Sa) and 
(2.Sb), respectively, appropriate to the R model. By using 
the analog of (3.17b) for this model at; Z; (p,E), togeth
er with (II), (2.4a), (3.Sb), (4.Sb), and (4.10), we find 

X; (p,E) = O(c) . (4.1Sa) 

By (4.Sa), (4.1Sa), and arguments analogous to those ad
duced to obtain (4.1Sb), it follows that 

P; (P,E) = h(p) + O(c) . (4.1Sb) 

Hence we have derived the promised result for Z; (p,E). 

D. Proof of Theorem 2 for H=HR 

In this subsection, V has properties (1)-(111). 

Consider peR, O';;;E';;;E;. We define 9 ;,€ by 

9;,.(;) = y;:;;lo9R (p,E)o:T;,€(;) , (4.16) 

for ;eCi(j - Z; (p,E), Y;.€ being the translation ;~ 
Z; (p,E). Since; = Z; (p,E) is a fixed point of 9 R (p,E) , 

; = ° is one of 9 ;.E' Letting (t,f]) = 9 ;.€ (t,1J) the series 

~ 00 ( ani:- ) 
t= L L [en -s)ls!]-1 n: s t n

-
s1Js

, 
n=OO,s,n at a1J 1 

(4.17a) 

." = L L [ (n - s) lsI] - j n; s t n - s1Js , 
00 ( an~ ) 

n = 0 O,s,n at a1J 1 
( 4.17b) 

converge at the latter p,E if (t,1J) is in a p,E-independent 
rectangle centered at the origin, where g X'(p + l;z,E), 
fJ = P'(p + l;z,E), and where the subscript 1 signifies that 
the derivatives are evaluated at; = Z; (p,E). Reasons anal
ogous to those stated to prove a similar property of the series 
(3.20) ensure the existence of such a rectangle. 

In order to prove Theorem 2 for H H R' we will re
duce 9 ;,€ to Birkhoff normal form, using the results of the 
next lemma. 

Lemma 4.3: For peR, 

( ag) =l+c (P+I (l+P-U)j'(U,0)dU+O(E4 ) , 

at 1 Jp 

(4.1Sa) 

( a
g) =C+O(E4

), (4.1Sb) 
a1J 1 

( afJ) = tj'(u,O)du + O(E2) , (4.1Sc) 
at 1 Jo 

( afJ) = 1 + c t +p (u - p)j'(u,O)du + O(E4
) , 

a1J 1 Jp 
( 4.1Sd) 

( 4.19a) 

(4.19b) 

(4.19c) 
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Proof of Lemma 4.3: Equations (4.18) are an immediate 
consequence of (4.9), (3.15), (4.15), and the one-periodic
ityof V(xj,xz) inx j • The proof of (4.19) is similar. • 

Let E; <E; be a small enough positive constant. Then for 
pElIt, 0 < E<E;, the appropriately labeled eigenvalues of the 
JacobianM; (p,E) of the map 9 R (p,E) at S = Z; (p,E) are 

oftheform..i '(p,E), ..i '(p,E) and have the remaining proper
ties (i) and also the properties (ii) possessed by the eigenval
uesofMj(p,E) atS = Zj(p,E) (see Sec. III D). This follows 
by arguments similar to those used in the case H = H NR . 

Let pElR, 0 < E < E;. Then the general theory of reduction 
to Birkhoffnormal form, 16.17 the fact that 9; .. is canonical, 
that the series (4.17) converge in a p,E-independent neigh
borhood of the origin, the above properties of ..i ' (p ,E) , 
(4.18) and (4.19) and other arguments, analogous to those 
used in the reduction of 9 p.' entail that 9; .• is conjugate to 
a canonical mapping Q ;./C in this form: 

Q' _,/,-1 0 9' 0'/" IB' 
p,E - 'f' p.E p,E 'f' p.E p,E' 

where tP;.. is a diffeomorphism from the open ball B ; .• 
= {(x,y )ElR2

: II (x,y) II < r; .• }, r; .• > 0, onto an open neigh
borhood of OElR2 and is one-periodic in p. The second and 
third sentences after (3.24) apply to tP; .• if Bp .• , rp .• , tPP." 
tPp~€I, tPo tPi,K are replaced by corresponding primed sym
bols. Naturally, reasons analogous to those mentioned in the 
paragraph containing (3.24) entail that for each pElR and E 
in a compact subset of (O,E;], Q ;.. is defined on a p, E
independent neighborhood of the origin. Writing 

(x; ,y; ) = Q ; .• (x,y) , 

z = x + iy, z; = x; + iy; , 

we have 

where for pElR, 0< E<E; the first twist coefficient f-l' (p,E) is 
real, analytic in p,E and one-periodic in p, and 

f-l'(p,E) =AA2-2(A04-jAnEz+O(E3), (4.20) 

uniformly inp on lR. This equation was derived by choosing 
the matrix C' (p,E) diagonalizing M; (p,E), i.e., satisfying 
Eq. (3.26) with appropriate primed symbols, to be normal
ized in the same way as C(p,E) and to be analytic inp,E and 
one periodic for pElR, 0 < E<E;. Except for the uniformity 
property, which follows similarly to how the corresponding 
property of (3.27) was proved, (4.20) is the same as the 
equation obtained in Ref. 1 (see Lemma 4.5 therein) for the 
first twist coefficient pertaining to a map [called 9 R (E) 

there], which is 9;.. specialized to the situation when 
Z; (p,E) =0. Analogously to what was said respecting a sim
ilar property of the first twist coefficient of 9 p.' this can be 
seen by (1) the facts that (4.18) and ( 4.19) also hold for the 
respective derivatives evaluated at S = 0, and the way in 
which..i ' (p,E) and C' (p,E) were chosen; and (2) an appro
priate version ofEq. (3.30) on Ref. 1. 

Proof of Theorem 2 for H = H R: This result now follows 
by arguments that are verbatim repetitions of those mar
shalled to prove this theorem for H = H NR in Sec. III D. 
Equation (4.20) and other results in the last paragraph play 
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an important role in the proof of this theorem for the R 
model. • 
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APPENDIX A: EXISTENCE, UNIQUENESS, 
ASYMPTOTIC BEHAVIOR, AND ANALYTICITY OF 
PERIODIC SOLUTIONS OF CERTAIN ODE SYSTEMS 
WITH PERIODIC COEFFICIENTS NEAR SINGULAR 
POINTS OF THE CORRESPONDING AVERAGED 
SYSTEMS 

To make this paper as self-contained as possible, we de
rive in this appendix a version of certain results on periodic 
solutions proved previously by Hale6 and Swinnington
Dyer7 by using averaging-theory methods. IS Our derivation 
is simpler than those in Refs. 6 and 7 and presupposes no 
knowledge of averaging theory. In this appendix, we also 
prove Theorem A.2., which deals with the analyticity of the 
periodic solutions of Theorem A.1 under suitable hypoth
eses and is similar to a result established by Swinnerton
Dyer l9 by a different method. Theorems A.1 and A.2 are 
used in Secs. III and IV to prove certain key properties of the 
periodic solutions mentioned in Theorem 1 of Sec. II A. 

Consider the nth-order system 

dw 
- = EF(u,W,E) , (AI) 
du 

where F is a function from lRX UoX [O,Eo] into lR2
, with 

Uo = {XElRN
: IXi I <aD, i = 1, ... ,n}, aD, and Eo being positive 

constants. We will assume: (A) Fis one-periodic in u, (B) F 
is continuous, (C) aF law exists as a continuous function 
from lRX UoX [O,Eo] ..... lRN

, and (D) one has 

f F(u,O,O) du = 0, (A2) 

and the constant matrix 

A = t aF(u,O,Q) du 
Jo aw 

(A3) 

is nonsingular. 
Theorem A.I: Let F be as stated in the last paragraph. 

Then there exist positive constants E* <Eo and (7 < aD such 
that for uElR, 0 < E<E* system (AI) has exactly one solution 
W*(U,E) inB«(7) = {XElRN

: IIxll <(7} which is one-periodic in 
u. ForEW, W*(U,E) ..... 0, uniformly in u on R. Moreover, ifin 
addition 

f F(U,O,E)du = O(E) , (A4) 

then for EW 

IIw*(u,E) II = O(E) (A5) 

holds in this limit in this uniform sense. 
Remark: The fact that (A4) holds in this sense under 

the relatively weak conditions on F in Theorem A.1 is of 
mathematical interest and is proved below. However, this 
proof is unnecessary for the needs of the present paper. In-
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deed, in the applications in Secs. III and IV, the much 
stronger conditions of Theorem A.2 are satisfied. Under 
those conditions, the uniform estimate (A5) follows imme
diately from the results: (a) by the latter theorem, w* (u,€) is 
one-periodic in u and analytic in its arguments on lRX [O,E'] 
for some small enough positive constant E'; (b) w*(u,O) = ° 
by results in Part (I) of the proof of Theorem A.I. 

Pro%/Theorem A.I: It consists of two main steps: (I) 
proof of existence and uniqueness of W*(U,E); (2) proof of 
(A4). 

(1) Write z = (p,;) for (p,;)ElRXlRn and let 
Vo = lRX Uo. At each (Z,€)EVoX [O,EoJ. let w(u;z,€) be the 
unique solution of (AI) satisfying the initial condition 

W(p;Z,€) =; (A6) 

and existing at each U is a maximal open interval in lR con
taining U = p. 

Applying the usual successive-approximation argu
ments to the integral equation 

W(u;Z,€) =; + € i U 

F(u',w(u';Z,€),€)du' (A7) 

one sees that W(U;Z,E) exists for 

(A8) 

where V = lRX U, U = {XElRn
: IXi I <a, i = l, ... ,n}, and Eo is 

a positive constant so small that I(p) = [p - (ao - a)1 
coM, p + (ao a)IEoM] contains the interval [p,p + 1] 
for PElR, a being a positive constant less than ao and 
M = maxIlF(u,W,E)II over lRX UoX [O,€o]. Trivially, 

w(u;zo,O) ° (A9) 

for all uER, where Zo (p,; 0). Moreover, at each u,z,€ 
satisfying (A8), w(U;Z,€)EU, and w(u;z,€) and aw(u;z,€)1 
a; are jointly continuous functions of their arguments. 

At each (p,E)ElRX [O,Eo] we define a nonlinear map 
9 (p,E) from Uinto R": 

9 (p,E)(;) = wCp + 1;Z,€) . (AlOa) 

By (A7) and (AlOa), this map can be expressed in the form 

9 (p,E)(;) =; +dA;+K(z,E)], (AlOb) 

where 

(P+ 1 [ aF(u,O,O) ] 
K(z,€) = J

p 
F(u,W(U;Z,E),€) - aw ; du. 

(AlOc) 

By (AlOb) and theinvertibility of A, ;EUis a fixed point 
of the map 9 (p,E) for given pER, 0< €<Eo iff 

; = - A IK(z,E). (All) 

Notice that this statement is generally false for E = 0. 
The functions K(z,€) and aK(z,€)la; have the proper

ties: (a) they vanish at (Z,E) (zo,Q) for allpElR; (b) they 
are uniformly continuous functions of their arguments at 
each point (Z,E) of the closed set V X [O,€o]. Property (a) 
follows by (A2), (A9), and (AlOc). Property (b) follows 
by (A7), (A9), (AlOc), I(p)::; [p,p + I J. the continuity 
and differentiability attributes of F and w, and the one-peri
odicity of K(z,€) and aK(z,€)la; in p. This periodicity is 
entailed by (AlOc) and the equation 
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W(U;(p,;),E) = w(u + l;(p + 1;;),€), (AI2) 

which obtains for values of u,z,€ fulfilling (A8) and which 
can be derived by using, in particular, the one-periodicity of 
Fin u and a standard uniqueness argument. 

By (a) and (b), it follows easily by mimicking a proof 0 

of the usual C 1 version of the implicit function theorem that 
there exist positive constants €*<Eo and 0', such that 
B(O') C U and that for allpElR, O<€<E* the operator T(p,€) 
and B(O') defined by 

T(p,E)(;) = -A -I K(Z,E) (AI3) 

maps B(O') into B(O'), is continuous inp,€, and is contrac
tive, with contraction constant kE [0, I) independent of p,E. 
Moreover, T(p,O) has the fixed point; = ° at each suchp. 
Hence at every suchp,€, (i) Eq. (All) has one and only one 
solution; = w* (p,€) in B(O'), i.e., w* (p,€) is the only fixed 
point of;!? (p,€) ifin addition€> 0; and (ii) w*(p,€) is con
tinuous in P,€ (Ref. 21) and is therefore 0 ( I) for € lOin the 
stated uniform sense. Standard arguments now show that, at 
each ° < E<€*, w* (u,€) is the unique periodic solution men
tioned in the theorem. In particular, the one-periodicity of 
w*(u,€) at each such E follows by straightforward argu
ments based on (AI2) and the uniqueness of solution of 
(All) in B(O'). 

(2) We now prove (A5). By (Al3) and a well-known 
contraction-mapping estimate,22 

IIW*(p,€)II<IIT(p,€)(O)Ii/(l k) 

<IIA -111/0 - k)IIK(zo,E) Ii ' 

for pElR, O<€<€*. In particular, (A), (e), (A4), (A5), 
(A7), (AlOc), the boundedness of F(u,w,€) on 
lRX UoX [O,€o] and the fact that w(U;Zo,E)EUC Uo for 
UE[p,p + 1 J. O<E<€*<Eo, we find 

IIK(zo,€) II <J: + 1 IIF(u,w(u;Zo,€),€) - F(U,O,E) IIdu 

{P+ I 

+ IIJp F(u,O,€)dull 

(p+1 

<L J
p 

IIw(u;Zo,€) IIdu + KE 

<L€ J;+ I du iU 

du'liF (u',w(u';Zo,E),E)1I + K€ 

<!LME+K€, 

where K and L are positive constants. Hence (A5) holds in 
the desired uniform sense under the stated hypotheses. • 

Theorem A.2: Let Fbe as in the second paragraph of this 
Appendix. Moreover, let F(u,w,€) be real analytic in U,W,€ 
for (u,W),€)EVoX [O,€**], where €**<€*<Eo is a positive 
constant. Then the periodic solution w*(u,€) of (Al) de
fined on R X [O,E*] in the proof of Theorem A.I is analytic 
in its arguments for (u,E)elRx [O,€***] for some positive 
constant €***<€**. 

Proof By the proof of Theorem A.l, we know that the 
function g: U X lR X [O,Eo] .... Rn acting by 

g(t,P,€) = A; + K(z,€) (A14) 
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vanishes at the unique pointt = w*(p,e) inB(u) = {xERn
: 

IIxl\<u}C Uo. In addition, there exists a positive constant 
£<€** such that at each pER, O<e<£ the Jacobian matrix of 
the transformation tf-->og(~,p,e) at; = w* (p,e) is nonsingu
lar. Indeed, 

ag(w*(p,e),p,e) =A + aK«(p,w*(p,e»),e) 

a; at 

=A +0(1) 

for e LO, uniformly in p, where we have used properties (a) 
and (b) of K(z,e) and aK(z,e)lat [see the paragraph after 
(All)]' and the uniform estimate IIw* (p,e) II = 0(1) for 
e~O. 

Furthermore, if UE[p,p + 1], ZEV, O<e<e***, where 
e***<€ is a sufficiently small positive constant, then under 
thepresenthypothesesonF, w(u;z,e) C Uo, as we know from 
the proof of Theorem A.l, and W(U;Z,E) is real analytic in 
u,z,e, as follows by standard arguments of the type used to 
prove Lemma 3.1. By these results, together with (AlOe) 
and (A14), we see that g(;,p,e) is real analytic in Z,€ at the 
latter Z,E values under these hypotheses. 

By the properties of g(t,p,e) mentioned in the last two 
paragraphs and the usual analytic version of the implicit 
function theorem, it follows that for pER, O<;€<;e*** the 
unique solution w*(p,€) of g(t,p,e) = 0 in B(u) is analytic 
in p,e at such P,€. • 

APPENDIX B: EXISTENCE AND ANALYTICITY 
PROPERTIES OF INVARIANT CURVES OR ANALYTIC 
AREA-PRESERVING MAPS IN THE PLANE 

In this appendix we will state a slight generalization of 
the version of Moser's twist theorem stated in the Appendix 
of Ref. 1. This generalized result will be used in the proof of 
Theorem 2 of Sec. II A. 

Let {Mv , YEP} be a family of mappings, wherePCRn is 
a compact set of the form {(vw .. ,vn)ERn

: a i <v; <,/3;, 
i = 1, ... n}. Each Mv of this family maps every (x,y) lying in 
a v-independent neighborhood WCR2 of the origin into 
(xpy, )ER2 by 

Zj = Yl (v)z[ 1 + iY2( v) IzI 2 J + S(z,z,v) , 

where Z = x + iy, Zl = x, + iYl' For v = (v1, ... v n ), y, and 
Y 2 are analytic functions of v from Pinto C and R, respective
ly, such that 

ly,(v)l=l, Y2(V)~0, 

and S is analytic in z,z,v for (x,y),V)EW xP and such that 

S(z,z,v) = O( IzI 4
), z-o 

at each such YEP. Moreover, at all such v, every circle in W 
centered at the origin intersects its image under My. 

Theorem B.t (Moser's twist theorem): Under the hy
potheses on the family {My, vEP} in the preceding para
graph, there exists for each E> 0 and vEP an invariant closed 
curve of My ofthe form 

x=p(5,v), y=q(5,v), 5ER , (BI) 
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lying in the intersection of W with the punctured disk 
0< x 2 + y2 < c in the plane. Here, p, q are real analytic func
tions of 5, v for (5,v)ER XPwhich are 21T-periodic in 5 over 
R at each vEP. 

Proof: Similar to that of Theorem A.t of Ref. 1. • 

IA. w. Saenz, J. Math. Phys. 27,1925 (1985). The following errata occur 
in that paper: (a) in p. 1929,leftcolumn,changeX(u!t,E) in Eq. (3.12a) 
toX(u;t,E),h(u;t,E) in Eq. (3.12b) tof2(u,X(u;t,E»), andf2(u';t,E) in 
Eq. (3.l3b) to h(u',x'(u';t,E»); (b) in p. 1933, left column, change 
V(u';X'(u';t,E») to V(u',x'(u',t,E»). 

2 A summary of this work is given in my paper on "Rigorous stability results 
on crystal channeling via canonical maps," in Local and Global Methods of 
Nonlinear Dynamics, edited by A. w. Saenz, w. W. Zachary, and R. Caw
ley, Lecture Notes in Physics, Vol. 252 (Springer, New York, 1986), p. 231. 

3D. S. GemeIl, Rev. Mod. Phys. 46,129 (1974). 
4e. Lehmann, Interaction of Radiation with Solids and Elementary Defect 
Production (North-Holland, Amsterdam, 1977). 

SIn this paper, JRn is regarded as a vector space whose elements are column 
vectors (x" .. ,xn ) with n real components, the row-vector notation being 
used for typographical convenience. The usual Euclidean norm of JRn 
(n;;>2) will be denoted by II·I!. 

6J. K. Hale, Ordinary Differential Equations (Krieger, Huntington, NY, 
1980), 2nd ed., Theorem 3.2, p. 194. 

7p. Swinnginton-Dyer, Proc. London Math. Soc. (3) 34, 385 (1977), 
Theorem 3 and its corollary. 

8e. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics (Springer, 
Berlin, 1971), p. 228. 

9See, e.g., H. S. Dumas and J. A. Ellison, "Particle channeling in crystals 
and the method of averaging," in Local and Global Methods of Nonlinear 
Dynamics, edited by A. W. Saenz, w. W. Zachary, and R. Cawley, Lecture 
Notes in Physics, Vol. 252 (Springer, New York, 1986), p. 200. 

wAll statements in this paper asserting the analyticity of a real or complex
valued function in a certain set of scalar and! or vector arguments should 
be understood as joint analyticity in all the scalar arguments and all com
ponents of the vector arguments. Analogously, continuity in several vari
ables will always be understood as joint continuity. 

"See, e.g., J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy
namical Systems, and Bifurcations of Vector Fields (Springer, New York, 
1983), Theorem 1.4.1, p. 18. 

12For the general theory, see, e.g., E. T. Whittaker, A Treatise on the Analy
tical Dynamics of Particles and Rigid Bodies (Dover, New York, 1944), 
4th ed., Chap. XII, Sec. 141; A Wintner, The Analytical Foundations of 
Celestial Mechanics (Princeton D.P., Princeton, NJ, 1941), especially 
Sees. 180--182. 

l3The canonical ( = symplectic) maps considered here are two-dimension
al local versions of those defined, e.g., in V. 1. Arnold, Mathematical 
Methods of Classical Mechanics (Springer, Berlin, 1978), p. 239. Such 
canonical maps in the plane preserve oriented areas. 

I·See, e.g., V. I. Arnold and A. Avez, Ergodic Problems of Classical Me
chanics (Benjamin, New York, 1968), Theorem A.31.2, p. 231. 

I5Replacing (3.18) by the rough estimate (3.12) in this proof leads to for
mulas for the derivatives (3.21 ) and (3.22) which, although less precise in 
some cases than those given in Lemma 3.3, suffice in the proof of Theorem 
2 for H = H NR' A similar remark applies to the replacement of (4.15) by 
the cruder estimates (4.10) in the proof of Lemma 4.3. 

J6W. Klingenberg, Lectures on Closed Geodesics (Springer, Berlin, 1977), 
pp. 100-103. 

17See Ref. 8, Sec. 23. 
18Theorem 3.1 of J. Murdock and C. Robinson, J. Differ. Eqs. 36, 425 

(1980), and averaging-theory arguments yield versions of Theorem 3.2 in 
p. 194 of Ref. 6 and Theorem 7 of Ref. 7. See also Theorem 5.4 of R. C. 
Churchill, M. Kummer, and D. L. Rod, J. Differ. Eqs. 49, 359 (1983). 

19See Ref. 7, Theorem 4. 
20See Ref. 6, pp. 8,9. 
21See, e.g., Ref. 6, Theorem 3.2, p. 7. 
USee, e.g., V. Hutson and J. S. Pym, Applications of Functional Analysis and 

Operator Theory (Academic, London, 1980), Theorem 4.3.4, p. 116. 
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Two mathematical formulas are given in an explicit form: one develops a product of two 
different multiple Wiener integrals in a series of Wiener-Hermite expansions; the other one 
develops a product of two random variables, each of which is described by a Wiener-Hermite 
expansion, in a series of another Wiener-Hermite expansion. 

I. INTRODUCTION 

As is well known, the Wiener-Hermite expansion tech
nique l-5 makes it possible to expand a nonlinear stochastic 
functional of a homogeneous Gaussian random process in a 
series of stochastic functionals (multiple Wiener integrals) 
that are orthogonal to each other in the ensemble mean 
sense. With various notations and definitions, many authors 
have applied the Wiener-Hermite expansion technique to 
several nonlinear stochastic problems in mathematical phys
ics and engineering, such as the analysis and identification of 
nonlinear systems for noise input, Z,5,6-9 theory of turbu
lence,IO-12 wave propagation in a random medium, 13-15 and 
wave scattering from randomly rough surfaces. I6-Z0 

In a certain applicationzl,zz of the technique, however, it 
is necessary to represent a product of two random functions, 
each of which is described by Wiener-Hermite expansion, in 
terms of a Wiener-Hermite expansion. This can be done, in 
principle, by use ofImamura's symbolic calculus, Z3,24 but no 
explicit formulas have been given in the literature. In this 
paper, we present a new mathematical formula for decom
posing a product of two different multiple Wiener integrals 
into a series of Wiener-Hermite expansions. As a direct ap
plication of the decomposing formula, we then derive an
other formula developing a product of two random vari
ables, given by Wiener-Hermite expansions, into a series of 
Wiener-Hermite expansions. 

II. MULTIPLE WIENER INTEGRALS 

According to Ref. 4, we briefly describe the definitions 
and notations concerning the Wiener-Hermite expansion, 
because various notations are available. I-5,z3 

Wiener-Hermite differentials: Let B(x,w) be a real 
Brownian motion process on the real x axis R = ( - 00,00), 
where w is a probability parameter describing a sample point 
in the sample space n, However, we will often drop the prob
ability parameter w in equations below. The differential 
dB(x,w) = B(x + dx,w) - B(x,w) is a strictly homogen
eous Gaussian process with 

(dB(x,w» = 0, 

(dB(xl,w )dB(xz,w» = 8(x1 - xz)dx1 dX2 , 

(1) 

where the angular brackets denote the ensemble average 
over the sample space n, and dB(x,w)ldx is the so-called 
Gaussian white noise. We assume, however, that the sample 
space n is of function space type, Z5 where n is an infinite
dimensional Euclidian space and a sample function dB(x,w) 

is projected to an infinite-dimensional vector UJ in n in such a 
way that wx ' the x component of w, is given by 
Wx = dB(x,w). Thus a function g(w) of w is always regard
ed as a functional ofdB(x,w), i.e.,g(w) = g[dB(·,w)]. Fur
thermore, a shift of a sample function by a, 
dB(x,w) -+dB(x + a,w), induces a shift T a of w vector in 
n, namely, dB(x + a,w) = dB(x,Taw). In the case of the 
Brownian motion process, Z the shift T a is a measure-pre
serving transformation with a group property: TO = 1 (iden
tity); TaT b = T a + b • Once the measure-preserving trans
formation T is so defined, g( TXw) = g[dB(· + x,UJ)] 
becomes a strictly homogeneous random function for any 
random variable g(w) = g[dB(',w)] .Z6 

We introduce Wiener-Hermite differentials 
h(m) [dB(xl),dB(xz), ... ,dB(xm)], m = 0,1,2, ... , associated 

with the differential as 

h (0) = 1, h (l)[dB(x)] = dB(x), 

h (Z)[dB(xl),dB(xz)] (2) 

= dB(xl)dB(xz) - 8(x1 - xz)dx1 dxz· 

Higher-order Wiener-Hermite differentials may be ob
tained by the Rodrigues formula4,z3 or the recurrence for
mula4: 

h(m) [dB(x l ),dB(xz), ... ,dB(xm )]h (l)[dB(x)] 

= h(m + I) [dB(xl),dB(xz), ... ,dB(xm ),dB(x)] 

m 

+ L h (m-I)[dB(x l ),dB(x2 ), .. ·,dB(x;_I)' 
;= 1 

dB (x; + 1 ), ... ,dB(xm ) ]8(x; - x)dx; dx 

(m = 1,2,3, ... ), (3) 

where m is an arbitrary positive integer. The Wiener-Her
mite functionals enjoy the orthogonality relation4,z3,z4 

(h(n) [dB(x;, ),dB(x;, ), ... ,dB(x;n)] 

Xh(m) [dB(xj , ),dB(xj , ), ... ,dB(xjm )]) 

= 8mn8~;m)dx; dx; .. 'dx; dx
J
. dx

J 
. .. ·dx

J
. 

'J I 2 11 12m 

(n,m = 0,1,2, ... ), (4) 

where 8&m) stands for the sum of all distinct products of m 
delta functions of the form 8 (x; - xJ' ), 

a {3 

i = (i1,iZ, ... ,im), j = (j1,jZ, ... ,jm)' all ia andjp appearing 
just once in each product, for example, 

8(2) = 8(x. - x )8(x. - x· ) 
lj I, i, lZ 12 

(5) 
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Setting n = ° in (4) and using (2), we find that h(m) 's have 
zero averages except for m = 0, 

(h(m) [dB(x l ),dB(x2), ... ,dB(xm )]) = Dmo 

(m = 0,1,2, ... ). (6) 
Multiple Wiener integrals: For an m-variable function 

Fm (X I,x2, ... ,xm) belonging to L 2(Rm), where L 2(Rm) is 
the totality of square summable functions over the m-dimen
sional Euclidian space Rm , we define the m-tuple Wiener 
integral 1m [F m,liJ] as 

1m [Fm,liJ] =1 F m(X I ,X2,···,Xm ) 
R rn 

xh(m) [dB(x l ),dB(x2), ... ,dB(xm)] 

(m = 0,1,2, ... ), (7) 

which is a random variable defined as a nonlinear stochastic 
functional of dB (X,liJ ). However,!o[Fo,liJ] is a deterministic 
constant equal to Fo. The integral kernel F m will be referred 
to as the coefficient of the Wiener integral below. The Wie
ner integral (7) satisfies the identity holding in the ensemble 
mean square sense, 

1m [F m ,liJ] = 1m [ F:" ,liJ] , (8) 

where F:" is the symmetric function defined by 

F:" (X I,X2"",xm ) = _1_ L Fm (x j ,Xj , ... ,Xj ), 
m! (i) 12m 

(9) 

(i) = (i1,i2, ... ,im ) running all permutations of (1,2,3, ... ,m). 
Because of (8) we often assume that the coefficient F m IS 

symmetrical. By (4), we get the orthogonality relation 

(Im [Fm,liJ]In [Fn,liJ]) 

= m!Dmn 1 F;" (X I,X2,···,xm )dx l dx2' . 'dxm, (10) 
Rrn 

for a symmetrical coefficient F m • 

Orthogonal development of a stochastic functional: We 
denote by g(liJ) a stochastic functional of the differential 
dB (x,liJ ). If the functional g(liJ) has a finite variance, i.e., 
(!g(liJ) !2) < 00, it has the orthogonal development called the 
Wiener-Hermite expansion, 

00 

g(liJ) = L 1m [Gm,liJ], (11 ) 
m=O 

which holds in the ensemble mean square sense. By (4) and 
(7) the coefficient Gm is an m-variable symmetric function 
given by the correlation 

(g(liJ )h(m) [dB(x I) , ... ,dB(xm ) ]) 

(12) 

The average and the mean square of g(liJ) are easily calculat
ed by the orthogonality relation (4) as 

(g(liJ) = Go, (13) 

(!g(liJ)!2) = mto m!Lrn !Gm(xl"",xmWdxl"'dxm' 

(14) 

Thus the first term of the development (11) is equal to the 
average. 
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III. WIENER-HERMITE EXPANSION OF A PRODUCT OF 
TWO WIENER INTEGRALS 

We present a new formula for Wiener-Hermite expan
sion of a product of two Wiener integrals. However, we first 
introduce the k-dimensional inner product to simplify the 
equations. For symmetric functions G m and F m' belonging 
to L 2 (R m 

) and m = 0,1,2, ... , we define the k-dimensional 
inner product by the relation 

[h;;min(n,m)], (15) 

which is a function of n + m - 2k variables, but asymmetri
cal in general. 

Theorem 1: A product of two multiple Wiener integrals 
with symmetrical coefficients can be represented by the sum 
of multiple Wiener integrals as follows: 

min(n,m) 

L 
k=O 

m!n! I 
(m-k)!k!(n-k)! m+n-2k 

(16) 

which is the main result in this paper. 
Proof: We prove this by mathematical induction. Since 

(16) is symmetrical with m and n, we can assume n<m and 
m is an arbitrary non-negative integer, without loss of gener
ality. Because (16) is trivial for n = 0, let us prove (16) for 
n = 1 in the first step. Multiplying Gm (X I ,X2"",xm )FI (x) to 
both sides of (3), and integrating them with respect to 
XI,X2""'Xm and x over R m + I , we easily find 

1m [Gm,liJ] XII [FI,liJ] = 1m + I [{Gm ,FI}o,liJ] 

+ mIm _ I [{Gm ,FI}I,liJ], 
(17) 

where Gm has been assumed to be symmetrical. Equation 
(17) is identical to (16) for n = 1. Next we assume that (16) 
is valid for all n less than m, where m is an arbitrary integer. 
Under this assumption we prove that (16) holds again for 
n = n + 1. Since Fn + I (x p x 2"",xn 'Xn + I ) is a symmetrical 
function belonging to L 2(Rn + I ), then it is symmetrical 
with respect to the first n variables and is an element of 
L 2(Rn) when the (n + l)th variable Xn + I is fixed. 
Therefore we can replace Fn (X I,X2"",Xn ) by 
Fn+ I (x l ,X2 ,···,xn,xn+ I) in (16), keeping xn+ 1 constant. 
Then we obtain 
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n mIn! r r 
= k~O (m _ k)!k !(n _ k)! JRH~-2k JRk Gm (X 1,x2,· .. ,xm -k'YI,Yz"",Yk )Fn + 1 (XI,x2,,xn - k,yI'Y2"Yk,xn + I) 

XdYI dYz" 'dYk hen + m - 2k) [dB(xl), ... ,dB(xm -k ),dB(X1), ... ,dB(Xn _ k)] , (18) 

which holds for any value ofxn + I' MultiplyingdB(xn + I) with both sides, integrating withxn + lover R 1, and applying the 
recurrence formula (3) to the both sides again, we obtain 

1m [Gm,w] Xln+ 1 [Fn+!Ow] + 1m [Gm,w] Xn Xln -I [Qn-I ,w] 

n min' - ~ . . I [{G F } w] 
- k-=-o(m-k)!k!(n-k)! n+m+I-2k m' n+1 k, 

n m'n'(m - k) 
+ k~O (m -'k')!k!(n _k)!In+m-I- 2d{Gm,Fn+lh+l,w] 

n m!n!(n - k) I 
+ k~o(m-k)!k!(n-k)! n+m-I-2d{Gm,Qn-Ih,w], Jr---------------------------------

(19) 

where the symmetry of Fn + 1 has been used again and we 
have set 

Qn - 1 (X 1,X2"",xn - 1 ) 

= r Fn + 1 (X 1,X2"",xn _ 1 'Xn + 1 'Xn + 1 )dxn + I' (20) 
JR' 

Applying (16) for n = n - 1 to calculate 1m [Gm,w] 
Xln _ 1 [Qn _!Om], we easily find that n Xlm [Gm,w] 
Xln _ 1 [Qn _ I'W] equals the third sum in the right-hand 
side in (19), because of the factor (n - k) in ( 19). Thus we 
obtain the identity 

1m [ G m ,w ] Xl n + 1 [Fn + !OW ] 

= ± mIn! 
k=O (m - k)!k !(n - k)! 

Xln + m + 1- 2k [{Gm,Fn+ 1 h,w] 

+ ± m!n!(m - k) 
k=O (m - k)!k!(n - k)! 

Xln+m_I_2k[{Gm,Fn+lh+l,m]. (21) 

Rewriting k + 1 as k in the second sum, and using the identi
ty 

mIn! mIn! --------------+----------------------
(m - k)!k !(n - k)! (m - k)!(k - 1 )!(n + 1 - k)! 

mIen + I)! = , 
(m - k)!k!(n + 1- k)! 

(22) 

we can easily add up the two summations in (21). As a re
sult, we may find that (21) is identical with (16) for 
n=n+l. 

As a direct application of Theorem 1, let us prove the 
following theorem. 

Theorem 2: Let g(w) andf(w) be random variables de
scribed by Wiener-Hermite expansions: 

00 

g(w) = L 1m [Gm,w] , (23) 
m=O 

00 

few) = L In [Fn,m] , (24) 
n=O 

where the coefficients G m and Fn are symmetrical functions 
with their arguments. Then the product of g(m) andf(w) is 
given by another Wiener-Hermite expansion as 
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gem) xf(w) = f f f (n + m - k)!(n + k)! 
m=On=Ok=O (m-k)!k!n! 

Xl m [ {G n + m _ k ,Fn + k } n ,w] . ( 25 ) 

Proof: From (23), (24), and (16) we obtain 
00 00 

g(w) xf(w) = L L 1m [Gm,m] Xln [Fn,m] 
n=Om=O 

00 00 min(n,m) n'm' 

n~o m~o k~O (n - k)!~ !('m - k)! 

Xln+m- 2k [{Gm,Fnh,w] , (26) 

where the set of the three-dimensional lattice points (n,m,k) 
in the triple sum will be called the Tset, which is illustrated 
in Fig. 1. Let us arrange the triple sum in the right-hand side 
to get (25). This can be done easily with help of Fig. 1. In the 
first step, we set 

n + m = 1 + 2k, (27) 

where 1 runs over all non-negative integers because 
O.;;;k';;;min(m,n). Next we consider two-dimensional vectors 
(m,n) satisfying (27). For any given k and I, the two-dimen
sional vector (m,n) takes only (l + 1) different values, 

(m,n) = (l + k,k),(l + k - l,k + 1 ), ... ,(k,1 + k), 

= {(l + k - p,k + p);p = 0,1,2, ... ,1}, (28) 

which satisfy O.;;;k';;;min(m,n) and belong to the T set. 
[However, for example, (m,n) = (0,2k + I) does not satis-

k 

4 --

3 ---

n 0 m 

FIG. 1. Three-dimensional lattice points (m,n,k) in the Tset. Dots with 0 
satisfy m + n - 2k = 0, dots with 1 enjoy n + m - 2k = 1, and so on. 
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fy O<:k<:min (m,n) in general, and hence it is not an element 
of the T set. J Therefore, setting m = I + k - P and 
n k + p, we may rearrange the triple sum in (26) as 

g(w)xf(w) = I I ± (k+l-p)!(k+p)! 
1= 0 k = 0 P = 0 (l p) !P!k ! 

xII [{Gk+I_p,Fk+ph,w], (29) 

which is the same equation as (25). 

IV. EXAMPLES 

Example I: Wheng(w) andf(w) are given by (23) and 
(24), respectively, let us calculate the average value of 
g(w) Xf(w) by the use of (25). When mT'=O, the m-tuple 
Wiener integrals in (25) have zero averages, 

(1m [{Gn+m-k,Fn+k}n,W» =0 (mT'=0), (30) 

because the Wiener-Hermite differentials have zero aver
ages by (6). Therefore, averaging both sides of (25), and 
interchanging the order of summation and averaging, we 
obtain 

(g(w)xf(w» = I n!Io[{Gn,Fn}n,w] 
n=O 

00 

= L n!{Gn,Fnt, (31) 
n=O 

which can be obtained directly from (23), (24), and the 
orthogonality relation (4). 

Example 2: Letf(w) andg(w) be random variables giv
en by exponentials of single Wiener integrals 

g(w) = expLC G(X)dB(X)] = nto 1m [qm,w], (32) 

few) = exp[L F(X)dB(X)] = nto In [~n'w], (33) 

where coefficients qm and ~m are given by2.4 

qm (xt,xz,···,xm ) 

f ~ (n + m - k)!(n + k)! I [{G F} w] 
£.- £.- (_k)lkl I m _n+m-k'_n+k n' 

n 0 k=O m . . n. 

= _1_ exp[1-i G 2(X)dX]Gm (xj,xz,""xm), 
m! 2 R 

Gm (x j,x2, ... ,xm) = G(X j)G(X2)" 'G(xm), (34) 

~n (Xt,X2"",xn ) 

= 1- exp[1-i F2(X)dX]Fn (X l ,x2""'Xn), 
n! 2 R' 

Fn (X l ,x2,""Xn) = F(x l )F(X2)" 'F(xn) . (35) 

Replacing G(x) in (32) with [G(x) + F(x)], we obtain the 
Wiener-Hermite expansion of g(w) Xf(w) as 

g(w )f(w) exp{L [G(x) + F(x) JdB(x) } 

00 

L I m[(G+F)m,w1, (36) 
m=O 

where 

(G +F)m 

= _1_ exp{~ i [G(x) + F(x) 12dX} (G + F) m' 
m! 2 R 

(37) 

(G+F)m = [G(x 1 ) +F(x j)][G(x2) +F(xz)]X'" 

X[G(xm) +F(xm)]. (38) 

Now let us derive (36) from Wiener-Hermite expan
sions for g(w) andf(w) as an application of Theorem 2. If 
we apply (25) to the product off(w) andg(w), we obtain 

few) xg(w) = C~o 1m [~m'w 1 )CI/m [qm,W]) 

= I I i (n + m - k)!(n + k)! 
m=On=Ok=O (m -k)!k!n! 

X1m [{qn+m-k'~n+k}n'W] . (39) 

Now let us calculate the right-hand side of (39). By (34) 
and (35), one easily finds 

= I ~exp{~f[G2(X) + F 2(X)]dX}[{G,Fh]n i --l--Im [{Gm_k,Fkh,w] 
n=O n! 2 k=O (m k)!k! 

On the other hand, decomposing the product in the right
hand side of (38) and using (7), we obtain 

1m[(G+F)m,w] 

m m! 
= L 1m [{Gm_k,Fkh,w]. (41) 

k=O (m - k)!k! 

Equations (40) and (41) given an identity 

f ~ (n + m - k)!(n + k)! I [{G _ F } w] 
n£.-Ok~O (m-k)!k!n! m _n m k'_n+k n' 

=-l-exp{~i [G(x) +F(X)]2dX} 
m! 2 R 
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(40) 

X 1m [ ( G + F) m ,w ] 1m [( G + F) m ,w ], 

(42) 

where (37) was used to get the second equality. This relation 
means that the right-hand side of (39) is identical to (36). 

V. CONCLUSIONS 

We have presented a new formula for decomposing a 
product of two multiple Wiener integrals into series of Wie
ner-Hermite expansions. The formula was proved in a for
mal way, but no rigorous mathematical proof was given. 
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Simple examples were described as an application of the for
mula. Further applications of the formulas, however, will be 
published elsewhere. 
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Superstring vacua are normally presumed to be of the form M XK, where dim(M) = 4, 
dim(K) = 6, and where X denotes the global Riemannian product. Since, however, one would 
ultimately wish to understand the external/internal distinction in terms of some dynamical 
mechanism ("spontaneous splitting") involving vacuum expectation values oflocal fields, it 
may be preferable to use a local Riemannian product at the outset. Here it is shown that these 
spaces, which have the same local (block-diagonal) type of metric as M XK, can be described 
and classified by examining the isometry groups of the Calabi-Yau manifolds which have been 
proposed as models for the internal superstring vacua. 

I. SUPERSTRINGS AND CONTINUOUS ISOMETRIES 

Much recent work on superstring phenomenologyl is 
based on vacuum models of the form M X K, where M is four 
dimensional and flat, while K is six dimensional and Ricci 
flat. This represents a radical departure from previous Ka
luza-Klein formulations, in which the internal space was 
always chosen to have a large group of continuous isome
tries. For, as is well known, the condition of Ricci flatness 
strongly restricts the isometry group of a compact Rieman
nian manifold. In fact, the internal manifolds considered in 
the superstring context [complex manifolds with SU (3) ho
lonomy group] have no continuous isometries whatever. 
The only continuous isometries of the vacuum are those pos
sessed by the external space. It is as if-speaking figurative
ly-the external space is formed from the Killing vectors 
which have been forced to "split off" from the internal 
space. 

This rather strange state of affairs-a highly symmetric 
external space coupled with a highly asymmetric internal 
space--does not, in the usual approach, appear to spring 
from any deeper principle; it merely arises as a natural conse
quence of the analysis. However, it seems unlikely that this 
striking feature of the model can be of no consequence. We 
have argued elsewhere2 that, on the contrary, this observa
tion may provide the key to an understanding of the origin of 
the internal/external dichotomy itself. The remainder of this 
section consists of a brief explanation of this remark. 

For the sake of convenience (and because path-integral 
quantization will eventually be necessary, though that is be
yond our present scope) we shall use a Euclidean back
ground. Now general relativity would lead us to expect that a 
suitable vacuum for a ten-dimensional theory should be a 
flat ten-dimensional manifold with as much symmetry as the 
topology permits-indeed, one might go further and suggest 
that this topology should be that oflRlO. Evidently the actual 
vacuum is less symmetrical than this, in several senses. Ex
perience has shown that this is not necessarily an unsatisfac
tory feature of a theory, provided that the symmetries are 
broken "spontaneously" rather than "by hand." By this, one 
means that the various asymmetries of the vacuum should 
arise, through some mechanism, as a consequence of the na-

ture and behavior of the vacuum expectation values ofphys
ical fields. Otherwise, the breakdown of symmetry would 
introduce an intolerable degree of arbitrariness into the the
ory. 

One of the more conspicuous asymmetries of the su
perstring vacuum is the "splitting" of the manifold into in
ternal and external factors. Can this asymmetry be explained 
in a spontaneous manner? The difficulty here is that the 
product is normally interpreted, either implicitly or explicit
ly, as a global product: technically, one postulates the exis
tence of a global isometric mapping from the ten-dimension
al space P to M X K. Since any spontaneous mechanism 
involves expectation values of locally defined fields, it is diffi
cult to see how such a mechanism can generate a global split
ting. Later we shall see that, in the context of very particular 
superstring models, this problem can be solved; but in a more 
general context, the above remarks suggest that (at the out
set) we should aim to induce only a local splitting. That is, M 
and K should be obtained as sub manifolds of P which inter
sect orthogonally at every point (so that the metric has the 
usual block-diagonal form in every adapted coordinate 
patch) but which cannot necessarily be extended to yield a 
global product. The problem of determining the additional 
global conditions which must be imposed in order to obtain a 
global product can then be studied separately. 

We return, then, to the full ten-dimensional space P, and 
attempt to induce a local splitting in a spontaneous manner. 
We assume that P is Ricci flat and compact. (The compact
ness should also arise spontaneously; but that is a familiar 
problem, for which well-known techniques exist. 3

) Thus we 
are supposing that compactification precedes splitting. 
Next, assume that P admits a set of linearly independent, 
nonzero, covariant-constant vector fields. In general, Rie
mannian manifolds do not readily admit constant vector 
fields. But on Ricci-flat compact Riemannian manifolds, 
such fields exist in abundance: according to a series of theo
rems due to Yano-Bochner,4 and others, whole classes of 
vector fields are necessarily constant on such manifolds. For 
example, this is true of all Killing fields, all harmonic vector 
fields, and so on. It can also be shown2 that any vector field 
on such a manifold which satisfies Maxwell's equations 
(plus a gauge fixing condition) is constant, and of course the 
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same will be true of gauge fields corresponding to a maximal 
torus of any gauge group. Hence, it may not be too much to 
hope that these fields can be generated spontaneously, in the 
sense defined earlier. 

Now according to the local version of the de Rham de
composition theorem (see Ref. 5, p. 185; for a more detailed 
explanation, with examples, see Ref. 2), the existence of con
stant vector fields on P will induce the latter to split into a 
local Riemannian product of ajlat manifold M with a Ricci
flat manifold K. Since every Killing field is covariant con
stant, M will be maximally symmetric (to the extent permit
ted by the topology) while K will possess no continuous 
isometries whatever. Thus our formulation, oversimplified 
though it undoubtedly is, can explain not only the internal! 
external split, but also the total absence of continuous isome
tries from the internal space. That is, we propose to identify 
M, the flat space generated by the Killing vectors, with exter
nal space, and to regard K as internal space. (Note that every 
constant vector field is a Killing field, and so we can refer to 
our fields as such even if they originate in some quite differ
ent way.) 

In short, at the local level, we have obtained precisely 
the standard vacuum structure: the metric of P has the usual 
block-diagonal form, with one block pertaining to a flat 
space, the other to a Ricci-flat space devoid of continuous 
isometries. But now this local splitting can arise spontan
eously, as it must if we are ever to give a convincing account 
of our failure to observe the internal space directly. How
ever, the global structure can differ from the standard pic
ture, as we shall now explain. 

II. THE GLOBAL STRUCTURE 
The global structure that arises from the spontaneous 

splitting can differ from the usual framework in two distinct 
ways. 

First, by means of the de Rham theorem and the Hopf
Rinow theorem/ it can be shown2 that both the internal and 
the external spaces are necessarily compact. [This is not ob
vious, since we do not (yet) know whether Pis a topological 
product of M with K.] In Ref. 1, it is shown that M must be 
flat, but the question of its topology is left open: it could be 
either compact or noncompact. In the present case, this op
tion no longer exists. (If there are objections to the compac
tification of time, then one can interpret M as three-dimen
sional space; unfortunately, we are unable to specify the 
dimensionality of M, since that will be determined by the 
details of the particular mechanism used to generate the con
stant vector fields. ) 

Second, and far more seriously, we cannot always en
sure that the local splitting obtained above will extend to a 
global splitting. The global version of the de Rham decom
position theorem (Ref. 5, p. 187) states that the extension 
can be performed if the manifold is complete and simply 
connected. Unfortunately, however, while P is complete 
(since it is compact), it is certainly not simply connected. 
For if it were, then it would split globally into a product of 
simply connected factors, so that M would be flat and simply 
connected. This is impossible, since M is compact. Thus the 
problem of extending the decomposition cannot be ap
proached in this way. 
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If the extension cannot be performed, then P has a struc
ture roughly analogous to that ofthejlat Mobius strip (that 
is, the space obtained from the unit square in R2 by means of 
certain topological identifications, not the more familiar 
Mobius surface in R3

). This space is a local metric product; 
yet it contains pairs of submanifolds that are everywhere 
orthogonal but that intersect twice. In the case of P, this 
would mean (see below) that each internal space could in
tersect external space several times. The distance between 
two given points in the external space can differ enormously, 
depending on whether the route is taken through the internal 
space. 2 

Despite its somewhat bizarre aspect, it is not very clear 
whether this effect would be readily detected. At the level of 
principle, however, this kind of "wormholelike" behavior 
could lead to difficulties with causality, since it is evidently 
possible to transmit signals "faster than light" through inter
nal space. Of course, the same objection could be-indeed, 
has been 7 -raised against true wormholes. In each case, it is 
possible to reply that the special-relativistic formulation of 
causality should not be foisted on spaces with structures 
more complicated than that of Mink ow ski space. But in view 
of the fact that we are dealing with a vacuum model, these 
additional complications may not be welcome. 

We shall not attempt to settle this question here; instead, 
we return to the problem of determining the conditions un
der which the local splitting of the metric can be extended to 
the global level. 

III. GLOBAL SPONTANEOUS SPLITTING 

As was pointed out earlier, the covariant-constant vec
tor fields which generate M can be interpreted as Killing 
fields of P. Thus they can be regarded as arising from the 
action of a (necessarily compact) group of isometries G. It 
may be shown2 that G is Abelian and that P has the structure 
of a principal fiber bundle (P, Q, G), where the base mani
fold Qis (by definition) P /G, and in fact G = U( 1)m (where 
m = dim M, that is, 3 or 4, depending on whether time is 
included). We stress that this bundle is in no way related to 
the familiar gauge bundles. 8 Here it is the external space 
which is to be identified with the fibers; the internal spaces 
appearasholonomybundles (see below), whereasQ has (in 
general) no physical significance whatever. Note that the 
topology of M is now fixed: it is that of a torus. 

Now by a well-known construction, 9,10 the existence of a 
G-invariant metric on the bundle space of a principal bundle 
defines a connection: the horizontal distribution can be de
fined to be orthogonal to the vertical distribution. Applying 
this in our case, we obtain a natural connection r on (P, Q, 
G). As usual, the curvature of r measures the failure of the 
horizontal distribution to be involutive. But here the hori
zontal distribution is involutive; indeed, by the local de 
Rham theorem, it integrates to yield the internal spaces. 
Thus r is flat, and it can be shown2 that the internal spaces 
are just the holonomy bundles5 of r. 

By the holonomy reduction theorem,5 the internal 
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spaces are principal bundles over Q with structural group H, 
the holonomy group of r. As is well known (see Ref. 1 and 
below) flat connections on principal bundles need not have 
trivial holonomy groups H: rather, H may be a discrete sub
group of the structural group. In our case, G = U ( 1 ) m, so H 
can be any product of m cyclic groups, Zn, X ... X Znm' Of 
course, H can be trivial; this will occur, for example, if Q 
happens to be simply connected. In that case each holonomy 
bundle will be isomorphic to Q, and Pbecomes a global prod
uct of M and Q (in the Riemannian, as well as the topological 
sense). 

But if H is not trivial, then each internal space must be 
interpreted as a bundle with a discrete structural group. A 
given holonomy bundle will intersect each vertical space of P 
in as many points as there are elements in H (that is, parallel 
transport around closed loops in Q has effects controlled by 
H). Since H, being a subgroup of G, acts isometrically, these 
points of intersection will be evenly distributed. In short, we 
have precisely the situation described in general terms in the 
preceding section. Each internal space (holonomy bundle) 
intersects every external (vertical) space orthogonally, and 
yet each given pair intersects at more than one point. Thus 
we arrive at an important conclusion: it is the holonomy 
group H that obstructs the extension of the local (spontane
ous) splitting to the global level. 

We can formulate the above remark in a more useful 
way as follows. Since each holonomy bundle is contained in 
P, and since H is contained in G, it follows that H acts isome
trically on the holonomy bundles. Thus H is a subgroup of 
the isometry group of the internal space. 

Now consider all this in the particular context of the 
superstring vacuum. According to our construction, the in
ternal space K is devoid of continuous symmetries. But-and 
this is now a crucial point-K may still retain a discrete iso
metry group. Since the isometry group of a compact mani
fold is itself compact, this discrete group must in fact be 
finite. We now obtain a very simple formulation of the prob
lem: the obstruction to extending the local de Rham decom
position to a global splitting resides in the cyclic subgroups 
of the finite isometry group of K. In other words, the prob
lem of the "multiple intersections" arises from the residual 
discrete symmetries which remain with the internal space 
after external space "splits off." 

All this casts an interesting light on the models consid
ered in Ref. 1. For example, consider the space Y45 defined 
by the equation . 

in CF 4
• This manifold admits a Ricci-flat metric, with re

spect to which it has no continuous isometries. The manifold 
is mapped into itself by a certain Zs X Z5 group of transfor
mations. Although the metric is not known explicitly, it fol
lows from Calabi's uniqueness theorem 11 that this group acts 
isometrically. Evidently there is some danger that, in this 
case, multiple intersections will arise either from Zs X Z5 it
self or from one of its subgroups. However, it is far from clear 
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that this danger can actually materialize: while we have 
shown that the existence of a cyclic subgroup of the isometry 
group of K is necessary for the existence of multiple intersec
tions, we have not shown that it is sufficient to permit the 
existence of such spaces. In order to clarify the situation, we 
must answer the following question: given a compact Rie
mannian manifold K and a cyclic subgroup of its isometry 
group, is it always possible to construct a vacuum model in 
whichK has multiple intersections with external space? This 
question is answered by the following result. 

Proposition: Let K be a connected compact Riemannian 
manifold with dim(K) > 1, let G be a compact Abelian Lie 
group, and let Hbe any finite subgroup of G that acts isome
trically and freely on K. Then there exists a principal G
bundle P over K I H and a G-invariant metric on P such that P 
admits a connection r with holonomy bundles isometric to 
K and holonomy group isomorphic to H. 

Proof (Sketch): As a subgroup of G, H has a natural left 
action on G. Thus if we regard K as a principal H-bundle 
over K I H, then we can construct the associated bundle 
P [K X G]/H, with standard fiber G and base manifold 
K IH. But now Pin its turn admits a right action by G, given 
by g: {k,g}-+{k,gg}, where {k,g} denotes an equivalence 
class in [K X G]!H. Since H acts freely on K, it follows that 
G acts freely on P, and in fact P now becomes a principal G
bundle over K IH. The mapping k-+{k,e}, where kEK and e 
is the identity element of G, allows us to display (K, K I H, H) 
as a reduced subbundle of (P, K IH, G). 

A deep theorem of Nomizu l2 states that for any princi
pal bundle (K,K IH,H), whereKis connected, K IHispara
compact, and dim (K I H) > 1, there exists a connection with 
holonomy bundles that coincide with K. In our case K and 
K IH satisfy all of these conditions, sinceH is finite. Let r be 
the corresponding connection; evidently its holonomy group 
is H. Now this connection extends, according to the connec
tion mapping theorem,l5 to a connection f on (P, K I H, G). 
The holonomy group of f is still H, and its holonomy bun
dles are isomorphic to K. (Both rand f are fiat, since H is 
discrete, that is, its Lie algebra is trivial. ) 

The manifold K I H inherits a natural metric from K. By 
means of a standard construction, 9.10 one can use this metric, 
together with f and any invariant metric on G, to define a G
invariant metric on P. It is clear that, with respect to this 
metric, the holonomy bundles of f are isometric to K. This 
completes the proof. 

In physical language, this result means that if the iso
metry group of a Ricci-fiat manifold K contains a cyclic sub
group that acts freely, then it will certainly be possible to 
construct vacuum models in which K intersects external 
space more than once. (In principle, the proof yields an ex
plicit construction; unfortunately, however, the proof of No
mizu's theorem is highly technical, and so we shall not dis
cuss the procedure here.) The various possibilities are 
classified by the distinct cyclic subgroups of the isometry 
group. For example, in the case of Y4,5 the isometry group 
itself is Z5XZS' which can be regarded as a subgroup of 
U ( 1 ) m. As 5 is prime, the distinct subgroups that act freely 
are ZsXZs, the two different Z5 groups, and 1, the group 
consisting of one element. In this last case, and only in this 
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case, we obtain a true Riemannian product. But this is only 
one of several possibilities. At the other end of the spectrum, 
it is possible to construct a model with the same local metric 
but in which each internal space intersects external space 25 
times. Unless we simply eliminate these other possibilities by 
fiat, which would subvert the whole philosophy of our ap
proach, we have no grounds a priori to expect that the usual 
model will be produced. 

Since our problems arise from the Zn subgroups of the 
isometry group of K, it is natural to search for examples of K 
with isometry groups having no such subgroups. But every 
finite group, with the exception of 1, has a nontrivial Zn 
subgroup. For if g is some element of the group not equal to 
the identity, then the subgroup generated by g will be iso
morphic to Zn for some n. Combining this with the proposi
tion proved earlier, we see that the only way to eliminate 
multiple intersections right from the outset is to choose K to 
have no freely acting groups of isometries, either continuous 
or discrete. Now of course if F is the maximal freely acting 
finite group ofisometries of K, then we can directly eliminate 
Fby considering K / F, which will also be a manifold. Butthis 
again is no more than an ad hoc device, unless we can find 
independent physical reasons for preferring K / F to K. Re
markably, however, such reasons do exist and have been dis
cussed extensively in the literature. 1,13 

Consider, for example, K = Y4,5' Here we find 
F = Z5 X Z5' and we wish to ask whether there are physical 
reasons for preferring Y = Y4,5 / (Z5 X Z5) to Y4,5 itself. The 
answer is well known, and is given in Ref. 1. First, the Euler 
characteristic of Y is much smaller than that of Y4,5' a fact 
that permits models based on Y - but not Y4,5 - to make 
realistic predictions regarding the number of generations of 
particles. Second, Y, unlike Y4,5' is multiply connected; this 
permits the implementation of a novel and highly attractive 
method of gauge symmetry breaking (based, once again, on 
the fact that the holonomy group of a flat connection need 
not be trivial if the base manifold is multiply connected). 
More generally, it appears to be the rule that Calabi-Yau 
manifolds with few or no freely acting symmetries yield real
istic models more readily than those with many. 13,14 

To summarize, then, we have the following situation. 
Spontaneous splitting, being essentially a local mechanism, 
can only yield a local splitting of the manifold and its metric. 
The question of whether the splitting can be extended global
ly depends on the freely acting Zn subgroups of the isometry 
group of the internal space. But in many instances-in prac
tice, one would need to investigate this on a case-by-case 
basis-there are good physical reasons to factor out these 
subgroups. In such a case, the splitting can be extended, and 
the equation P = M XK is strictly valid in both the Rieman
nian and the topological senses. In short, we have obtained a 
global spontaneous splitting. 

We conclude this section with a technical remark. First, 
note that all of our discussion above relates to isometry 
groups that act freely. Now since holonomy groups are sub
groups of the structure group of a principal bundle, they 
always act freely on holonomy bundles. Thus if a group H 
does not act freely on K, then it is certainly not possible to 
represent K as a holonomy bundle with H as holonomy 
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group. Such isometry groups are therefore innocuous: they 
cannot give rise to multiple intersections, and our consider
ations provide no motive for factoring them out. (Note, 
however, that a group which does not act freely can contain a 
subgroup which does.) 

IV. CONCLUSION 

The model of spontaneous splitting advanced in this pa
per undoubtedly represents an oversimplification of the ac
tual situation. Its main purpose is to illustrate the contention 
that it is not necessary to postulate the existence of a product 
structure at the outset, just as it is not necessary or desirable 
to presume the compactness of the internal space. All asym
metries of the vacuum should be explicable in terms of some 
physical mechanism. In this paper, some of the mathemat
ical components of such a mechanism have been displayed. 

Let P be a Ricci-flat compact Riemannian manifold on 
which is defined a gauge theory with gauge group J. Taking 
rank J»m, suppose that m gauge fields corresponding to a 
maximal torus of J develop vacuum expectation values. 
Then it can be shown2 that if these fields are subject to the 
usual field equations and gauge fixing conditions, they must 
be constant. Thus P admits m constant vector fields, and so, 
according to the local de Rham decomposition theorem, P 
must be a local Riemannian product of a flat m-dimensional 
manifold M with a Ricci-flat manifold K which has a finite 
isometry group F. If this group F contains any freely acting 
cyclic subgroup, then it will always be possible to construct 
vacuum models in which the local splitting does not extend 
globally, which may have various unpleasant ramifications. 
The only certain way of eliminating this possibility is to fac
tor out any cyclic free isometries; fortunately, there are in 
many cases good physical reasons for doing so. Thus finally 
we obtain a global decomposition, P = M XK. 

The problem of obtaining a transition from a local split
ting to a global product can only be solved by introducing 
further global data. Fortunately, in superstring models such 
data are immediately available: the idea of factoring out the 
freely acting isometries of K was already suggested, for total
ly different reasons, in Ref. 1. The analysis here was motivat
ed by the analogous observation 15 in the case of spontaneous 
compactification. In that case, the Freund-Rubin3 mecha
nism ensures that the Ricci tensor of the internal space satis
fies the correct conditions-but this is not sufficient to en
force compactification. An additional global condition, 
namely completeness, is needed, and again one must find a 
physicaljustification for imposing this condition.Fortunate
ly, that can be done. The point in both these cases is that 
global asymmetries of the vacuum can arise spontaneously, 
provided that conditions on vacuum expectation values can 
be supplemented by appropriate physically motivated global 
conditions. 

Finally, we should remark that recent work (see, for 
example, Ref. 16) has suggested that Calabi-Yau compacti
fications may not yield absolutely precise models of the su
perstring vacuum. It seems unlikely, however, that the dis
crepancy will be large enough to modify the qualitative 
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picture at low energies. Thus it is probably still useful to 
discuss overall features of the vacuum, such as splitting, in 
the context provided by Ref. 1. 
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A canonical stochastic dynamical system for time-symmetric semimartingales is formulated by 
the stochastic least action principle in a new stochastic calculus of variations. A certain class of 
stochastic dynamical systems gives a Hamiltonian formalism of Nelson's stochastic mechanics. 
In a manner analogous to classical mechanics, the notions of a stochastic Poisson bracket and 
canonical transformation are introduced to the stochastic dynamical systems. It is shown that 
the phase factor of the wave function plays the role of a generating function of the canonical 
transformation. 

I. INTRODUCTION 

Several years ago, one of the authors (K. Y.) proposed 
the notion of stochastic calculus of variations 1.2 within Nel
son's mechanics. 3 Since that work there have been many at
tempts to develop the variational formulation of stochastic 
mechanics.4

-
11 

On the variational principle in the original stochastic 
calculus of variation, Zambrini has developed a Hamilto
nian formalism of stochastic mechanics.5

•
6 However, the 

classical notions of canonical transformations were not ex
tended straightforwardly to his stochastic mechanics. On 
the other hand, another author (T. M.) proposed a different 
Hamiltonian formalism from that of Zambrini. 12 Since the 
Hamiltonian formalism remained the canonical structure of 
classical mechanics, canonical transformation was easily 
formulated in it, but the formalism was not based on the 
variational principle. 

In the present paper, we will develop a theory of canoni
cal stochastic dynamical systems keeping the canonical 
structure of classical Hamiltonian mechanics on the basis of 
a new stochastic calculus of variations. The classical notions 
of Poisson bracket and canonical transformation 13 will be 
extended naturally to the new stochastic dynamical systems. 

Section II is devoted to the exposition of a new stochas
tic calculus of variations, which is called the "symmetric 
stochastic calculus of variations (SSCV)." "Symmetric" 
means that this stochastic calculus employs a class of time
symmetric semimartingales.5

•
6 We also touch upon the re

formulation of Nelson's mechanics on the new stochastic 
least action principle in SSCV in Sec. II. 

On the basis of the new stochastic principle, canonical 
stochastic dynamical systems are formulated for time-sym
metric semimartingales in Sec. III. "Stochastic canonical 
equations" are first derived from the stochastic least action 
principle in phase space. A phase space-valued time-sym
metric semimartingale is called a canonical stochastic dy
namical system ifthe stochastic process satisfies the stochas
tic canonical equations. The connection between canonical 
stochastic dynamical systems and Nelson's mechanics is also 
investigated in this section. 

In Sec. IV, a stochastic Poisson bracket is introduced 

and thereby a notion of the strongly conservative variable is 
defined in canonical stochastic dynamical systems. 

In Sec. V, the canonical transformation is formulated in 
our canonical systems. It is shown that the phase factor of 
the wave function plays the role of a generating function of a 
canonical transformation. 

Throughout this paper, we refer to Zambrini's review 
article5 for the basic notions of stochastic calculus and sto
chastic mechanics. 

II. SYMMETRIC STOCHASTIC CALCULUS OF 
VARIATIONS 

In this section, in order to formulate canonical stochas
tic dynamical systems later on, we develop an idea of a new 
stochastic calculus of variations. 

We start with a brief presentation of the class of stochas
tic processes which are taken into account in our stochastic 
calculus of variations.5

•
6 Let (n,B,p) be a base probability 

space and x be a stochastic process in R{ , i.e., a continuous 
mapping t -+ x (t) from a time interval I into the Hilbert space 
H = L 2( (n,p) -+ R{). We consider two filtrations indexed by 
I;Bt andB t withBs CBt andB t CBs for s.;;;t towhichx(t) is 
adapted. By hypothesis, x(t) is simultaneously a B t semi
martingale and a Bt semimartingale.5

•
6 Moreover, the pro

cess x(t) has the two mean velocities 

Dx(t) = lim h-1E[x(t+h)-x(t)IBt ] (1) 
h-O+ 

and 

D.x(t) = lim h-1E[x(t)-x(t-h)IBt ], (2) 
h-O+ 

where E[ '1,8] denotes the conditional expectation with re
spect to the u-algebra p. We assume that these two limits 
exist in the Hilbert space H and the mappings t->Dx(t), 
t -+ D. x (t) are continuous from !into H. Let us denote the 
class of stochastic processes of the above-mentioned type by 
K. The following symmetric integration by parts formula 
due to Zheng and MeyerlO will be used for two processes 
x(t) andy(t) belonging to K, 
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E [x(b) 'y(b) - x(a) 'y(a)] 

=E[f (y(t)'Dox(t) +X(t)'DoY(t»)dt]. (3) 

In expression (3), Dox (t) denotes the "symmetric mean de
rivative" defined by 

Dox(t)=~(D+D.)x(t). (4) 

Now, we will formulate the new stochastic calculus of 
variations, which is called the symmetric stochastic calculus 
of variations (SSCY). For LECz(R Zl + 1 -+R 1), a Lagran
gian, and for each process x(t) in K, we define the action 
functional J by 

J [x] = E [f L (x(t),Dox(t),t )dt ], (5) 

where E['] is the absolute expectation and a,bEl, a<,b. We 
denote by ~ the totality of processes z(t) = z(x(t),t), where 
z = z(x,t) is any smooth R1-valued function vanishing iden
tically for t = a and b. We note that each process x(t) in ~ 
also belongs to K. 

The process x(t) in K is called a stationary process of 
the functional J given by (5), if OJ[x] (z), the first variation 
of the functional J in x on K, is equal to zero for any processes 
z in ~. A computation with the Taylor expansion in the La
grangian L and formula (4) are put together to show that 

OJ [x] (z) = E rib (DO aL -~) z(t)dt]. 
a aDox(t) ax(t) 

(6) 

Here we have usedz(a) =z(b) = O. Therefore we see that a 
process x(t) belonging to K is a stationary process if and 
only iff or the process x(t) the following equation holds: 

Do aL -~=O. (7) 
aDox(t) ax(t) 

We call Eq. (7) the stochastic Euler equation. This result 
describes the stochastic least action principle in SSCY. 

Now, we will quickly touch upon the reformulation of 
Nelson's stochastic mechanics3 on our stochastic least ac
tion principle. Some results in the following will be used to 
associate canonical stochastic dynamical systems with Nel
son's mechanics later on. Let us consider the diffusion pro
cesses x(t) belonging to K which are governed by the sto
chastic differential equation and the reversed equation5

: 

dx(t) = b (x(t),t )dt + {1i1(2m)plz dw(t), (8) 

dx(t) = b. (x(t),t )dt + {1i1(2m)}1/Z dw. (t), (9) 

where band b. are certain vector-valued smooth functions, 
Ii is Planck's constant divided by 21T, and m is a mass of a 
particle. In (8) and (9), w(t) is a standard R1-valued Wie
ner process and w. (t) has the same properties as w (t) ex
cept that the increments w. (t) - w. (s) are independent of 
x( 1') for 1'»t>s. We assume thatx(t) has a probability den
sity function p(x,t). For this process we have 
Dx(t) = b (x(t),t) and D .x(t) = b. (x(t),t). According to 
Nelson,3 these functions band b. are connected with the 
probability density p by the following equations: 

ap + div(v'p) = 0, u = {_li_} grad Inp, (10) 
at (2m) 
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where v, the "current velocity," and u, the "osmotic veloc
ity," are vector-valued functions defined by v = !(b + b.) 
and u = !(b - b.), respectively. 

Now, we assume that the diffusion process x(t) men
tioned above is an extremal of the functional J with the fol
lowing Lagrangian: 

L(x,Dox,t) = (mI2) IDoxl z - U(x,t), (11 ) 

where 

liZ (~{P(X,t)}I/Z) 
U(x,t) = V(x,t) + 2m {P(x,t)P/2' (12) 

In (12), Vis a given potential function. Then inserting Eq. 
(11) with (12) into Eq. (7), we obtain 

(~ + V' v)V(x(t),t) = - ~ grad V(x(t),t) 
at m 

+ (u.v + 2: ~ )U(x(t),t). 

(13) 

Here we have used the second equation of Eq. (10) and the 
following equation5

: 

Dov(x(t),t) = [:t + V'V ]V(x(t),t). (14) 

Equation (13) is just the same consequence as that of 
"Newton's equation of motion" in Nelson's mechanics. 
Therefore in a manner analogous to Nelson's mechanics we 
can determine v, u, andp (and hence band b.) from Eqs. 
( 10) and (13), so that the diffusion process x (t) is deter
mined.3 Furthermore, one can show that the diffusion pro
cess x (t) together with the Lagrangian ( 11) corresponds to 
a solution of a Schrodinger equation. Let us consider the 
wave function defined by 

'I'(x,t) = {p(X,t)}1/ 2 exp{iS(x,t)}, 

where S(x,t) is such that 

v(x,t) = (lilm) gradS(x,t). 

(15) 

(16) 

Then the function 'I' (x,t) satisfies the Schrodinger equation 
with the potential function V(x,t) , 3 

. a'l' Ii 1 
[-= --~'I'+-V'I'. 

at 2m Ii 
(17) 

From the first equation ofEq. (10), Eq. (13) and the defini
tion of S, p and S prove 

ap + ~ div(p'grad S) = 0, (18) 
at m 

and 

as 1 Z 1i2 (~{P(X,t)P/2) 
-+-(gradS) + V(x,t) +- J~ }1/2 =0. 
at 2m 2m 1.p(x,t) 

(19) 

Hence p = 1'1' IZ gives the probability density of a particle in 
the position space. Thus Nelson's stochastic mechanics is 
now reformulated on the stochastic least action principle. 

III. A CANONICAL STOCHASTIC DYNAMICAL SYSTEM 

In this section, we associate the time-symmetric semi
martingales in the class K with canonical stochastic dynami-
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cal sytems. At the first stage, we derive stochastic canonical 
equations from our new stochastic least action principle in 
Sec. II. 

Let us introduce the canonical momentum process p (t) 
by 

aL 
p(t) = (x(t),Dox(t),t) 

aDox(t) 
(20) 

and the Hamiltonian 

H (x(t) ,p(t) ,t ) = p(t) 'Dox(t) - L (x(t),Dox(t),t). 
(21) 

We assume here that two stochastic processes x (t) and p (t) 
belong to the class K, respectively. Then, we may regard a 
pair of processes (x(t) ,p(t») as a phase space-valued (i.e., 
Rl XR1-valued) time-symmetric semimartingale. 

Now, we consider the functional for a pair (x(t),p(t»), 

/[x,p] =E[f{p(t)'DOX(t) -H(X(t),P(t),t)}dt]. 

(22) 

Suppose that (x(t),p(t») is an extremal of this functional 
under the stochastic variation 

(x(t),p(t») + (Zl(X(t),P(t),t ),z2(X(t),P(t),t), 

where Z 1 and Z2 are any Rl -valued smooth functions vanish
ing identically for t = a and b. This means the stochastic 
least action principle in phase space. As in classical particle 
dynamics, the stochastic least action principle in SSCV ap
plied to Eq. (22) yields stochastic canonical equations 

Dox(t) = _a_H(x(t),p(t),t), (23) 
ap(t) 

a 
Dop(t) = - --H(x(t),p(t),t). 

ax(t) 
(24) 

We remark that these equations correspond to the basic 
equations in the first author's mechanics. 12 We call a pair of 
stochastic processes (x (t) ,p (t») belonging to K a canonical 
stochastic dynamical system if (x (t) ,p (t») satisfies stochas
tic canonical equations (23) and (24). 

Now, we will mention here the relation of our canonical 
stochastic dynamical systems to Nelson's stochastic me
chanics. Suppose that (x(t),p(t») is a canonical stochastic 
dynamical system, which satisfies the following conditions. 

(i) x (t) is a diffusion process governed by the stochastic 
differential equation (8) and the reversed equation (9). 

(ii) The Hamiltonian is given by 

1 2 fz2 (6.{P(X,t)}l/2) 
H(x,p,t) = -Ipl + V(x,t) + - {p }1/2' 

2m 2m (x,t) 
(25) 

Then we can show that the process x(t) satisfies Eq. (13) 
which is one of the fundamental equations in stochastic me
chanics. Indeed, for the Hamiltonian (25), canonical equa
tions (23) and (24) tum into 

pet) = mDox(t) 

=mv(x(t),t), (26) 

and 
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1 fz2 (6.{P(X t)}l/2) 
Dop(t) = - - grad V(x,t) - - grad {P '}1/2 ' 

m 2m (x,t) 
(27) 

where v is the "current velocity" defined in Sec. II. Inserting 
Eq. (26) into Eq. (27), and using the second equation of 
Eqs. (10) and (14), we obtain 

(~ + v,v)V(x(t),t) = - ~ grad V(x(t),t) 
at m 

+ (u.v + 2: 6.)U(x(t),t) 

as we wanted. Therefore in the same manner as was men
tioned in the end of Sec. II, we can determine the diffusion 
process x (t) from this equation together with Eq. (10), and 
further show that the process is corresponding to a solution 
of the Schrodinger equation. Then, the process p (t) is deter
mined from x(t) through Eq. (26). From Eqs. (16) and 
(26), we see thatp(t) is connected with the phase factor of 
the wave function (15) through the following equation; 

p(t) = fzgrad S(x(t),t). (28) 

Thus we can associate the canonical stochastic dynamical 
system (x (t) ,p (t) ) with the Schrodinger equation (17). 

The above-mentioned results tell us that a certain class 
of canonical stochastic dynamical systems gives a Hamilto
nian formalism of Nelson's stochastic mecahanics. There
fore we may regard our canonical dynamical systems as an 
extension of Nelson's mechanics. 

IV. STOCHASTIC POISSON BRACKET 

In this section, we define the stochastic Poisson bracket 
and thereby set up the notion of a strongly conservative vari
able in canonical stochastic dynamical systems. In what fol
lows, a pair of processes (x (t) ,p (t) ) is a canonical stochastic 
dynamical system with a Hamiltonian H(x,p,t). 

Let us consider a dynamical variable in canonical sto
chastic dynamical systems g(x (t) ,p (t) ,t), where g is a 
smooth function. We compute a stochastic differential of 
g(x(t),p(t),t ),5 

dg(x(t),p(t),t) 

= ag (x(t),p(t),t )dt + ~ (x(t),p(t),t )odx(t) 
at ax(t) 

+ ~ (x(t),p(t),t )odp(t), (29) 
ap(t) 

where ° denotes the symmetric stochastic differential of Fisk 
and Stratonovich. Taking the expectation, we have 

E [dg(x(t),p(t),t)] 

= E [tag (x(t),p(t),t) + ~ (x(t),p(t),t )'Dox(t) 
at ax(t) 

+ ~ (x(t),p(t),t )'DoP(t)}dt]. (30) 
ap(t) 

Here we have used the following formula5
; 

E [y(t) odx(t)] = E [y(t). Dox(t)dt ]. (31) 

By the canonical equations (23) and (24), we have 
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d - E [g(x(t),p(t),t)] 
dt 

= E [ag (x(t),p(t),t) + ~ (x(t),p(t),t) 
at ax(t) 

aH '-- (x(t),p(t),t) 
ap(t) 

ag aH ] - -- (x(t),p(t),t )._- (x(t),p(t),t) . 
ap(t) ax(t) 

(32) 

This expression tells us how the expectation value of the 
dynamical variable g(x(t),p(t),t) changes in canonical sto
chastic dynamical systems. 

Now, we introduce here the notion of a stochastic Pois
son bracket. Let! = !(x(t),p(t),t) andg = g(x(t) ,p(t) ,t ) be 
two dynamical variables in canonical stochastic dynamical 
systems. Then, a stochastic Poisson bracket of those dynami
cal variables is defined by 

(f(x(t),p(t),t ),g(x(t),p(t),t)} 

=(3L.~ - 3L'~)(x(t),p(t),t). (33) 
ap(t) ax(t) ax(t) ap(t) 

It has the same form as the usual Poisson bracket in classical 
mechanics 13 due to the symmetric stochastic calculus. The 
stochastic Poisson bracket satisfies the following properties: 

{!(x(t),p(t),t ),xi (t)} = ~ (x(t),p(t),t), 
api (t) 

(34) 

{!(X(t),p(t),t),Pi(t)} = -~(x(t),p(t),t), (35) 
ax' (t) 

{Xi (t),xi (t)} = {Pi (t)'Pj (t)} = 0, (36) 

{Pi (t),xi (t)} = 8/, (37) 

for 1 <JJ<.I. Moreover, the Jacobi identity 

(f,{g,h}J + (g,{hJ}J + (h,{f,g}} = 0 (38) 

holds, where h = h (x(t),p(t),t) is another dynamical vari
able. 

In terms of the stochastic Poisson bracket, Eq. (32) be
comes 

d - E [g(x(t),p(t),t)] 
dt 

= E [ag(x(t),P(t),t) 
at 

+ {H(x(t),p(t),t ),g(x (t),p(t) ,t )} J. (39) 

Now, we coin a new notion of a strongly conservative 
variable. A dynamical variable h (x (t) ,p (t») that does not 
depend on time explicitly is said to be strongly conservative 
if its stochastic Poisson bracket with the Hamiltonian 
H (x(t),p(t),t) vanishes, that is, 

{H(x(t),p(t),t),h (x(t),p(t))} = O. (40) 

Expectation of such a strongly conservative variable is a con
stant of motion, namely, 

d 
-E [h (xCt),p(t»)] = O. 
dt 

(41 ) 

It is worthwhile to notice here that two known strongly 
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conservative variables h1(xCt),p(t») and h2(x(t),pCt») gener
ate another one by their stochastic Poisson bracket 

h3(x(t),p(t») = {h 1(xCt),p(t»),h2(x(t),p(t»)}. (42) 

This fact corresponding to Poisson's theorem in classical 
mechanics 13 is a direct consequence of the Jacobi identity 
(38). Using this Poisson's theorem successively, a family of 
strongly conservative variables in canonical stochastic dy
namical systems will be obtained provided that the first two 
are known. 

v. CANONICAL TRANSFORMATIONS 

In a manner similar to classical mechanics,13 we will 
introduce canonical transformations in canonical stochastic 
dynamical systems. Let X = X(x,p,t) and P = P(x,p,t) be 
two smooth functions. For each canonical stochastic dy
namical system (x (t),p (t) ), we define another one 
(X(t),P(t») by 

X(t) = X(x(t),p(t),t), 

Pct) = P (x(t),p(t),t). 

(43) 

(44) 

Such a transformation in phase space is said to be a canonical 
transformation if (X(t),P(t») satisfies the stochastic canoni
cal equations (23) and (24), 

DoX(t) = aH (X(t) ,P(t) ,t ), 
ap(t) 

aH DOP(t) = - -- (X(t),P(t),t). 
aX(t) 

Here, H = H(X,P,t) is a certain Hamiltonian. 

(45) 

(46) 

The canonical stochastic dynamical system (X(t),P(t») 
extremizes, then, the action integral 

1 [X,P] = E [f (P(t) 'DoX(t) - H(X(t),P(t),t )dt J. 
(47) 

Since (x(t) ,p (t) ) extremizes the action integral I[x,p] given 
by Eq. (22), the difference between the two stochastic inte
grals 

i b 

(p(t) 'Dox(t) - H (x(t),p(t),t )dt, (48) 

and 

f (P(t)'DoX(t) -H(X(t),P(t),t)dt, (49) 

must be of the form 

f dF(t) (50) 

for a stochastic process F( t). Here, a new degree of freedom 
arises from the choice of F(t). 

For example, we can choose 

F(t) = F(xCt),x(t),t), (51) 

where F = F(x,x,t) is a smooth function of x, its image X 
under the canonical transformation, and time. Such a func
tion F as Eq. (51) is called a generating function of the ca
nonical transformation (43) and (44). Since 
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p(t)odx(t) H (x(t),p(t),t )dt - P(t)odX(t) 

+ H (X(t) ,P(t) ,t )dt 

aF 
= dF(x(t),x(t),t) = -- (x(t),x(t),t )odx(t) 

ax(t) 

aF + -- (x (t),x(t),t )odX(t) 
aX(t) 

aF + Tt(x(t),x(t),t )dt, 

we find 

and 

aF 
p(t) -- (x(t),x(t),t), 

ax(t) 

P(t) =~(x(t),x(t),t), 
aX(t) 

(52) 

(53) 

H(X(t),P(t),t) =H(x(t),p(t),t) + aF (x(t),x(t),t). 
at 

(54) 

Thus a generating function defines a canonical transforma
tion of the stochastic processes in canonical stochastic dy
namical systems. 

Let us consider a generating function of the type 

Set) = S(x(t),t), (55) 

where S = S(x,t) is a smooth function. Suppose the Hamil
tonian H vanishes identically by the canonical transforma
tion generated by S. Then Eqs. (52)-(54) yield 

as 
p(t) = (x(t),t), (56) 

ax(t) 

P(t) = 0, 

2573 

_ as (x(t),t) = H(x(t),p(t),t J, 
at 
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(57) 

(58) 

respectively. Equations (56) and (58) assert that the gener
ating function S should be subject to 

--(x,!) =H x,-(x,t),t . as (as) 
at ax 

(59) 

This equation extends the Hamilton-Jacobi equation in clas
sical mechanics13 to the canonical stochastic dynamical sys
tems. We call it the stochastic Hamilton-Jacobi equation. If 
the HamiltonianH is given by Eq. (25), then Eq. (59) turns 
into 

as 1 (as)2 fz2(.:l{P(Xt)}l/2) - = - - + Vex,!) + - ' . 
at 2m ax 2m (p(X,t)}1I2 

(60) 

This coincides with Eq. (19). Therefore we see that the 
phase factor of the wave function in Nelson's mechanics is 
nothing else but a generating function of a canonical trans
formation which makes the stochastic canonical equation 
much simpler. 
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The solutions of the self-duality equation depending on a set offunctions of three independent 
variables are constructed in an explicit way. The obtained solutions are shown to be connected 
with two-dimensional systems determined by the operators of the Lax pair. 

I. INTRODUCTION 

From the experience of integrating two-dimensional 
systems the importance of the deformation operation of in
ternal symmetry algebras of the equations under considera
tion has been revealed. When one applies the Inonii-Wigner 
"contraction" operation, nonlinearities in dynamical sys
tems disappear and systems transform into linear ones. 
However, the internal symmetry algebras oflinear and non
linear systems are the same, and thus makes it possible to 
connect them by Backlund transformation. Then the solu
tions of nonlinear systems are obtained as functions and 
their derivatives from linear equation solutions. 

In the present paper we propose to carry out an analo
gous procedure for obtaining a class of solutions for four
dimensional self-duality equations that depend on a definite 
number of arbitrary functions of three independent vari
ables. In the case of an arbitrary semisimple group the self
duality equations are a system of n second-order equations 
(n is the group dimension, r is its rank). The general solution 
of such a system must depend on 2n arbitrary functions of 
three independent variables and, if such a solution is ob
tained, one can expect the Cauchy problem to be solved. The 
technique of the present paper gives us a way to construct 
solutions as perturbative expansion series dependent on 
(n + r) arbitrary functions being less than 2n and in this 
sense the constructed solutions are not a complete solution 
of the problem and we are not able to classify them yet. The 
recurrent procedure makes it possible to calculate in an ex
plicit form every order of a perturbative expansion series by 
quadratures and algebraic operations and, what is more, the 
result of the summation of the series is equal to the solution 
of two-dimensional equations defined by the Lax operators 
under the condition that the values of arbitrary functions, 
when the parameter is equal to zero, are in accordance with 
certain solutions of four-dimensional self-duality equations 
when the parameter of interaction vanishes. At each inter
mediate stage the integration over real four-dimensional 
space does not take place and the whole apparatus of pertur
bation theory corresponds to single-multiple integrals. 

We have not managed to find the physical interpretation 
of the integration parameter and the connection of the con
structed solution with the known monopole and instanton 
configurations. 

In Sec. II self-duality equations are given in the form we 
will use. The information about the Inonii-Wigner contrac
tion operation is given and it is demonstrated that in this 
case, for definiteness, of semisimple algebras, the perturba
tion theory is equal to the integration of a system of equa-

tions with an infinite-dimensional solvable algebra which is a 
non-negative part of the infinite-dimensional algebra of a 
moderate rise. 

In Sec. III recurrent relations connecting different or
ders of perturbative expansion series are obtained and with 
the help of them the formula for the nth-order term is calcu
lated. 

In Sec. IV it is shown that the summation of a perturba
tive expansion series is equal to the solution of a two-dimen
sional system of equations defined by operators of the Lax 
pair when the interaction parameter is equal to zero. 

The final notes and conclusions are collected in Sec. V. 

II. ALGEBRAIC PROPERTIES OF A PERTURBATIVE 
EXPANSION SERIES 

The system of equations for self-dual configuration of 
Yang-Mills fields can be represented as one equation on the 
parameter of the group's element G (for definiteness of the 
semisimple group): 

(GzG -I)z + (GyG l)y = 0, 

(G-1Gzh+(G IGy)y=O, 
(1) 

where z, z, y, and yare independent variables, Gy JG / Jy. 
Equation (1) may be partially solved: 

GzG- 1 =J;" GyG- J = -h, 
where the elementf belongs to the corresponding group al
gebra. From ( 1) and the definition off there follows an equa
ton 

Of + [h,J;,] 0, (2) 

where 

J2 J2 
0=--+--. 

Jy8ji JzOi 
We shall call Eq. (2) a self-duality equation. Equation (2), 
contrary to ( 1 ), has the Lagrangian 

L=!sp(J;,h +hh) +jsp(f[J;,Iz])· (3) 

One can be convinced of it by constructing Euler's equa
tions. For symmetrical properties ofEq. (2) refer to Ref. 1. 
The coupling constant in gauge theories is always intro
duced as a coefficient at the terms quadratic on fields and 
from this point of view the introduction of the interaction 
constant corresponds to adding the factor If at the term 
[J;"h] in Eq. (2). From our experience working with two
dimensional systems2 we introduce the interaction constant 
in a different way as the parameter of group Inonii-Wigner 
deformation in the corresponding semisimple algebra, i.e., 
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we will consider that the elementl belongs not to a semisim
pIe algebra but to an algebra following from it by Inonii-' 
Wigner deformation. Technically it means that the commu
tation relations between simple roots and Cartan elements of 
the semisimple algebra 

[X a+ ,x /3- ] = Da/3 ha' [ha'X l] = ± K/3a X l (4a) 

transform into 

[X~+ ,xp-] =lfDa/3hp, [h~Xp±] = ±K/3aXp±. 

(4b) 

It is easy to note that when the parameter is equal to zero the 
semisimple algebra transforms into a solvable one but the 
structure of its positive and negative spaces is the same as in a 
semisimple algebra. Incidentally the linear equations corre
spond to the vanishing value of the interaction constant and 
the integration of such equations is trivial. The internal sym
metry algebra is not semisimple but solvable, defined by rela
tions (4a) and (4b) when g = O. Then the algebras of the 
initial nonlinear system and of the linear system following 
from it by the contraction operation are the same and this 
makes it possible to connect them through a Backlund trans
formation and integrate them in an explicit form. At present 
we do not have independent methods for the reconstruction 
of the internal symmetry algebra from Eq. (2) in the case of 
four independent variables (compare with Ref. 3) and there
fore such an introduction of an interaction parameter is an a 
priori assumption called for by the results of the present 
work. 

The contraction operation is equal to multiplication of 
the compound root Xa on gna, where na is its height (the 
number of simple roots from which it is formed). The gener
ators of the space with zero graduate index are Cartan ele
ments. The terms gX a± are the elements of the space with 
graduate index unity. All pair commutations [gX a± ,gX l ] 
and the Cartan elements lfha are the elements of the space 
with the graduate index 2, that is, the selection of corre
sponding-order terms from system (2) is equivalent to con
sidering that the element I belongs to the infinite-dimen
sional solvable algebra, whose structure of graduate 
subs paces is described above. 

Let us consider in detail the algebra A I (SL (2,R »). Sub
stituting the expansion I = aX + + Th + f3X - into Eq. (2) 
and using the commutation relations 

[X+ ,x-] =lfh, [h,x ±] = ± 2X ±, 

we obtain 

DaX + + DTh + Df3X -

= 2( Tyaz - Tzay)X + + g2(aJ3z - a zf3y )h 

- 2( Ty{Jz - Tz{Jy)X -. 

Equating the coefficients at the linearly independent genera
tors of the algebra we get the system of equations 

Da=2(Tyaz -Tzay ), Df3= -2(Ty{Jz -7zf3y ), 

DT=g2(ayf3z -azf3y)· 

Expanding a, {J, T into a series for the constant If, 
00 00 

a = I anlfn, f3 = I (J nlfn, 
n=O n=O 
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(5) 

and substituting into system (5) we obtain for the nth order 
of perturbation theory the following system: 

n-I 

D~ = I (a~f3; - k - I - a;{J; - k - I), 
k=O 

(6) 

n 

Df3 n = - 2 I (r';f3; - k - r:f3; - k). 
k=O 

The expansion I = aX + + Th + {JX - takes the form 
00 

1= I (anlfnx+ + ~lfnh +(Jnlfnx-). 
n=O 

Let us introduce the notation 

X k± =lfkX ±, Hs =lfsh. 

Then the element I becomes expanded over the infinite-di
mensional algebra with the commutation relations on gener
ators 

[X/ ,xj-] =If(i+j)h =Hj+j, 

[Xj±,Hs] = +XS~j 

and this algebra is equal to the solvable part of the infinite
dimensional algebra of Kac-Moody4 A2• 

III. THE EXPLICIT EXPRESSION OF THE nTH-ORDER 
TERMS IN THE CASE OF SOLVABLE ALGEBRAS 

We will consider the algebra of Eq. (2) as being finite 
solvable or infinite dimensional. The basic vectors of the zero 
invariant subspace will be denoted by h j and their corre
sponding functions by T j , that is, the element of the zero 
invariant subspace H is identically equal to H = l:~ = I hjTj. 
From (2) it follows that DH = 0 or 

DTj = 0, (7) 

i.e., T; is the solution of the Dalamber equation, whose gen
eral solution depends on two arbitrary functions of three 
independent variables (see Appendix A). 

For the functions of the first invariant subspace Xl, 
equal to X I = l:: = IX a+ aa, we have from (2) 

OX I + [HzX!] + [X ;Hy] = 0, 
(8) 

Daa = p;a~ - p~a;, 

where the pa are defined by the relation 

[ HX a+ ] = pax a+ . 

For the often occurring combinations of the functions (¢y/z 
- ¢J;,) we introduce the notation {¢,j} y,z' Equation (8) 

possesses the Backlund transformation of the following 
form: 

(9) 

From these relations it follows that the functions b a satisfy 
the same equation [Eq. (8)] whenpa satisfies the equation 

Dpa =0. 

We will make the assumption that b a = Aaa. Then one re
writes system (9) in the form 

a~ = Aa; + p;aa, ap = - Aa~ - p~aa. (10) 
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Solving (10) we obtain a particular solution for (8) of the 
following form: 

aCt = A a(y + AZ,z - aY,A)expBCt, (11) 

where 

Ba-J...( a lay _ alaz ) a. 
- 2 a laz A(a lay) a lay + Aea laz) p 

Due to the fact that A is an arbitrary parameter and the initial 
equation is linear for aa, the sum of solutions is again a solu
tion and therefore Saa(A )dA will be the solution ofEq. (8), 

too. As is seen from the explicit relation (11) the solution 
depends on one arbitrary function of three arguments, but 
the general solution must depend on two arbitrary functions, 
thus the constructed solution is a particular one. The equa
tion for the function of the second invariant subspace X 2, 

X 2 = I aaP X a/J' X a/J [ X a+ ,x p+ ], 
a<f3 

has the form 

OX 2 + [HzX;] + [H;X;] + [X;X;] = 0 

or 

Equation (12) is a nonhomogeneous one, whose nonhomo
geneities are given by the constructed functions aa. One of 
the particular solutions of this equation has the following 
form: 

(3ap = ~ I aaf3 (A)dA, 

where 

aaP = [aa(A),aP(A)] I. 

By the commutation of two functions!, g we obtain the fol
lowing expression: 

[/(A),g(A)]l =1(..1) I g~A ~1~' 

_ (A) II(A ')dA' 
g A-A' 

Using relations (10) and carrying out a number of identical 
algebraic transformations we get that !f [aCt (A )aP (A) ] I dA 
satisfies (12). Adding to the obtained solution the solution 
of a homogeneous equation according to scheme ( 10) we get 
a particular solution of (12) dependent on one more func
tion of three variables. The general scheme of the reduction 
proved in Appendix B is the following: for the function of the 
nth invariant subspace we have the equation 

ox n + [HzX; 1 + [X;Hy ] 
n-l 

+ I [X;,X; k-I] = O. 
k~1 

The assertion of reduction consists of the fact that the partic
ular solution of this equation 

B G 1.G2 ... ·,Gn = J... A a •• u2'···.un 

n! 
J... I aCt"Ct' .... ,Ct. (A )dA 
n! 

is defined by the use of previous reduction stages by the for
mulas 
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n-J 
a a a "Cs 1 [aa" .,a, Ct,+ !>.",an ] 1 a \. 2"'" n ~ n _ 2 ,a . (13) 

S~O 

For the function aG"a",u. the following relation takes place: 

a;" .. ,an = Aa;,,···,an + ( i pCli)aa" ... ,an 

1=1 

(14) 

_ C ~ ~ \ aa i + 2,,··,anA al.···,ai + 1). 

Differentiating the first relation with respect to z, the second 
with respect to y, and taking the sum, one comes to the rela
tion 

n-2 + I (- C~ 1 {A a'+2,,,.,an,aa,, .. ,ai}yZ 
i~O 

+ C~+ \ {A a" .. .,a.+ ',aai+2, ... ,an }yz) 

and taking the integral with respect to A we find out that 
Ba",Un = (IIn!)faG

",un (A)dA satisfies the equation for 
the nth invariant subspace, Finally, formula (13) solves the 
problem of constructing the solutions of (8) in the case of 
semisimple algebras, moreover the constructed solutions de
pend on arbitrary functions, the number of which is equal to 
the sum of the dimension of the algebra and the dimension of 
its invariant subspace with the zero graduate index, and 
gives explicit expressions for each function of the invariant 
subspace with the finite graduate index. 

IV. THE EQUATION IN THE TWO-DIMENSIONAL SPACE 
AS A RESULT OF THE SUMMATION PERTURBATIVE 
EXPANSION SERIES 

In the present section using the formulas ofthe previous 
section we shall sum perturbation series in the case of the 
algebra A 1(SL(2,R)}, and the results will be generalized for 
the case of arbitrary semisimple algebras. 

The result of summation is the following: the summa
tion is equivalent to the solution of a nonlinear integral-dif
ferential system of equations with the kernel of Cauchy type 
defined by operators of the Lax pair. In this case the genera
tors of the first invariant subspace have two indices denoted 
by + and - , and the system of generators is the same as the 
solvable part of the infinite-dimensional Kac-Moody alge
braA2 , 

Let us introduce the notation 
~ 2n~1 

~~ o-~ + a = an a = an , 

~ a-+ .. ···-+-=a
n
-

and 
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aO=7+ f ~rfk 
k~ 1 (2k)! ' 

(15) 

a± = ~ al rfk+1 U± _aa± 
k~O (2k+ 1)! ' - ag . 

The general recurrent formula in terms of (15) takes the 
form 

au = [u(A)u(A)], 
ag 

where 

u(Ag) = u+X+ + uOA + u-X-, 

u(A,g) =JdA' u(A ') . 
A A' 

Equation (16) with the initial conditions 

u(A,O) = al(A) 

(16) 

is completely equivalent to the summation of the perturba
tive expansion series. Thus the constructed solutions are two 
dimensional by their nature and the interaction constant is 
an independent variable under this approach. In the notation 
of ( 15) we rewrite recurrent relations (14) in the form 

a
2

a =,1. a
2

a + [H ~] + [~Ja dA] 
agiJZ agay Y ag ag Y , 

(17) 

!~ = -A !2;Z [Hz ~;] - [~; J az dA ] . 

Relations (17) are obtained from (14) in the case of the 
algebra A I' however, it can take place in the case of an arbi
trary algebra. In fact, from (17) it follows that 

a 
- (DA + [Hy +Ay, Hz +Az ]) =0, 
ag 

i.e., if at g = 0 Eq. (8) is fulfilled then it will be fulfilled at 
arbitrary values of the interaction constant. Thus the general 
scheme of summation of the perturbative expansion series in 
the case of the arbitrary semisimple algebra consists of solv
ing Eq. (16) under the initial conditions 

a(g.A)l g ° =a(A), 

where a (A) is the solution given by formulas ( 11 ) ofEq. (8) 
for the solvable part of the corresponding semisimple alge
bra, the nilpotent part of which is the same as the space of 
positive roots and the zero subspace is pulled over the ele
ments of the Cartan subalgebra. 

v. CONCLUSION 

The main result of the present work consists of formula 
(13), which gives an explicit expression for the coefficient 
functions of the solutions of (8) in the case of an arbitrary 
solvable algebra, and of the assertion that the summation o~ 

the expansion of the perturbative series is equivalent to the 
solution of the integral-differential equation ( 16). The work 
imposes a number of questions. The first question is what 
class of solutions is described by the proposed scheme, be
cause it can be increased in the sense of reserving arbitrary 
functions to the general solution. 

From a physical point of view this is the question about 
choosing the interacting constant and about using this 
choice in physical supplements. Moreover the quadratures 
on the single parameter suggest a correspondence with string 
theories. 
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APPENDIX A: A GENERAL SOLUTION OF DALAMBER'S 
EQUATION 

In this appendix a general solution of Dalamber's equa
tion will be obtained. The equation under consideration is 
the following: 

Du = a
2
u + a

2

u = O. (AI) 
ayoy aziJZ 

For this equation let us introduce two Backlund transforma
tions connecting the solutions/ and], g and g, respectively, 

fz =h, gz =gy, 1;, = -/z, gy -gz· 

If we assume that J = At. g = Ag, where A is an arbitrary 
parameter, then we can rewrite these systems in the form 

fz =A/y, gz = Agy , 1;, -A/z, gy = -Agz • 

Solving these systems we find out that their solutions are 

/ = /(Az + Y.Ay z.A), g = g(A:z + Y.Ay - Z.A), 

respectively, where/and g are arbitrary functions. Due to 
the fact that the equation under consideration is a linear one 
and A is an arbitrary constant, the sum, and, consequently 
the integral with respect to A of the solutions is the solution 
of Eq. (8), too. Finally, the general solution of the four
dimensional Dalamber equation 

u = J dA [/(Az + Y.Ay - z.A) + g(Az + Y.Ay - z.A)] 

depends on two functions of three independent variables. 

APPENDIX B: PROOF OF THE MAIN REDUCTION 
FORMULAS (14) BY INDUCTION 

The main reduction formulas (14) will be proved by 
induction. From (10) for n = 1 we have 

a; =Aa~ +p!al. 

For n = 2 

a; = [a1a2 g = (Aa~(A) +p~al(A») J a2~A~~~' +al(A) J (A '-A +A~~~',> +p;a
2

(A ') dA' 
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where A a = Jaa(A )dA. It is evident that the expression obtained corresponds to the first formula in (14) when n = 2. We will 
consider that it takes place for all orders less than n. Let us consider the expression [a1""'\ak + I, ... ,n]i. Acting as in the case 
n = 2 and using the supposition of induction we obtain for this expression the following presentation: 

n 
[al'···'\ak+1, ... ,ng =,.1, [a1'···'\ak+1. ... ,nJ; + I p~[al'···'\ak+I, ... ,n] 

i=O 

_ a1, ... ,kA ~ + I, .. ,n + ak + 1, ... ,nA ;, ... ,k + [ki I c % _ I aa + I, .. ,kA ;,.,a _ C% : al, ... ,a A; + l""\ak + l, ... ,n] I 

a=1 

[ 

n k I 

+ al, ... ,k '" C a ak+l+a, ... ,nAk+1, ... ,k+a 
'£..t n-k-l y 

a 1 

ca-1 ak+ 1, ... ,k+aA k+a+ I, ... ,n] 1 
n-k-I y (Bl) 

From (13), ~k 1 c ~ = i [a I""'\ak+ I, ... ,n] I = al, ... ,n, Multiplying both parts of (B 1) by c ~ = i and taking the sum from 1 to 
n - 1 we obtain for the last four items of the right part of (B 1) the following expressions: 

n-I k-I 
'" '" C k I Ca - I [al, ... ,a aa + I, .... n] IA a + I, ... ,k 
£..t £..t n 2 k-I' y' 

k=2a=1 
n-2n-k-l 
'" '" Ck-IC a [al, ... ,kak+l+u, ... ,n]IAk+I, ... ,k+a 
L £. n~2 n-k-l' y' 

k= I a= 1 

(
nil kil c~ ~C%_I [aa+ I""'\ak + 1, ... ,n]1A ;, ... ,k) + nil C~=iak+ 1,.,nA

y
• 

k=2a=1 k=1 

(

n-2n-k 1 ) n-I 
'" '" Ck-1C a - 1 [al, ... ,kak+I, ... ,k+a]IAk+u+I, ... ,n + '" Ck-Ial, .. ,kAk+I, ... ,n 
L £- n-2 n-k-l' y L n-2 y 

k=1 a=l k=1 

Substituting m k + a in (B3) and using the evident prop
erty of binomial coefficients, 

one gets convinced that (B3) takes the form 

n-l m-l 
'" '" cm-1e k - 1 [a1, .. ,kam+l, ... ,n]IAk+I, ... ,m 
L L n-2 m-l' y' 

m=2k=1 

r n-2 I C~_2aa+I, .. ,nA;,·,a 
a=l 

n I 

+ '" c k - I a k + I, . . ,nA I, ... ,k 
£..t n-2 y 

k I 

11. _. 2 

= I (C~_2 + e~= ~ )ak+ 1, . . ,nA ;, ... ,k 

k 1 

+ C ~- ~ anA ;,.,n - I 

n-I 
= I C~=:al, .. ,kA~+I, .. ,". 

k=1 

(B2) 

(B3) 

(B4) 

(B5) 

i.e., the items (B2) and (B3) are being reduced. Let us con
sider now expression (B4). Carrying out the substitution 
k = m + a + 1 in the expression in brackets we rewrite it in 
the following form: 

Similarly one can get the following expression for (B5): 

n-2n-a-2 

I I c,:+;:cr:,.+a 
a=l n=O 

X [aa+ l,a+ 1 + m,aa + 1 + m+ l, ... ,k] lA ;, ... ,a. (B6) 

Using the property of binomial coefficients, 

and definition (13), 

n-m-2 

I c':_a 2 
m=O 

X [au + I,. .. ,a + 1 + m,aa + I,m + I, . . ,n] 1 = aa + I, ... ,n, 

one transforms (B6) totheform~n 2ea aa+ 1, ... ,nA I, ... ,a 
a 1 n-2 y' 

Thus we arrive at the final expression for (B4): 
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n-I I e~ :al, ... ,kA~+I, ... ,n, 
k=l 

Consequently we have at arbitrary n, 

" a~,···,n Aa;,··,n + I p~al,.,n 

i=I 

n-I 

+ I (e ~ _ I ak + I, .,n A ;' .,k 

k=1 

Ck-1al, ... ,kA k+ I,. ... ") 
11.-1 y , 

which completes the proof. 
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The multi-Hamiltonian structure of a class of nonlinear wave equations governing the 
propagation of finite amplitude waves is discussed. Infinitely many conservation laws had 
earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation 
of these equations the necessary and sufficient conditions for the existence ofbi-HamiItonian 
structure are obtained and it is shown that the second Hamiltonian operator can be 
constructed solely through a knowledge of the first Hamiltonian function. The recursion 
operator which first appears at the level ofbi-Hamiltonian structure gives rise to an infinite 
sequence of conserved Hamiltonians. It is found that in general there exist two different infinite 
sequences of conserved quantities for these equations. The recursion relation defining higher 
Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the 
existence of the (k + 1 )st Hamiltonian operator which depends on the k th Hamiltonian 
function. The infinite sequence of conserved Hamiltonians are common to all the higher 
Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this 
formalism and it is shown that in general they admit tri-Hamiltonian structure with two 
distinct infinite sets of conserved quantities. The isothermal case of r = 1 is an exceptional one 
that requires separate treatment. This corresponds to a specialization of the equations 
governing the expansion of plasma into vacuum which will be shown to be equivalent to 
Poisson's equation in nonlinear acoustics. 

I. INTRODUCTION 

The demonstration of a bi-Hamiltonian structure for a 
system of partial differential equations is a direct and elegant 
method of proving its complete integrability. 1-5 That is, if a 
set of partial differential equations can be formulated as a 
Hamiltonian system in two distinct but compatible ways, 
then, by a theorem of MagrV they give rise to an infinite 
sequence of conserved Hamiltonians which are in involution 
with respect to either one of these two symplectic structures. 
It is well known that nonlinear evolution equations which 
can be solved by the inverse scattering method6

,7 can be cast 
into bi-Hamiltonian form. 2 In a recent paper,8 hereafter to 
be denoted as I, we have pointed out a new class of nonlinear 
wave equations that do not admit a nontrivial Lax pair but 
nevertheless give rise to infinitely many conservation laws. 
Equations governing the propagation of finite amplitude 
waves such as the Euler and Poisson equations in nonlinear 
acoustics, shallow water waves, the simplest nonlinear 
Born-Infeld electrodynamics, the Morse-Ingard string, and 
Nambu's relativistic string belong to this class. We had ear
lier presented a general framework for these equations and 
gave an algorithm for constructing infinitely many conserva
tion laws. These conserved quantities are Casimir functions9 

and in this paper we shall show that they arise as a conse
quence of the bi-Hamiltonian structure of some members of 
this class of nonlinear wave equations. 

The discussion of bi-Hamiltonian structure suggests a 
generalization of the recursion relation which enables us to 
obtain the necessary and sufficient conditions for the exis
tence of higher Hamiltonian structures and construct the 
appropriate recursion operators. In the case of the equations 
governing the propagation oflong waves in shallow water, or 

gas dynamics with r = 2, the second Hamiltonian operator 
was obtained by Cavalcante and McKean 10 and Kuper
shmide I has shown that these equations admit tri-Hamilto
nian structure. The infinite sequence of conserved Hamilto
nian that this structure gives rise to was found much earlier 
by Benney.12 It appears that Kupershmidt's treatment of 
this problem and its generalization to include the effects of 
dispersion 13 are the only discussions of multi-Hamiltonian 
structure in the literature. We shall show that it is not possi
ble to go beyond tri-Hamiltonian structure for shallow water 
waves. We shall discuss the equations of gas dynamics in 
1 + 1 dimensions as an illustration of our formalism for 
multi-Hamiltonian structure. We shall find that in the gen
eric case these equations admit tri-Hamiltonian structure 
with two infinite sequences of conserved quantities. For 
r 2 these two sequences collapse into one yielding Ben
ney's conserved quantities. Physically the most interesting 
case occurs for an isothermal gas with r = 1. We shall show 
that the equations are now equivalent to Poisson's equa
tion14 in nonlinear acoustics and they are offurther interest 
in plasma physics. 15.16 Mathematically this is an exceptional 
case which we shall treat separately. 

II. SYMPLECTIC STRUCTURE 

A. Primary Hamiltonian structure 

In I we had considered quasilinear second-order partial 
differential equations 

(2.1) 

which can be written in the form of a continuity equation. 
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These equations can alternatively be formulated in terms of a 
pair of exact one-forms 

a = U dx + U(u,v)dt = dr/!, OJ = v dx + V(u,v)dt = dt/!, 
(2.2) 

and the implication that they are closed gives rise to the first
order equations 

U , = Uuux + Uvvx =K u, v, = Vuux + Vvvx =Kv, 
(2.3 ) 

which consist of a restatement ofEq. (2.1) and further result 
in a companion equation for t/!. There is, in general, an ambi
guity in the choice of t/! due to the fact that different sets of 
coupled first-order partial differential equations for r/!,t/!, 
which are obtained as compatibility conditions ofEqs. (2.2), 
may yield Eq. (2.1) as one of their integrability conditions. 
This ambiguity is resolved precisely by requiring that the 
system must admit Hamiltonian structure, for which 

Uu = Vv (2.4) 

is the necessary condition. 
We recall that in the discussion of the Hamiltonian 

structure of this class of equations we start with Eqs. (2.3) as 
the basic equations. The phase space consists of the set (u,v) 
of infinitely differentiable functions and the Euler operator 

(
E u ) 8 8 

E= Ev ' Eu =Tu' Ev = 8v' (2.5 ) 

where 8 denotes the variational derivative, will stand for the 
gradient in this space. For two smooth functions A, B of 
these variables the Poisson bracket is defined by 

[A, B ] = J E(A )JE(B)dx, (2.6) 

where J is the Hamiltonian operator. Hamilton's equations 
are given by 

:t (:) = [(:),H ] = JE(H), (2.7) 

with H standing for the Hamiltonian function. We had 
found that for the familiar Hamiltonian operator3

,8,9 

J I = _ (0 D), D=~, (2.8) 
\n 0 ax 

the necessary and sufficient conditions for the existence of a 
Hamiltonian function HI are given by the requirement that 

-dHI=Udv+Vdu (2.9) 

must be an exact one-form. Equation (2.4) is obtained by 
taking the exterior derivative of Eq. (2.9). This is the first 
Hamiltonian structure. It is evident that the proper choice of 
t/! is the most crucial element in the discussion of the Hamil
tonian structure of the nonlinear wave equations that belong 
to the class considered in I. 

B. Bi-Hamiltonian structure 

We shall now consider the problem of constructing the 
second Hamiltonian structure of Eqs. (2.3). There exist ex
cellent accounts of bi-Hamiltonian structure in the litera
ture. 17

-
19 Since our approach is tailored to a specific class of 
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equations, various aspects of this construction can be under
stood intuitively and in the following we shall make exten
sive use of these simplifications. For this purpose we start by 
noting that as a consequence of Eqs. (2.3) and (2.4), 

Ho= uv (2.10) 

is always a conserved quantity. That is, Eq. (2.4) is the inte
grability condition of HOI + Kox = 0, where Ko is a function 
of u, v only. Thus we may inquire into the existence of a 
second Hamiltonian operator J2, such that 

(2.l1a) 

and Eqs. (2.3) will become Hamilton's equations with re
spect to the Poisson brackets defined in terms of both J I and 
J2 • In order to determine J2 it is necessary to require that 
every linear combination of J I and J2 with constant coeffi
cients is also a Hamiltonian operator. The existence of such a 
bi-Hamiltonian structure gives rise to a new conserved Ham
iltonian H2 satisfying 

J 2E(HI) =JIE(H2 ) (2.11b) 

and the recursion relation 

(2.11c) 

enables us to obtain an infinite sequence of conserved quanti
ties Hk for every integer k. 

A Hamiltonian operator must be skew adjoint. That is, 

fGJFdX= - fFJGdX (2.12) 

and this is accomplished through integration by parts and 
suitable boundary conditions at the limits of integration. For 
the class of nonlinear wave equations discussed in I, J is a 
2 X 2 matrix and F, G are each two-component objects. Di
rect calculation shows that the most general ansatz for J 
which is consistent with Eq. (2.12) is given by 

( 
mD+Dm 

J2 = (p + q)D + D(p _ q) 
(P-q)D+D(P+q») 

nD+Dn ' 
(2.13) 

where m, n, p, and q are functions of u, v. We note that the 
diagonal entries of J2 consist of first-order manifestly anti
symmetric operators while the off-diagonal terms contain a 
first- and a zeroth-order operator involvingp, q, respective
ly, where it is the change in the sign of q between the off
diagonal elements of J 2 that assures antisymmetry in the 
latter case. The task of checking whether or not Eq. (2.12) is 
satisfied for a given set of boundary conditions belongs to the 
end, after the functions entering into this ansatz are com
pletely known for each particular example. These functions, 
{m,n,p,q}, must be determined by requiring the satisfaction 
ofEqs. (2.l1a) and the Jacobi identity. This is a straightfor
ward but lengthy calculation which we shall now outline. 

Equations (2.l1a) result in four equations for the first 
derivatives of U, Vand from the equality of the mixed second 
derivatives of these functions and Eq. (2.4) we find 

nv =Pu + qu' 

which enables us to write 

2p + unv + vmu = Uu 

Y. Nutku 

(2.l4a) 

(2.l4b) 

(2.14c) 
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in place of two of these equations. The content of the remain
ing two equations is reduced to 

Uv(un)u + Vu(vm)v = UvVu (2.14d) 

by virtue of Eqs. (2.11b), which consists of relations for the 
second derivatives of H 2 • That is, from Eqs. (2.11 b) we find 

nUv = mVu, (2.14e) 

Uvnu = Vu (Pv + qv), (2.14f) 

Vumv = Uv (Pu - qu)' (2.14g) 

using the equality of the mixed second derivatives of H 2 , 

H 2u ' and H 2v ' respectively. Equations (2.14) are an overde
termined set of first-order partial differential equations 
which must be solved in order to construct the second Ham
iltonian operator J2 when it exists. But before we can proceed 
with this matter we need to show that they are sufficient to 
insure the satisfaction of the Jacobi identities. 

We shall adopt a formalism due to Olver l9 for calculat
ing the Jacobi identities that appears to be the most direct 
and economical method devised for this purpose. We consid
er tangent vectors 

(2.15 ) 

and the bilinear form 

1= ffdX, f=9 TJ9, (2.16 ) 

where products involving 0, S, OX,," are understood to be 
completely skew so that they can be manipulated with the 
same rules governing differential forms. We shall use the 
symbol 1\ for wedge product in order to make this property 
manifest. Finally, introducing the operator 

L = (J9)'E (2.17) 

the Jacobi identities can be expressed in the form 

Ll = 0, (2.18) 

where we again assume that suitable boundary conditions 
assure the vanishing of terms that are to be evaluated at the 
limits of integration. In our case we find 

f=mOI\Ox +p(OI\Sx +SI\Ox) +nSI\Sx 

(2.19a) 

Euf=muOI\Ox + (Pu -qu)OI\Sx 

+ (Pu + qu)S 1\ Ox + nuS I\Sx' (2.19b) 

and Evf is obtained by replacing the subscript u by vevery
where it occurs in Eq. (2.19b). Evaluating Eq. (2.18) we 
find that there are four linearly independent quantities 
01\ Ox 1\ Sx, Ox 1\ s 1\ Sx, 01\ Ox 1\ S, and 01\ S 1\ Sx, the coef
ficients of which must vanish. The latter two each give rise to 
two equations as they involve terms proportional to Ux and 
Vx as well, but one of these equations, Eq. (2.20e) below, is 
repeated. Thus we end up with 

p[mu -Pv +qv] +nmv -m(pu -qu) =0, (2.20a) 

p[nv -Pu -qu] +mnu -n(pv +qv) =0, (2.20b) 

[nv - Pu - qu ] mv + [mu - Pv + qv ] (Pv + qv) = 0, 
(2.20c) 
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[nv - Pu - qu ] (Pu - qu ) + [mu - Pv + qv ] nu = 0, 
(2.20d) 

(2.20e) 

as the conditions for satisfaction of the Jacobi identities. 
Comparing with earlier results, we find that Eqs. (2.20) 

are completely equivalent to Eqs. (2.14a), (2.14b), (2.14e), 
(2.14f), and (2.14g). The difference between these two sets 
of equations lies in the fact that, in contrast to the Jacobi 
identities (2.20), Eqs. (2.14) contain explicit reference to 
the Hamiltonian function HI of the system for which we are 
interested in constructing the second Hamiltonian operator. 
This fact is of crucial importance in finding J2 for particular 
examples. 

We shall now consider the problem of constructing the 
second Hamiltonian operator J2 using Eqs. (2.14). But first 
of all we need to check the integrability conditions of these 
equations in order to verify that a solution will exist for some 
U, V subject to Eq. (2.4). To this end we define a new func
tion/in terms of which Eqs. (2.14) become 

m= UJ, 

n = VJ, 

(2.21a) 

(2.21b) 

p=![Uu -uVufv -vUvlu - (uVuv +vUuv)/], 
(2.21c) 

Pu = Vulv +!(Vuv + VuUvvIUv)J, (2.21d) 

Pv = Uvlu +!( Uuv + Uv VuJVu)J, 

qu =!( Vuv - Vu UvvIUv)J, 

(2.21e) 

(2.21f) 

qv =!( - Uuv + Uv VuuIVu)J, (2.21g) 

and a first-order equation for I only 

ufv + vfv + (2 + uVuJVu + vUvvlUv )/= 1. (2.21h) 

It turns out that Eq. (2.21h) and the integrability condition 
ofEqs. (2.21f) and (2.21g), 

[Uv(VuIUv)J1v + [Vu(UvIVu)J]u =0, (2.2li) 

are the crucial equations which determine/and once we find 
a particular solution of this pair of first-order partial differ
ential equations, the required functions m, n, p, q can be 
obtained by quadratures. An exhaustive check of all the inte
grability conditions of Eqs. (2.21) is rather lengthy as the 
following example will illustrate. From Eqs. (2.21c) and 
(2.21d) we find a second-order equation forf An equation 
involving the same second derivatives of I is obtained by 
differentiating Eq. (2.21h). Combining these equations we 
end up with an equation forluv in terms oflower derivatives 
off When this process is repeated with Eqs. (2.21c) and 
(2.21e) we again find a similar equation forluv and by com
paring it with the earlier result we obtain a first-order equa
tion for/which is simply Eq. (2.21i). 

Thus the existence of a second Hamiltonian structure 
for Eqs. (2.3) with J2 given by Eqs. (2.13) and the solution 
ofEqs. (2.21), depends on whether or not Eqs. (2.21h) and 
(2.2li) admit a solution. This is an algebraic system for the 
first derivatives of I and its solution yields the Meyer system 

lu = - p(/3u + rv )vl + pf.1rl - pr, (2.22a) 

Iv =p(/3u +rv)ul-pf.1/3I+p/3, (2.22b) 

where 
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/3 = Vu (Uv/Vu )u, y = Uv (VJUv )v, 

p, = 2 + uVuJVu + vUvJUv, p = (/3v - YU)-I. 
(2.23 ) 

The integrability conditions for the Meyer system are well 
known2o,21; We consider the one-form 

u=df- (Af+B), 

where 

(2.24a) 

A =p(fJu + Yv)(u dv v du) pp,(fJ dv - ydu), 
(2.24b) 

B = P (fJ dv - Y du) (2.24c) 

depend only on u, v. The necessary and sufficient conditions 
for the complete integrability ofEq. (2.22) are given by 

fdA + dB -A /\B = ° (2.25) 

and this implies 

du - u /\A, 

where, by the theorem of Frobenius, A is exact, 

A =dJ.. 

(2.26) 

(2.27a) 

Then Eq. (2.25) does not depend on f and J. acts as the 
integrating factor for the rest. Hence, using Poincare's 
lemma, we find 

B = fidv 

and finally 

f= fiv, 

(2.27b) 

(2.28) 

so that the integration ofEqs. (2.21h) and (2.21i) is reduced 
to a quadrature. 

We conclude that nonlinear wave equations belonging 
to the class considered in I which further satisfy Eqs. (2.22) 
have the recursion operator 

PJ) J·'I-I 2" (2.29) 

and admit an infinite sequence of conserved Hamiltonians 
H k which are in involution with respect to either one of these 
two symplectic structures. Bya theorem of Olver, I the recur
sion operator satisfies 

PJ)t [.w',PJ)] (2.30) 

with 

UvD + Uuvu x + UvvVx ) 

VvD + Vuvux + Vvvvx ' 
(2.31) 

which is the derivative of the vector field K of Eq. (2.3) 
describing the flow. 

Finally we note that the infinite sequence of conserved 
Hamiltonians that result as a consequence of bi-Hamilto
nian structure are anchored in H 0 gi ven by Eq. (2. 10). There 
may be a conserved quantity lIo which is linearly indepen
dent of the set of H k and once we have the recursion operator 
we may generate another infinite sequence of conserved 
quantities lIk starting with lIo. In particular u, v are con
served by virtue of Eqs. (2.3) and they might be predeces
sors of Hk or they may serve as anchors of new infinite se
quences of conserved quantities which are obtained through 
the repeated application of the recursion operator. 

2582 J. Math. Phys., Vol. 28, No. 11, November 1987 

C. Multi-Hamiltonian structure 

In our discussion of the second Hamiltonian operator 
we have used the requirement that U, V should be derivable 
from a primary Hamiltonian HI through Eq. (2.9) and ob
tained Eqs. (2.27) for the existence of J2 • Given such a bi
Hamiltonian structure, the third Hamiltonian operator J3 

may be defined through the recursion relation 

J 3E(Hk ) = J 2E(Hk + I ), (2.32a) 

where, knowing J2, HI, H 2 , we can determine J3 even as we 
found J2 from a knowledge of J/, Ho, HI' It is evident that 
there is no reason to stop here and we can define infinitely 
many Hamiltonian structures, provided that they exist of 
course. The recursion relation is now given by 

J IE(Hk + I_ 3 ) =JI_IE(Hk + 1 2) (2.32b) 

for a pair or integers k, I. Repeated use of Eq. (2.32b) en
ables us to express the general recursion relation in the form 

JkE(Hi+k_3)=JIE(Hi+2k_/3)' (2.32c) 

where i, k, 1 are integers with k > I. We can then define recur
sion operators 

PJ) kl JkJ I-I = PJ) kiPJ)i/ (2.33) 

provided that the inverse of these Hamiltonian operators 
exist. The infinite sequence of conserved Hamiltonians is 
common to all these Hamiltonian structures. The conserved 
quantities can be generated through the recursion operator 
PJ) kl in steps of k - I. In this notation the recursion operator 
ofEq. (2.29) is PJ)21' 

We shall now consider the problem of constructing 
Jk + I for a given H k • This will be a straightforward general
ization of the r~sults of the previous section. In particular we 
shall start with the ansatz of Eq. (2.13) where the functions 
m, n, p, q will carry the subscript k + 1 for Jk + I and they 
will satisfy equations identical to Eqs. (2.14) except that the 
k th Hamiltonian function will appear in place of the first 
one. Suppressing cumbersome SUbscripts, we can summarize 
our results as follows. 

Theorem: Given the k th Hamiltonian function H, the 
existence of a Hamiltonian operator of order k + 1 requires 
that the Meyer system, 

ufu +vfv + (2 + u(HuuJHuu) +v(HvvJHvv»f= 1, 
(2.34a) 

[(HvvIHuu)uHuJ]u + [(HuuIHvv)uHvvf]v =0, 
(2.34b) 

admits a solution for f The necessary and sufficient condi
tions for the existence of such a solution are given by 

dA = 0, (2.35a) 

dB -A /\B = 0, (2.35b) 

where 

A = [Huu(HuuIHuu)u]u + [Hvv(HuuIHvv)vlv 

vHuu (HvvIHuu)u - uHvv (HuuIHvv)v 

x (u dv vdu) (2 + u Huuu + v HvvV)B' 
Huu Hvv 

(2.36a) 
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(2.36b) 

and in this case 

(2.37) 

can be obtained by quadratures. Then we can construct 
Jk + I according to Eq. (2.13) with 

m =Hv.f. (2.38a) 

(2.38b) 

p = - H Huv - uHu..!v - vHv.fu - (uHuuv + vHuvv )/], 
(2.38c) 

and 

q = - ~ fl[ (;:: )vHvv du - (;~: )uHuu dV] (2.38d) 

is also reduced to a quadrature by virtue ofEq. (2.34b). 

III. EXAMPLES 

A. Poisson's equation 

Poisson's equation in nonlinear acoustics l4 

(3.1 ) 

cannot be given a variational formulation in terms of the 
velocity potential tP alone. Nevertheless, Poisson's equation 
admits Hamiltonian structure which, due to a poor choice of 
tP, we had missed in our earlier discussion of this equation. 
Thus we consider the first-order system 

tP, + !tPx 2 + In tPx = 0, tP, + tPxtPx = 0, (3.2) 

the integrability conditions of which yield Eq. (3.1) and 

tP/tP" - 2tPxtP,tP,x + (tP/ - tP/)tPxx = 0, (3.3) 

which is the proper companion to Poisson's equation. From 
Eqs. (3.2), (1.2.9), and (1.2.10) we find 

tPx = u, tP, = u = - !u2 - In v, 

tPx = V, tP, = V = - uv, 
(3.4 ) 

whereby the necessary condition (2.4) for the existence of 
Hamiltonian structure is fulfilled. Then the exact one-forms 
(2.2) are given by 

a = u dx - (!u2 + In v)dt, UJ = v dx - uv dt, (3.5) 

and their integrability conditions yield 

u, + uUx + V-Ivx = 0, v, + vUx + uVx = 0, (3.6) 

which are basic equations. These equations govern the ex
pansion of plasma into vacuum when the electrons are as
sumed to be in isothermal equilibrium, the electron density 
given by the Boltzmann relation and further assuming quasi
neutrality and ignoring collisions. 16 The characteristics of 
Eqs. (3.6) satisfy 

x' = (u + €)t', (3.7) 

with € = ± 1, and DE = a, + (u + €)ax is the derivative 
along these directions. The Riemann invariants are 
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(3.8) 

and the basic equations (3.6) are cast into Riemann's ca
nonical form D ER E = 0. 

The first Hamiltonian of Poisson's equation, 

HI = !u2v + v (In v-I), (3.9) 

follows from the integration ofEq. (2.9). We find that Eqs. 
(2.35) are satisfied for this HI so that Poisson's equation 
admits bi-Hamiltonian structure. Then the solution ofEqs. 
(2.38) yields the second Hamiltonian operator 

(
2V- ID - v- 2vx u ) 

J
2

= x 

- Ux 2vD + Vx 
(3.10) 

and through the use of the recursion operator (2.29), which 
is constructed from Eqs. (2.8) and (3.10), we obtain the 
infinite sequence of conserved Hamiltonians. The first few of 
these Hamiltonians are 

H2 = f,u 3v + uv(ln v + 1), 

H3 = i4u4v + !u2v(ln v + 3) +!v In v (In v + 4) - 2v. 
(3.11 ) 

If we extend the recursion relation (2.11 c) to k = 0, we find 
that 

( 3.12) 

emerges as a member of this infinite sequence but further 
extension to negative integer values of k is vacuous. Since u is 
not included in this set we can take it as the starting point of a 
new sequence of conserved quantities iIk • Repeated applica
tion of the recursion operator yields 

- - 2 Ho = U, HI =!u - In v-I, 

iI 2 = f,u3 - u (In v + 1), 
(3.13 ) 

which are the first three elements of an infinite sequence. 
The conserved Hamiltonians (3.11) and (3.13) are so

tions of Eqs. (1.2.27) 

Gu - uFu - vFv = 0, Gv - v-IFu - uFv = 0, 

and the second-order decoupled equation 

Fuu - v2Fvv = ° 
(3.14 ) 

(3.15 ) 

is useful for finding the general expression for both of these 
infinite sequences of conserved quantities. First we shall re
write Eq. (3.15) as 

(3.16 ) 

using the Riemann invariants (3.8) as new coordinates with 
S = R +, 1/ = R -. In this form it is manifest that if F(S, 1/) is 
a solution, then so is 

F(s,1/) = e(1I2)(S-'7)F(1/,s) (3.17) 

and this fact is responsible for the existence of the two sets 
(3.11 ) and (3.13). The solution of the equation for the con
served quantities gives 

_ [k/2l (_ 1)1 
F =" U

k
-

2lp (In v) (3.18) 
k-I I~O (k-21)! I , 

where [k 12] denotes the largest integerless than k /2 and the 
PI are polynomials with Po = 1, 

I-I d j 

PI + I (y) = I -.PI(y) (3.19) 
j~ -I dyJ 
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so that 

PI Y + 1, Pz = 1yl + 2y + 2, 

P3 !y3+~yz+5y+5, 

and so on. From Eq. (3.17) it follows that 

[klZ1 (- 1)' 
Fk 1 = v 2: uk-Zp/( -In v) 

/~O (k-2/)! 

( 3.20) 

(3.21 ) 

is a new set of conserved quantities. Comparison of Eqs. 
(3.18) and (3.21) with Eqs. (3.13) and (3.11) shows that 

( 3.22) 

Poisson's equation admits tri-Hamiltonian structure be
cause Eqs. (2.34) admit a solution for Hz given by Eq. 
(3.11). The third Hamiltonian operator is 

( 
(U/V)D3+ U~~v uv,J2v

I 

(In v + '1)D '1uux + vx/2v 

On v + ~)D + iuux + Vx/2V) 

uvD + !vux + iuvx 
(3.23 ) 

and this is the last one because Eqs. (2.35) are not satisfied 
for H3 given in Eqs. (3.11). We note that J 3 is the second 
Hamiltonian operator for 

u, + quI + In v + 2)ux + (u/v)vx = 0, 

v, + uVUx + (!u 2 + In v + 2)vx = 0, 
(3.24 ) 

which, after Eqs. (3.6) themselves, is the next set of equa
tions in the Poisson hierarchy. Running the arguments of 
Sec. II A backwards, we find that the second-order quasilin
ear equation 

¢Ix 2¢1tt 2(¢I, - j¢lx 3)¢lx¢lxt 

+ [(¢It -j¢l/)Z-¢lx 4 ]¢lxx =0 (3.25 ) 

is the second completely integrable equation following Pois
son's equation (3.1). 

B. Gas dynamics in 1 +1 dimensions 

We shall now consider the multi-Hamiltonian structure 
that the equations of gas dynamics give rise to. In this con
nection we note that Poisson's equation corresponds to the 
isothermal case y = 1 which is excluded in what follows. 

In order to discuss the equations of gas dynamics in the 
framework of I, we need to use 

(3.26) 

rather than the velocity of sound as one of the basic variables, 
cf. Appendix I of Ref. 22. Then we have the exact forms 

a udx- Uu2 + (y l)-IVY-I]dt, 

(i) v dt - uv dt 

and the equations of gas dynamics assume the form 

Ut +uux +vY- 2vx =0, v, +vux +uvx =0, 

which is of the form of Eqs. (2.3). 

(3.27) 

(3.28) 

The first Hamiltonian function for the equations of gas 
dynamics is given by 

HI iUZV+y-l(y_l) IVY (3.29) 

and it is the first in an infinite sequence of conserved quanti
ties. Equations (2.35) are satisfied for this Hamiltonian 
function and therefore we can construct the second Hamilto
nian operator J 2 which yields 
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m Z y- 1vy - 2, nz=y--Iv, 

pz !y-l(y_l)u, q2 = ~y-I(3 - y)u. 
(3.30) 

Using the recursion operator (2.29) we can generate the rest 
of the infinite sequence of conserved Hamiltonians23 

Hz tU3V + y-I(y 1)-luvY, 

H3 i4u4V+!y-l(y_l)-IUZVY 

+!y-l(y_l)-2(2y-l)-IV2Y-I, 

(3.31 ) 

and so on. However, as in the case of Poisson's equation we 
find that 

(3.32) 

and u is not included in the hierarchy of conserved Hamilto
nians. We can therefore use it to generate a new infinite se
quence of conserved quantities, the first few of which are 

ii_I yu, iIo =!(y-2)u2 +(y-l)-lvY I 

iii = (2y - 3 )(3y - 4)y-2 [~(y - 2)u4 

+ i(Y - 1) -IUZVY I 

We note that for y = 2, the case of shallow water waves, the 
two hierarchies of conserved quantities degenerate into one: 

(3.34) 

The equations of gas dynamics admit tri-Hamiltonian 
structure. The functions that enter into J 3 are given by 

m3 = (1 + y)-IUVY-2, n3 (1 + y)-IUV, 

P3=;!(l +y)-I(y_1)u2 + (r-l)-lvY-I, 

q3 =;!( 1 + y) -1(3 - y)u2, 

(3.35 ) 

and, apart from the case of y = 3, Eqs. (2.35) are not satis
fied for H k , k>3, so that there exist no further Hamiltonian 
structures. As we have noted earlier, for the special case of 
shallow water waves (y = 2) the results of Eqs. (3.30) and 
(3.34) were first obtained in Refs. 10 and 11, respectively. 

The case y = 3 is noteworthy in that q2 = q3 = 0 and in 
fact there exist infinitely many Hamiltonian operators JI< 
with 
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qk =0, 

k(2k-1)! k-I [1 + (_l)k-I-/] __ 
P = L UIVk 1 1 

k 2k(k + 1)! 1=0 I!(k - 1 -I)! ' 

k(2k - I)! k-I 

mk =nk = L 
2k(k + 1)! 1=0 

[1- (-ll- ' - / ] 
X UIVk - I - 1 (336) 

1!(k-1-/)! ,. 

but r = 3 is not an interesting example of Eqs. (3.28) be
cause they decouple in the variables u ± v. We note that if 
qk = 0, then Eq. (2.34b) is an identity and Eq. (2.24a) will 
always admit a solution. Hence there will be infinitely many 
Hamiltonian structures. 

IV. CONCLUSION 

The principal result of this paper is the theorem at the 
end of Sec. II which contains the necessary and sufficient 
conditions for the existence of a Hamiltonian operator Jk + 1 

given a Hamiltonian function H k • We have also reduced to 
quadratures the problem of determining the functions that 
enter into the definition of J k + 1 once these conditions are 
satisfied. This result settles the question as to when a nonlin
ear evolution equation that belongs to the general class dis
cussed in I admits multi-Hamiltonian structure and provides 
a simple algorithm for constructing the Hamiltonian opera
tor as well. We have demonstrated its utility in the applica
tions to Poisson's equation and the equations of gas dynam
ics. 
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In this paper the results of a search for pairs of bilinear equations of the type 
A i(Vx,V, )F-F + Bi(Vx'V, )G'F + Ci(Dx'V, )G·G = 0, i = 1,2, which have standard type 
three-soliton solutions, are presented. The freedom to rotate in (F,G) space is fixed by the one
soliton ansatz F = 1, G = en, then the B i determine the dispersion manifold while A i and C i 
are auxiliary functions. In this paper it is assumed that B I and B 2 are even and proportional, 
and that A i and C i are quadratic. As new results, B 1= aV ~ D, + V,Vy + b, 
A 2 = - C 2 

= vxv" and generalizations of the sine-Gordon model B 1= vxv, + a with a 
family of auxiliary functions A i and C i are obtained. 

I. INTRODUCTION 

In recent papers we have searched for bilinear equations 
for which single-soliton solutions can be combined to form 
two- and three-soliton solutions. In Ref. 1 we studied equa
tions of the type 

P(Vx ,V, )11 = 0, (1) 

and in Ref. 2 pairs of bilinear equations of the type 

Pi (Vx ,V, )F' G 0, i = 1,2, 

where 

(2) 

Pie -X, - T) = (-lrp(X,T), i= 1,2. (3) 

In this paper we generalize (2) to 

A i(Vx'V, )F' F + B i(Vx'V, )G'F 

(4) 

A good example of an equation that can be put in the 
form (4) but not in the form (2) or (3) is the sine-Gordon 
equation 

ux , = sin u. (5) 

Using the dependent variable transformation3
,4 

u = 4 arctan(G IF) (6) 

one finds that (5) is satisfied if 

(VxV, I)G'F=O, VxV,(F-F G'G) =0. (7) 

In Eq. (12) of Ref. 2 we gave a rotated form of (7). 
Indeed, we always have various degrees of freedom that 
should be fixed to make computations and classifications 
simpler. In Ref. 2 the freedom of linear transformations 
(F,G) -> (f,g) by 

F= al + bf, G cl + dg, ad - bc¥=O (8) 

(a, b, c, and d constants) was fixed by the fact that only F-G 
was to appear in (2); then it followed that the one-soliton 
solution (ISS) was of the type 

F = 1 + en, G 1 - en, 

n =px+!lt+m. 
(9) 

( 10) 

In this paper we fix the rotational freedom (8) by requiring 
the ISS to be of the type 

(11 ) 

This choice will simplify calculations. When (2) is rotated to 
allow 1 SS of this type it reads 

p\(VX'V,)G'F=O, (12) 

P2 (Vx'V, )(F-F - G·G) = 0. 

Note the close analogy with (7), the only difference is that in 
Ref. 2 P \ was assumed to be odd in the variables [cf. (3)], 
while in (7) both polynomials are even. 

One cannot always rotate Fand G so that the one-soliton 
ansatz is given by (11). For it is possible that in the ansatz 

F= a + ben, G = c + de", ad - bc¥=O (13) 

some of the numbers a, b, c, and d turn out to depend on the 
parameters p and !l in a way that cannot be completely 
eliminated by adjusting the constant m in n of (10), and by 
overall multiplication. [This is what happens, e.g., when the 
P;'s in (2) have both odd and even terms.5

] 

In the next section we will study the conditions for A i, 

B i, and C i following from the existence of one-, two-, three-, 
and four-soliton solutions. In the cases studied in Refs. 1 and 
2 the existence of two-soliton solutions (2SS) was automat
ic, but in the present more general setting we also get more 
conditions. After the general discussion we report the results 
of our search for systems with three-soliton solutions (3SS) 
for the case when the Bi'S are proportional and even (the 
odd case was discussed in Ref. 2), and A i and C i are quadrat
IC. 

II. THE N-SOLITON CONDITION 

The N-soliton conditions will be more complicated now 
that we do not at the beginning assume any special relation
ships between A i and C i in (4). We will now go through the 
conditions for the existence of standard form one- to four
soliton solutions. 

A. The one-soliton condition 

We start with Eqs. (4), where the operators Vx and V, 
are defined, as usual, by 

Vx"V,mF-G = (ax -ax,)n(a, a,,)m 

XF(X,t)G(Xf,t')lx'~x", " (14) 
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Because Dx nDt mp'G (- l)n + mDx nD, mG·p we may as-
sume that A i and C i in (4) are both even. 

We take the ISS (11), with (10) and when it is substi
tuted into (4) we find that the equations are satisfied, if 

A 1(0) = 0, Ci(O) = 0, 

Bi(p,O) =0, 

(15) 

(16) 

for i = 1,2. Equation (16) yields the dispersion relation. In 
general let us define the affine manifold V(P) related to a 
polynomial P by 

V(P) = {(x,t)IP(x,t) = O}, (17) 

then the result can be expressed as follows. 
Theorem 1: The pair of equations (4) has ISS's of type 

(11) for those parameter values (p,O) that belong to VIS' 
where 

(18) 

is the dispersion manifold. 
If the B ;'s are proportional we get the standard result 

VIS = V(B). In the general case theB i,S may be different. If 
we are working in two dimensions then each V(B i) would be 
the union of irreducible algebraic curves, and VIS would 
consist of those algebraic curves corresponding to the great
est common factor of B 1 andB 2, and possible isolated points. 
For later use let us define here the Cartesian product of affine 
manifolds: 

(19) 

B. The two-soliton condition 

For the 2SS we take the natural generalization 

(20) 

where the nt's are constructed as before in (10) with both 
pairs of parameters (Pi,Oi) in VIS' When (20) is substituted 
into (4) we find the following additional conditions: 

K12A i(Pl + P2'O! + O2 ) 

+C i(P!-P2'O! O 2)=0, i=I,2, (21) 

(22) 

Let us first discuss (21). In principle it defines K 12, ex
cept when the solitons resonate, i.e., if A i(p! + P2'O! + Oz) 
= 0 for i = 1,2. Here we exclude this possibility and assume 

that A 2(PI + P2'O! + O2 ) does not vanish. Then 

K12 = - CZ(PI - PZ,O! - 02)IA 2(PI + P2,Ol + O2), 
(23) 

and the other equation (i = 1) yields the further condition 

A I(p! + P2'O! + 02)C 2 (PI - P2'O! - O2 ) 

= A 2(PI + P2'O! + 02)C I(PI - P2'O! - O2 ), (24) 

This is a compatibility condition between the auxiliary poly
nomials of the two equations. It implies that K 12 in (23) is in 
fact independent of the superscript (as long as the rhs is not 
0/0). Since the parameters (PiOOi) are in VIS it is sufficient 
that this equation holds on VIS,2' 

Ifwe assume that (24) is an identity then it is easy to see 
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that 

Al=J.lAZ, CI=J.lC Z, (25) 

and then by taking suitable linear combinations of the equa
tions we may takeA ! = C I =0. We observe thatthis is indeed 
what happens in (12) and (7). [Note thattaking linear com
binations does not change VIS' ] 

However, (24) can have additional solutions in some 
dispersion manifolds. For example if B I XT - I, B Z = 0 
(the sine-Gordon case) then (24) is also satisfied, e.g., if 

Ci(X,T) =J.lA i(X, - T), 

A i(kX,kT) = k rnA i(X,T), 

(26a) 

(26b) 

where the degree of homogeneity m must be independent of 
the SUbscript i. In fact, for this choice of A i, B i, and C i, K ij 
depends no more on the precise form of A i and C i, but only 
onm 

(26c) 

We will return to this possibility later in Sec. III C. 
Next let us consider (22). In the special case where 

K 12 = 0 this is an identity, but in the generic case (22) need 
not be a consequence of ( 16). The point is that B i may con
tain both odd and even parts. Let us define 

Bi.e(X,T) = [Bi(X,T) +Bi( -X, 

Bi,O(X,T) = [Bi(X,T) _Bi( -X, 

T) ]/2, 

T) ]12, 
(27) 

then ( 16) and (22) together mean that a 2SS is possible only 
if (Pi,Oi )EVzs , where 

Clearly Vzs ~ VIS' If there are pairs of parameters that be
long to VIS but not to Vzs then one cannot combine the 
corresponding ISS's to a 2SS of the type (20). This would 
suggest that the system is not integrable and therefore a rea
sonable requirement for the B 's is that Vzs VIS' Thus we 
obtain the following theorem. 

Theorem 2: A pair of I SS's of (4) as given in Theorem I 
can be combined to a 2SS (20) if (l) they do not resonate, 
i.e., A 2(PI + PZ,OI + O2 ) #0, (2) V2S VIS ( = Vs ), and 
(3) the auxiliary functions are compatible on Vs,z in the 
sense of (24). The coefficient KI2 is given by (23). 

Let us observe one more property about V2S • Since it is 
defined by polynomials of definite parity it follows that if 
(p,O)EVzs then also (-p, - 0)EV2S ' This implies, e,g., 
that if some polynomial P(Pi,OOPj,Oj) vanishes on V2S,2 

then so does P(PiOOO - Pj, - OJ)' 

C. The three-soliton condition 

For the 3SS we generalize (20) further to 

P = I + KIZen, + n, + K 13e
n, + n, + K 23en, + n" 

G = en, + en, + en, + K IZ3en, + n, + n", 

where the nt's are as in (10) with (PiOOi )EVs' and 

(29) 

Kij = - CZ(Pi -Pj,Oi - 0j)IA 2(Pi +Pj,Oi + OJ), 

(30) 

When (29) and (30) are substituted into (4) we get the 
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following additional conditions: 

K;kKjkA m(p; - Pj,O; - OJ) 

+K123cm(P; +Pj,O; +OJ) =0, (31) 

for m = 1,2 and for the three cases where {i < j,k} is a per
mutation of{I,2,3}, and 

K123Bm(PI +P2 +P3,01 + O2 + ( 3 ) 

+ K12B m( - PI - P2 + P3, - 0 1 - O2 + ( 3 ) 

+K13Bm ( - PI + P2 - P3, - 0 1 + O2 - ( 3 ) 

+ K23B m(PI - P2 - P3,01 - O2 - ( 3 ) = 0, (32) 

for m = 1,2. 
Let us first analyze (31 ). We assume that 

C 2(p; - Pj,O; - OJ) does not vanish anywhere on VS,2' and 
then if we denote 

L _ A 2(p; - Pj,O; - 0j)A 2(p; + Pj,O; + OJ) 
ij - C 2 n n C2 n n ' (p; - Pj,H; - Hj) (p; + Pj,H; + Hj) 

we can write (31) for m = 2 as 

K I23 = KI2K 13K 23L ij 

where i < je{1,2,3}. This means that 

L 12 = L 13 = L 23 (= L). 

(33) 

(34) 

(35) 

Since there is no variable that appears in all of the Ly's we 
find that L is a constant on VS•2 ' Thus we get the following 

I 

(3) 

compatibility condition between A 2 and C 2
: 

A 2(p; _ Pj,O; - 0j)A 2(p; + Pj,O; + OJ) 

= L'C 2(p; - Pj,O; - OJ )C 2(p; + Pj,O; + OJ) (36) 

on VS,2 for some constant L. 
When (34) is substituted into (31) for m = l, and we 

use (36), we get a condition similar to (24), only signs 
change: 

A I(p; -Pj,O; - OJ)C 2(p; +Pj,O; + OJ) 

= A 2(p; - Pj,O; - O})C I(p; + p},O; + O}). (37) 

Due to the form of V2S (37) is then a consequence of (24), as 
was discussed at the end of Sec. II B. 

Let us now consider some possible solutions of (36). If 
we again require it to hold identically then we must take 

C 2 = aA z. (38) 

The constant a can be absorbed into G by changing the con
stant m in (10); for convenience we use this freedom to put 
a= -1. 

As before it is sufficient that (36) is satisfied on VS•2 ' To 
continue with the example above (B I = XT - 1,B Z = 0) we 
note that (36) holds on VS•2 without additional assumptions 
for the choice (26), and L = /1-2. 

Condition (32) is the three-soliton condition proper. 
When we substitute K ij from (30) and K 123 from (34) and 
multiply out the denominators, we can write (32) as 

L A 2(p; + h,O; + Ok)A Z(Pj + Pk'O} + Ok )CZ(p; - Pj,O; - 0j)B m( - P; - Pj + h, - 0; - OJ + Ok) 
i< j.k 

+ L'CZ(PI - P2,01 - (2)C Z(PI - P3,01 - (3)C 2(PZ - P3'OZ - (3)B m(PI + Pz + P3,01 + Oz + ( 3 ) = 0 (39) 

on the dispersion manifold VS •3 • Thus we obtain the follow
ing theorem. 

Theorem 3: The pair of equations (4) has 3SS solutions 
of type (29) if (1) the conditions of Theorem 2 are satisfied, 
(2) the functions A 2,C 2 are compatible on Vs.z in the sense 
of (36), and (3) Eq. (39) holds on VS •3 ' Then 
K123 = LK12K 13K 23, where L is a constant defined in (36). 

Note that if, following (38), we take C 2 = - A 2 then 
(39) can also be written as 

u'?± I B m 
(0"10"20"3 ;tl 0"; PpO"I0"20"3 ;tl 0";0;) 

(3) 

X II A 2(0"; P; - O"j Pj,O";O; - O"j OJ) = O. (40) 

If furthermore B 2 = 0 and B I is odd then this becomes Eq. 
(24) of Ref. 2 for n = 3. 

D. The four-soliton condition 

Finally let us consider the four-soliton condition. In 
view of the previous results the ansatz (29) is generalized to 

(4) 

F= 1 + L Kij en,+nJ+Men,+n,+n,+n., 
i< j 
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(41 ) 

where n;, Kij, and L are defined as before, and M is the new 
unknown. When this is substituted into (4) we get two new 
equations. If for M we take the expected form 

(42) 

then one of the equations reduces to (32) with opposite signs 
in the arguments of B. Because of the definite parity of the 
dispersion manifold this sign change is irrelevant, as was 
discussed at the end of Sec. II B. The other equation is 

(4) 1 
L -KIJKkIA(p, + Pj - h - PI'O, + OJ - Ok - ( 1 ) 

i<j.k<12 
(4) 

+ L LKij K;kKjk 
i< j<k 

X C( - P; - Pj - h + PI' - 0; - OJ - Ok + ( 1 ) 

+ MA(PI + P2 + P3 + P4,01 + O2 + 0 3 + ( 4 ) = 0, 
(43) 

on VS•4 ' Here i,j,k,l is a permutation of {1,2,3,4}. Using 
(30) and (42) this equation can be written in the form 

u'?± 1 P(0"10"20"30"4; ;tl 0"; Pi' ;tl O"i O;) 0"10"20"30"4 

(4) 

X II P( - O";O"j;O"; Pi - O"j p},O";O; - O"jOj) = 0 
i> j (44a) 
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on VS•4 , where we use the definition 

P( + ;X,T) = A i(X,T), 

P( - ;X,T) = L l/2C i(X,T). 
(44b) 

ForC i = -A i,L = 1 (44a) simplifies to Eq. (25) of Ref. 2 
for n = 4. Equation (44a) is identically satisfied if A i and C i 
are proportional and quadratic. 

Theorem 4: The pair of equations (4) has 4SS's of type 
( 41) if ( 1) the assumptions of Theorem 3 are satisfied, and 
(2) Eqs. (44) hold on VS•4 ' The coefficient M is given by 
(42). 

E. Implementing the dispersion relation 

The equations that we are studying [(24), (36), (39), 
and (44)] need to hold only when the parameters (Ppfli) 
belong to the dispersion manifold Vs. Thus we have to im
plement this fact in a consistent manner. In this paper we do 
not deal with the general case but assume that 

AI: B 2 = cB I, B 1 is nonzero and has definite parity. 

From this it follows immediately that 

VS•n = {(x,t)eC2nIBI(Xi,ti) =0, '<:ji= 1,oo.,n}. (45) 

In the following we use the same methods as in Ref. 1. 
The polynomial B 1 is factored as 

B 1 (X,T) = II Qj(X,T)nj
, 

j 

(46) 

where each Qj is a monic irreducible polynomial. For the 
purpose of classification we group the irreducible factors ac
cording to their multiplicity as 

s 

B1(X,T)=IIB\(X,T)n;, ni>nj fori>j. (47) 
i=1 

In the tables square brackets are used to separate the B Ii'S. 

Next we introduce the definition 

J]JI (X,T) = II Qj (X,T) = II B \ (X,T). (48) 
j 

The property that some polynomial S(Pl>fil>' .. ,Pn ,fin) van
ishes on the dispersion manifold determined by B 1 means 
that it should vanish on Vs.n • This, according to the theorem 
in Sec. III A of Ref. 1, in turn means that one can find poly
nomialsKn,i in the variablesX1,T1''''''%n ,Tn' so thatS can be 
expressed as 

n 

S= II J]JI(XoTi)Kn.i(XI,Tw .. "%n,Tn)' (49) 
;~I 

To implement (49) for computer algebra systems we 
introduce a consistent ordering in the set of monomials 
xmTn (for example, first by m + n and then by m among 
those with the same m + n). Then for each i = 1,2,3 we take 
the leading monomial of J]JI (X; ,T; ) , let us call it 

1M (X;, T; ), and replace it everywhere in S by 1M (Xi' T; ) 

- J]JI (Xi> T; ). It is easy to see that S vanishes under this 
rewriting rule iff it can be written as in (49). Note that the 
rewriting rule decreases the order of S and therefore even-

tually 1M's can no longer be extracted and the procedure 
terminates. In REDUCE the rewriting rule is accomplished by 
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a LET statement.6 For the LET statement it is important 

that the polynomial 1M is monic. 

III. RESULTS 
In addition to the assumption Al in Sec. II E we assume 

here that 

A2: A i, C; are quadratic. 

The search problem can be divided into two broad cate
gories according to whether Eqs. (24) and (36) are identi
ties or not. If they are both identities then the system can be 
transformed, as was shown before, into the form where 
Al = C 1 = 0, A 2 = - C 2

• Since the B i'S are proportional 
we may take further linear combinations so that B 2 = 0. 
Now that A 2 is quadratic we use linear transformations in 
(X,T) totakeA 2 eithertoX 2 ortoXT. Equations withoddB 1 
and these auxiliary functions were searched in Ref. 2. The 
even B 1 case is discussed in Secs. III A and III B below. 

It was shown before that Eqs. (24) and (36) may also 
have solutions that hold on certain dispersion manifolds. 
These special cases are discussed further in Sec. III C. 

A. A2= -(;2=)(2, A1 =C'1 =0 

In the search of polynomials B 1 that pass the three-soli
ton conditions (3SC) we follow the method described in 
Ref. 2. The X variable is fixed by A 2, while the T variable is 
defined by the highest-order factor of B 1 differing from X. 

We start with the leading monomial B 1 =XMTN, J]JI 
= X KTL and first find the relationship between M, N, K, 

and L for (40) to hold. We studied this for B 1 with total 
degree up to 20, and conjecture that the pattern that emerged 
hold for arbitrary degree. The results are as follows: 

1.1: B 1 = X 2N, J]JI =X K
, 

0<K<;:;;2[(N-l)/3] +4; 

1.2: B 1 = X 2N + IT2M+ I, J]JI = XT; 

1.3: B 1 = T 2M, J]JI = T K
, 

° < K <;:;; [ (2M - 1) /3] + 1. 

(Here the square brackets stand for the integer part.) Note, 
e.g., that X 2MT 2N is not acceptable when M and N are both 
nonzero. It is interesting to compare these results with those 
for odd B 1 in Sec. III A of Ref. 2. 

The subsequent classification is described in Table I. In 
the first column we give the type (N,M). In the second col
umn we have partitioned X NTM into those possible combi
nations that satisfy (47), (48), and 1.1-1.3 above. After this 
we considered the acceptable homogeneous generalizations 
of the given monomial parts. For types (N,O) no such gener
alizations are possible, because by redefining one of the fac
tors to T the type would become (N - M,M) for some 
M> 0. Also no T factors can be generalized to T + aX, be
cause X is before T in our ordering of monomials. Case 
1.2 could in principle generalize to B 1 = (X + aT)2N + 1 

X T2M + 1, J]JI = (X + aT) T, but it does not pass the 3SC. 
In the third column we have given the possible nonho

mogeneous generalizations. Note that, e.g., [x2]m must be 
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TABLE I. Classification of B I for A 2 = _ C 2 = X2. 

Type Leading Possible Accepted final 
monomial generalizations result 

(2.0) 

[Xf [X)2 
[X2) [X2+ I) [X 2 + I) 

(1.1 ) 

[XI1 [XT+a) [XT+a) 
(0.2) 

[11 2 [11 2 

(4.0) 
[X)4 [X)4 
[X 2)2 [X 2 _1)2 [X 2 _1)2 
[X)2[X2) [X)2[X2+ I) [X)2[X2+ I) 
[X4) [X 4 +R2 + Ra) [X4+XT+ I) 

(3.1 ) 
[X]3[11 [X]3[11 

(2.2) 
(1.3) 

[X)[11 3 [X)[11 3 

(0.4) 

[11 4 [11 4 

[T2]2 [T2 + 1]2 
(6.0) 

[X]6 [X]6 
[X]4[X2] [X]4[X2_1] [X]4[X2 - I] 
[X2]3 [X 2 _ 1]3 [X 2 - I]' 
[X)3[X3] [X)3[X3 +R I ] 
[X 3f [X 3 + RI)2 [X 3+xf 
[X2)2[X2) [X 2 - If[X 2 + a) [X 2 - 1)2[X2 + a] 

(5.1) 

[X]'[11 [X]5[T] 
(4.2) 
(3.3) 

[X], [ 11 3 [X],[T)3 
(2.4) 
( 1.5) 

[X)[11 6 [X) [11 6 

(0.6) 

[11 6 [11 6 

[T 2]3 [T2 - I]' 

generalized as [X 2 + a]m with a nonzero a, otherwise it 
would violate the definition of ..[iiI. Since the constant a is 
nonzero X can be scaled so that the entry becomes 
[X 2 + 1] m. In column 4 of Table I we have given the results 
that pass the 3SC. They can be grouped as follows. 

(i) We have only one genuinely nonlinear result, name-
ly, 

B I =aX 4 +XT+b, A2= _C 2=X2. (50) 
Here a and b are constants which canbe scaled to 1 if they are 
nonzero. 

(ii) As for the results for which Vs splits into linear 
submanifolds, we have 

1.A: B I is a polynomial in the X variable only (up to 
degree 6 any polynomial is acceptable if it satis
fies 1.1 above); 

I.B: BI=X2N+IT2M+I; 

I.C: B I = T2M. 

B. A2= -C2=XT, A1 =£:1 =0 

In this case the rotational degrees of freedom are fixed 
by the form of A 2, and what we have left is the freedom to 
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exchange X and T and to scale them. The results for the 
leading monomials are as follows: 

2.1: B I = X 2N, ..[iiI = X K, 

0<K<[(2N-I)/3] +3; 

2.2: B I =X2N + IT, ..[iiI=XKT, 0<K<3; 

2.3: BI =X2N+IT2M+1, N;p M;p 0, 

..[iiI =XKTL
, K +L<3, K>O, L>O; 

2.4: BI =X2NT 2M, N;pM> 0, ..[iiI =XT. 

Also these results fit into the pattern of Ref. 2, Sec. III B. 
In Table II we give in column 1 the type of the leading 

monomial and in column 2 the possible partitionings subject 
to the above monomial results. Since there is less freedom to 
transform the systems we have a higher number of distinct 
homogeneous generalizations in column 3. Of these the ac
ceptable ones are given in column 4. If there is a free constant 
we have scaled it to 1 (or - 1) if it was assumed to be non
zero and included separately the case where the constant is 
set to zero. Then in column 5 we give the nonhomogeneous 
generalizations that should be tried, and in column 6 the 
acceptable results. In column 7 we have finally given the 
possible three-dimensional generalizations. 

(iii) The nonlinear results can be combined as follows: 

BI=X2_T2+a, A2= -C 2=XT, (51) 

and 

B I =aX3T+TY+b, A2= -C2=XT. (52) 

Note that (52) contains (50) as a special case obtained by 
the substitution T -+X, Y -+ T. 

(iv) The linear manifold results are 

2.A: any polynomial of X, up to degree 6 at least, sub
ject to 2.1 above; 

2.B: (X - aT)2N (in fact this can be generalized to 
y2N); 

2.C: (X - T)2N+ I(X + T)2M+ I; 

2.D: XNTM; 

2.E: (X - aT)2N+ lX, which generalizes to y2N+ IX; 

2.F: (X 2 _ 1)NX2M+ IT. 

c. Other possibilities 

In this subsection we assume only that A i and C i are 
quadratic and find out those solutions of (24) and (26) that 
cannot be put in the form studied in Secs. II A and II B. We 
assume A 2 and C 2 are not identically zero. 

als, 
We take A 2 and C 2 to be arbitrary quadratic polynomi-

A 2 = alX
2 + azXT + a3T 2

, 

C 2 = ClX
2 + czXT + X3T2. 

(53) 

When they are substituted in the compatibility condition 
(36) we find from the coefficients of X/X/, X I

2T/, and 
TI 2 T/ that A 2 and C 2 are proportional, unless the rewrite 
rules connect these kinds of terms. Since the subscripts do 
not change in our rewrite rules it means that only in the case 
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TABLE II. Classification of B I for A 2 = - C 2 = XT. 

Type Leading Possible homog. Allowed homog. Possible nonhomog. Allowed nonhomog. Generalizations 
monomial generalization generalizations generalizations generalizations with Y 

(2.0) 
[XJ2 [X-an 2 [X]2 [xl' 

[X-n2 [X-n2 [ Y]2 
[X'] [X2 + aXT + bT2] [X2] [X 2 +a] [X2+a] 

[X(X-n] [X(X- n +a] [X(X-n+a] [XY+a] 
[X 2 _ T2] [X2_T2+a] [X2_T2+a] 

(1.1 ) 

[Xn [Xn [XT+a] [XT+a] 
(4.0) 

[X]' [X-an' (X]' [X]' 
[X-n4 [X- n' [ Y]4 

[Xl' [X] [Xl'[X- T] 
[X-n'[X-an [X-n3[XJ [X-n3[X] [Y]l[X] 

[X']2 [X 2 + bXT + CT2]2 [X2]2 [X 2+1)2 [X2 + IJ2 
[(X - T)2]2 [(X - n2+ 1]2 

[X]2[X2] [X]2[X2 + aXT [X]2[X2] [X]2[X2+ 1] [X]2[X2 + 1] 
+bT21 

[X - n2[X2 + aXT 
+bT2] 

[X4] [X'+ '''1 [X4] [X 4 +R2 +Ro] [X 4 + aX2 + 1] 
(3.1 ) 

[X]'[n [X]'[n [X]'[n 
[X]2[Xn [X]2[(X -ann [X]2[Xn [X]2[XT-IJ 

[X- n2[Xn 
[X 3n [(X 3+''')T] [X'T] [X 3T+R 2 +Ro] [X 3T+ T(bX [X 3T+ TY+a] 

+cn +a] 
(2.2) 

[X]2[n 2 [x1'[n2 [X]l[n2 
(6.0) 

[Xl" [X-an 6 [X]6 [X]6 
[x-n6 [X-n° [Y]o 

[XnX] [X]5[X_ T] 
[X - n'[X-an [x-n5[X] [X-n5[X] [Y]'[X] 

[X- n5[x+ n '" [X-n5[X+T] 
[X]4[XJ2 [X]4[X_ n 2 

[X - n4[x - bn2 
[X]4[X2] [X]4[X2+ ... ] [X]4[X2] [X]4[X2_1] [X]4[X' - 1] 

[X - n4[X2 + ... ] 
[X2j3 [X2+ ... ]3 [X2]3 [X 2 + 1]' [X 2 + 1]3 

[X 2 _ T2]1 [X2_ T2+a]3 [X - Tl'lX + n' 
I(X - n 21' [(X-n2+a]3 

[Xl' [X]2[X] [XJ'[X - n2[X - bn 
[X - n'[X - bTj2 

X[X-cT] 
[X]3[X3] [X]3[X3 + ... ] [X]3[X3] [Xj'[X 3 + Rd 

[X - Tl'[X 3 + ... ] 
[X3]2 [X3 + ... ]2 [X 31' [X 3 +Rd 2 [X 3 +Rd 2 [X1+X]2 
[X2] [X2j2 [X 2 + "'](X2 + ... ]2 [X 2][X 21' [X2+ I](X2+a1' [X 2 + 1 ](X 2 + a]2 

(5.1 ) 
[X]5[n [Xp[n [X]O[n 
[X]4[XT] [X]4[(X-ann IX]4[Xn [X]4(XT+ 1) 

[X-T]4[Xn 
[X]3[Xj2[n [X]3[X - n 2 [n 

[X - n3[X]2[n 
[X]3IX'n [X]3[ (X2 + .. ·)n [X]3[X 2n [Xj3(X 2T + Rd [X]3[(X2+ on 

[X - n 3[XT(X +anJ 
[X 2J2[Xn [X 2 +aXT+ bT2j2[Xn [X2J'[Xn [X2-1]3[XT+a) [X2-l]'[Xn 

[X(X + an 1'[ (X 
-nn 

(4.2) 
[X]4[n' [X]4[T]2 [X]4[n 2 

(3.3) 
[Xl'[n 3 [xl'[n 3 [X]3[TI' 
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of a quadratic B I may we obtain new solutions to (36). If B I 

is of higher degree than 2 it might still be possible that C i 
= aA i, but that A I and A 2 are not proportional or a I =1= a 2. 
For this we would need a third-order B I, however, detailed 
calculations show that (24) does not have such solutions. 
Thus to obtain new results we must assume that B I is qua
dratic; we fix the freedom oflinear transformations partly by 
taking B I = XT + a, rather than by fixing A 2 as was done in 
III A and III B. (The case B I = X 2 + 1 has only resonating 
solutions. ) 

When (53) is substituted into (36) and B I = XT + a 
we obtain the following relations between the coefficients: 

c/ = a 1
2

, c/ = a/, c/ = a/ - 2(a la3 - C IC3 ). (54) 

This result is best interpreted if A 2 and C 2 are factored: (54) 
implies 

A 2 = (alX + /3IT)(a7 + /32 T ) , 
(55) 

C 2 
= ± (alX ±/3IT )(a7 ±/32T ), 

where a i and/3i are arbitrary, and all sign combinations are 
acceptable. The overall sign of C 2 can always be absorbed 
into G; we use the + sign. Depending on the choice of the 
other signs the result can be divided into the following three 
categories. 

(i) If both signs in C 2 are negative, then we have 
C 2(X,T) = A 2(X, - T), which was briefly mentioned ear
lier. Since now the explicit form of A 2 does not enter in K ij 
[ (26c)] there will be no restrictions on A 2 from the three
soliton condition. Next we tested which A I and C I are com
patible with the chosen A 2 and C 2 [Eq. (24) ] and found that 
the same relation C I (X, T) = A I (X, - T) is required. Since 
this relationship is preserved when we take linear combina
tions of the equations we may assume that B 2 = 0. Thus ev
ery pair of bilinear equations, 

(dlDx 2 + d3D/)(F-F + G'G) + d 2DxD,(F-F - G'G) 

+ (DxD, + b)G'F= 0, 

(alDx 2 + a3D, 2) (F-F + G'G) 
(56) 

+ a2D x D, (F' F - G' G) = 0, 

has three-soliton solutions. (Here it is assumed that of the 
various constants at least one a i is nonzero.) Equation (51) 
is a rotated form of the subcase d i = 0, a l = - a3 = 1, 
a2 = 0, while in the standard sine-Gordon model (7) we 
have d i = 0, a I = a3 = 0, a2 = 1. 

Let us next consider the 4SC (43). Due to (26c) the 
explicit forms of the auxiliary functions appear in (43) lin
early. Since the equation holds in the special case of mono
mial pairs C 2 (X, T) = A 2 (X, - T) it holds for the general 
case (56). Thus Eqs. (56) have also 4SS's. 

(ii) One sign in C 2 is negative, say the onefor/3J' and a2 , 

and /32 are nonzero. Then, after scaling the nonzero constants 
to 1 we obtain 

A I = (alX +/3I T )(X + T), 

C 2 = (alX -/3I T )(X + T). 
(57) 

The condition that A I and C I are compatible with these [Eq. 
(24)] implies that A I and C I must have the same form as in 
(57) with possibly different constants. The overall common 
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factor X + T can in fact be elevated to a new independent 
variable Y, and still (24) and the 3SC are satisfied. By taking 
a linear combination we put B 2 = 0, and thus obtain the re
sult that the pair of bilinear equations, 

aIDxDy(F-F + G'G) +/3P,Dy (F'F- G'G) 

(58) 

a 2DxDy(F-F + G·G) +/32D,Dy(F'F- G'G) = 0, 

has three-soliton solutions. As usual this property holds also 
for any projection Dy -+cDx + dD,. Also the 4SC (44) is 
satisfied for all parameter values. 

(iii) Both signs are positive and a i and /3i are nonzero. In 
this case A 2 and C 2 are obviously compatible, but they do not 
pass even the three-soliton condition. [It would require one 
a i in (53) to be zero, but then we get one of the cases above.] 

We have also tried to generalize these results to higher 
dimensions. If B I is still two dimensional, (58) is the most 
general result with a Y dependence. If B I is three dimension
alwetransformitintoB 1= X 2 + T2 + y2 + a, then we find 
that A 2 = _C 2=X2 + T2+ y 2 istheonlypossibility,but 
even that is not acceptable unless the constant a inB I vanish
es. Thus we confirm the results that the sine-Gordon model 
in dimensions higher than 2 have no general 3SS.7 

IV. CONCLUSIONS 

The bilinear equations studied in this paper are close to 
the ones studied in Ref. 2. In both we have quadratic auxil
iary functions (A, C here, P2 in Ref. 2); in this paper the 
dispersion equation is given by an even polynomial B I, while 
in Ref. 2 PI was odd. 

The new results that we have found are the following: 
For deg(B I) > 2 we obtain one new model, (52). It carries 
some resemblance to the shallow water-wave equations of 
Ref. 8. For a quadratic B 1 (transformed into B I = XT + a) 

we obtain some rather interesting results. In this case the 
auxiliary functions can be substantially generalized from the 
usual sine-Gordon result A 2 = - C 2 = XT, as was shown 
in Eqs. (56) and (58). In addition to these new and genuine
ly nonlinear results we have as before infinite sequences of 
models with linear dispersion manifolds. 
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The purpose of this paper is to study the wave behavior of hyperbolic conservation laws with a 
moving source. Resonance occurs when the speed of the source is too close to one of the 
characteristic speeds of the system. For the nonlinear system characteristic speeds depend on 
the basic dependence variables and resonance gives rise to nonlinear interactions which lead to 
rich wave phenomena. Motivated by physical examples a scalar model is proposed and 
analyzed to describe the qualitative behavior of waves for a general system in resonance with 
the source. Analytical understanding is used to design a numerical scheme based on the 
random choice method. An important physical example is transonic gas flow through a nozzle. 
This analysis provides a transparent and revealing qualitative understanding of wave behavior 
of gas flow, including such phenomena as nonlinear stability, instability, and changing types of 
waves. 

I. INTRODUCTION 

Consider a hyperbolic conservation law with a moving 
source 

~ + af(u) = C(x - at)h(u), 
at ax 

where a is the speed of the source. Our purpose is to study 
the qualitative behavior of the solution. By a change ofvari
abies x - at-x andf(u) -feu) - au, we may assume that 
the source is stationary, 

(1.1 ) 

Several physical situations can be modeled as hyperbolic 
conservation laws with a moving source. For instance, a 
moving magnetic field for magnetohydrodynamics (MHD) 
and the geometric effect of a nozzle on the gas flow can be 
expressed as a moving source. The quasi-one-dimensional 
model of gas flow through a nozzle is 

~ + af(u) = C(x)h(u), u= (p,p V,pE) " 
at ax 

feu) == (pV,pV 2 + P,pEV + PV)', 

C(x)== -A '(x)/A(x), 

h(u) == (p V,p v2 ,pEV + PV)', 

where p, V, P, and E are the density, velocity, pressure, and 
total energy of the gas, and A (x) is the cross section of the 
nozzle. For uniform nozzle C(x) == 0 the system becomes the 
compressible Euler equations. The equations have three 
characteristic speeds 

Al = V - C, A2 = V, A3 = V + C, 

where C is the sound speed. Interesting wave phenomena 
occur when the flow is transonic, that is, V - C changes 
signs. In this case A 1 is around zero, which is the speed of the 
source. The shape of the nozzle has stabilizing and destabi
lizing effects, see Liu. 1 There are a finite number of asympto
tic shapes that can be constructed explicitly. These qualita-

tive properties hold also for the general system of hyperbolic 
conservation laws with a moving source, see Li-Liu.2 

Motivated by the aforementioned studies of physical 
models, we make the following assumptions on the source. 
The strength of the source is measured by C(x). We assume 
that the strength of the source is finite. For definiteness we 
suppose that C(x) is piecewise smooth and 

C(x) = 0 for xE£[O,l]. (1.2) 

The function h (u) represents the coupling of the source with 
the hyperbolic conservation law. The model (1.1) is meant 
to study the family of waves for the general system which is 
in resonance with the source. For the transonic flow through 
a nozzle, we want to study the behavior of waves pertaining 
to the characteristic value A l' With these physical consider
ations in mind we make the following nondegeneracy as
sumption: 

h ( u ) =1= 0, h I ( U ) =1= 0, (1.3 ) 

and that h (u) is smooth for all u under consideration. With
out this crucial assumption of the strong coupling of the 
source with the conservation law neutrally stable waves exist 
and there are infinitely many asymptotic states, thereby not 
reflecting the strongly nonlinear nature of the physical phe
nomena just mentioned. 

Since we are interested in the nonlinear resonance, that 
is, the characteristic speed I' ( u) of ( 1.1) is around zero, we 
assume that I' (u) changes signs for the range of u under 
consideration. For simplicity, and with fluid motion in 
mind, we assume thatl'(u) varies monotonically with u, 

f"(u) >0. (1.4) 

By translation and rotation we may assume, without loss of 
generality, that 

f(O) =1'(0) = o. (1.5 ) 

From (1.4) and (1.5), I'(u) > 0 for u > O. Thus the state 
zero is called sonic, and any positive state u > 0 is called su
personic, negative states u < o subsonic. A wave is transonic if 
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it takes both supersonic and subsonic values. 
For the hyperbolic conservation law associated with 

(1.1), 

~+ af(u) =0, 
at ax 

( 1.6) 

there are shock waves and rarefaction waves. Nonlinear be
havior of these waves has been extensively studied (see Ref. 
3, and references therein). For (1.1) we need to consider 
another family of waves, the stationary waves, which move 
with the same speed [assumed zero in (1.1)] as the source 
and satisfy 

af(u) = C(x)h(u). 
ax 

( 1.7) 

To gain the basic understanding of the behavior of general 
solutions of ( 1.1) we have to study the interaction of these 
three types of waves. Of particular interest is when the shock 
waves and rarefaction waves have speed near zero and non
linear resonance occurs. In Sec. II we study the interaction of 
a transonic shock wave with a stationary wave. Simple calcu
lations exhibit the stabilizing and destabilizing effect of the 
source in a transparent way. In Sec. III we investigate the 
propagation of a rarefaction wave through a stationary 
wave. It is shown that the rarefaction wave reflects as a com
pression wave upon reaching the sonic state. The stability 
criterion is the following: 

C(x)h '(u) <0 (nonlinear stability), 

C(x)h '(u) > ° (nonlinear instability), 

for XE [0,1] and all u under consideration. These studies 
yield a simple and revealing qualitative understanding of 
rich wave behavior of the compressible fluid, including such 
phenomena as nonlinear stability, instability, and changing 
types of waves. 

Although basic understanding of some of the wave phe
nomena for general systems has been obtained, the time evo
lution of general solutions has not been studied. The evolu
tion of a general solution of ( 1.1) can be complex but time 
asymptotically a general solution tends to a simple noninter
acting wave pattern. In Sec. IV we study these asymptotic 
wave patterns. To study the evolution of general solutions in 
Sec. V we employ the analysis of the preceding three sections 
to design a numerical scheme for ( 1.1 ). The scheme is based 
on the random choice method, Glimm,4 and uses shock 
waves, rarefaction waves, and stationary waves as building 
blocks. For nontransonic flows the scheme was introduced 
and analyzed by Liu.5 The basic idea of generalizing it to the 
transonic case is the following: Instead offollowing the non
linear interaction of elementary waves, we install the asymp
totic state of the local wave interactions at each next time 
step. Since the asymptotic state is reached only at t = 00, and 
the wave strength behaves singularly near the sonic state, the 
consistency of the scheme is not obvious. Nevertheless we 
apply the wave tracing technique of Liu6 to show that the 
scheme is consistent when the sampling sequence is suffi
ciently equidistributed. Finally in Sec. VI we study the be
havior of the solution based on the scheme. 

The results in this paper have been announced in Ref. 7. 
Our scheme has been generalized to the gasdynamic equa-

2594 J. Math. Phys., Vol. 28, No. 11, November 1987 

tions for numerical purposes. 8
•
9 For refinement and numeri

cal implementation of the scheme in Ref. 10, see Refs. 5 and 
11. Analytical works for models not satisfying ( 1.3) are car
ried out in Refs. 12 and 13. Numerical computation using 
piecewise steady elements was also used in Ref. 14. For the 
asymptotic approximation of nozzle flow by Chisnell and 
Chester, see Ref. 15. 

II. NONLINEAR STABILITY AND INSTABILITY OF 
SHOCK WAVES 

Consider the propagation of a shock wave through sta
tionary waves. The stationary wave to the right (left) of the 
shock wave is denoted by U e (x) [u r (x)] and the location of 
the shock wave is x = x(t), see Fig. 1. It follows from the 
analysis below that such a solution of ( 1.1) exists. 

The speed of the shock wave is governed by the jump 
(Rankine-Hugoniot) condition 

x' (t) = f(o+ (t)) - f(u_ (t)) -u(u_ (t),u+ (t»), 
u + (t) - u _ (t) (2.1 ) 

u+(t)=ur(x(t»); u_(t)=ue(x(t»). 

Since u _ (t) and u + (t) are the values of the stationary waves 
ue (x) and Ur (x) at x = x(t) we have from the stationary 
equation (1. 7) that along x = x(t) 

du_(t) due(x(t») , 
---= x (t) 

dt dx 

= f'(u_ (t) )-IC(x(t»)h (u_ (t) )x'(t), 
(2.2) 

= f'(u+ (t) )-IC (x(t»)h (u+ (t) )x'(t). 

Differentiate (2.1) and use (2.2) to obtain 

x"(t) = C(u(t») {h(U+(t»)-h(U_(t)) 
x'(t) u+ (t) - u_(t) 

_X'(t)(h(U+(t») _h(u_(t)))}. (2.3) 
f'(u+(t») f'(u_(t)) 

The system of ordinary differential equations (2.1) and 
(2.2) determines the location x = x(t) and the states u(t) of 
the shock wave. It also shows that when a shock wave propa
gates through a stationary wave it leaves behind another sta
tionary wave, which is the extension of the original station
ary wave behind the shock wave. One has to check, though, 
that it is possible to extend the stationary wave. This is a 
concern because Eq. (1.7) is singular at u = O. Nevertheless, 
it causes no problem because when the shock wave moves to 
the right (left) and the left (right) state is close to zero then 
the shock wave has nonpositive(non-negative) speed and 
thereby it does not propagate further to the right (left). 

t X"x(t) 

__ ~~~ ________ L-_____ x 
x=1 

FIG.!. Shock wave propagating through a stationary wave. 
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We next investigate the stability of shock waves based 
on (2.3). A supersonic (subsonic) shock wave, u_ > u+ > 0 
(O>u_>u+), accelerates to the right (left) and moves 
away from the sonic state. The stability issue is relevant only 
for transonic shock waves u _ > 0 > u +. We have from (2.3) 
that for nearly stationary shock waves 

x"(t) C(x(t»)[h (u+(t») - h (u_(!))], whenx'(t) -0. 
x'(t) 

(2.4) 

Thus a nearly stationary transonic shock wave decelerates 
and is nonlinearly stable if 

C(x)h '(u) <0 (stability) (2.5a) 

(Fig. 2), and accelerates and is nonlinearly unstable if 

C(x)h '(u) >0 (instability) (2.5b) 

(see Fig. 3). 

III. REFLECTION OF EXPANSION WAVES INTO 
COMPRESSION WAVES 

In this section we study the propagation of a rarefaction 
wave through a stationary wave. Suppose that both waves 
are supersonic and at t = 0 the rarefaction wave lies in x < 0 
propagating to the right toward the stationary wave. W e a~so 
assume C(x) is smooth and C(x)h(u) <0 for O<x<1. WIth 
this setting the rarefaction wave may reflect as a compres
sion wave. Other cases can be treated by the same analysis 
below. Denote by (u"u2 ) the rarefaction wave and uo(x), 
O<x<l, the stationary wave with end states U2 = uo(O), 
U3 = uo( 1) (see Fig. 4). 

Since C(x)h(u) <0 we have from (1.7) that 0 < U3 < u2 • 

The rarefaction wave (u"u 2 ) is an expansion wave, that is, 
f' (u) increases across it. From the convexity assumption 
( 1.4 ) we have u, > U2 > O. Consider the characteristic curves 

dx = f'(u (x,!)). 
dt 

Smooth solutions of ( 1.1) satisfy 

du 
- = C(x)h(u). 
dt 

(3.1 ) 

(3.2) 

For non transonic flow, f' (u) =1= 0, we may parametrize each 
characteristic curve by x 

~ =.!!:!..-!!... = (f'(u»)-'!!... 
dx dx dt dt 

= (f'(U»)-'(!.. + f'(U)~). (3.3) at ax 
From (3.2) and (3.3) along each characteristic curve 
smooth solutions satisfy 

shock shock 

______ ~---LL---~----__ x 

FIG. 2. Unstable shock waves, Ch '> o. 

2595 J. Math. Phys., Vol. 28, No. 11, November 1987 

t 
shock shock 

------~x=~O---J~---x=~I------ x 

FIG. 3. Stable shock waves, Ch' <0. 

dj(u) = C(x)h(u), 
dx 

(3.4 ) 

which is of the same form as the stationary equation (1.7). 
From (1.1) we have 

dw + f"(u)(f'(u»-'(C(x)h(u) _ w)w = C(x)h '(u)w, 
dt 

v = (f'(u»)-'(C(x)h(u) - w), v =.E!!..., ax 
au 

W=-. at 

(3.5) 

(3.6) 

For the supersonic flow under consideration it follows 
from (3.2) and the hypothesis C(x)h (u) < o that along each 
characteristic curve u decreases toward the sonic state zero. 
If the initial values of the rarefaction wave (u"u 2 ) are far 
from the sonic state then u may remain supersonic all along 
the characteristic curve. From (3.4) this is so iffor any value 
U, u, <u<u2, a supersonic stationary wave u(x), O<x< 1, ex
ists with initial state u (0) = u. By the monotonicity proper
ty of the solution operator of (3.4) this is equivalent to 
u,>u*, where u* is the unique supersonic state for which 
there exists a stationary wave u(x) with u(O) = u* and 
u ( 1) = O. Since all states are supersonic, it follows from 
(3.5) and (3.6) that a smooth solution exists globally. 
Above the characteristic curve X with initial value u" w is 
zero at x = 0 and by (3.5) it remains zero for all x. Thus the 
solution becomes a stationary wave (u"u4 ) followed by a 
rarefaction wave (U4,U3 ) after X has passed the region 
O<x<1 (see Fig. 5). Here U4 is the unique supersonic state 
which can be connected to u, by a stationary wave. 

When the left state of the rarefaction wave is close to the 
sonic state, u, < u*, the portion (u*,u 2 ) of the rarefaction 
wave passes through the stationary wave as before and 
emerges on the other side as (O,u 3 ). The interaction of 
(u,u*) with the stationary wave needs further investigation. 
The characteristic curve with initial state u, u,<u<u* 
reaches the sonic state in finite time. Since/( u) is quadratic 
at 0, (1,4) and (1,5), around the sonic state Eq. (3.1) is 
compared qualitatively to 

t 

u~ 

~~~~---------X_~_I-----X 

FIG. 4. Rarefaction wave propagating through a stationary wave. 
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----~~~----------~-------x 

dx dt = ± Ix xOI1
/

2
• (3.7) 

Thus at (xo,to) , where the characteristic curve x = xU) be
comes vertical, 

(3.8) 

The characteristic curve with initial value u. becomes verti
cal atx = 1. Since (3.7) is singular, it can be continued ei
ther along the vertical line x = 1 or backward X. (see Fig. 
6). Other characteristic curves to the left of X * also turn 
backward after reaching the sonic state and the flow in x < 1 
becomes subsonic. 

Characteristic curves to the left of X. have smaller ini
tial value and satisfy the same autonomous equation (3.4), 
and therefore reach sonic state at smaller x values. Conse
quently, between the characteristic curve X I with initial val
ue U I and A,. the solution becomes subsonic compressive in 
finite time. Many shock waves may result from the compres
sion. In finite time these shock waves will combine to form a 
transonic shock wave. In the unstable case, (2.5b), the shock 
wave accelerates toward x = - 00 and leaves behind a sub
sonic stationary wave (u.,O) (see Fig. 7). Here u. is the 
unique subsonic state which is connected to sonic by a sta
tionary wave. 

In the stable case, (2.5a), the transonic shock wave de
celerates. Depending on the value of UI' when U 1 is close to 
sonic, the speed of a-(ul,u.) of the shock wave (u1,u.) is 
negative and the transonic shock wave propagates toward 
x = - 00 (see Fig. 7). When 0'(u1,u.) >0, the transonic 
shock wave decelerates to stay in ° <x < 1 (see Fig. 8). 

This completes the study of a rarefaction wave propa
gating to the right through a stationary wave. A rarefaction 
wave propagating to the left moves away from the sonic state 
and no reflection occurs. In the case C(x)h (u) > 0, O<;x<; 1, 
the situation is just opposite, reflection occurs only for a 
rarefaction wave propagating to the left through a stationary 
wave. 

------~~~--------L-------x 

FIG. 6. Turning back of rarefaction waves. 
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FIG. 7. Stability and a(u"u.) <0 or instability. 

IV. TIME-ASYMPTOTIC STATES 

If one is not concerned with the details of the evolution 
process, some of the qualitative properties described in the 
preceding sections can be predicted easily through the study 
of noninteracting waves of (1.1). Thus it is composed of 
negative- (positive-) speeded shock waves or rarefaction 
waves in x < ° (x> 1) and a stationary wave in O<;x < 1. 
Such a wave pattern is called time asymptotic because after 
complex nonlinear interactions, waves are expected to com
bine and cancel and eventually become noninteracting (see 
Sec. VI) . We will carry out our analysis for the case 

C(x)h(u) <0 for O<;x<;l. (4.1) 

The case where C(x)h(u) >0, or more generally C(x), 
changes signs can be studied by the same analysis. With 
(4.1), a smooth stationary wave moves away from the sonic 
state as x increases, (1.4), (1.5), and (1.7). Thus given a 
state u # 0, there exists a unique state u such that u and u are 
connected by a smooth stationary wave u (x) 

u(O) = u, u(1) = u. (4.2) 

The state u is closer to sonic than U. Since ( 1.4) is singular at 
sonic, there exist a supersonic state u* and a subsonic state 
u.; both can be connected to the sonic state in the down
stream by a smooth stationary wave 

O={u.,u*}, u.<O<u*. (4.2') 

A stationary wave may be nonsmooth and contains a station
ary shock wave. From ( 1.4) and (2.1) a given state u can be 
connected by a stationary shock wave to a unique state u 

f(u)=f(u), u#u. (4.3) 

We now construct asymptotic states connecting given 
states Ue on the left and Ur on the right; first for the stable 
case C(x)h '(u) <0, ° <x < L We claim the following basic 
inequality: 

Supersonic 
Stationary 

t Subsonic 
Stationary 

--~~~~~----~X~=~I-----X 

FIG. 8. Stability and a(u"u.) > O. 
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~>~ foranyu>O, whenC(x)h'(u) <0, O<x<1. 
(4.4) 

By taking U = 0+ an immediate corollary is the following: 

u*>u.>O, when C(x)h'(u) <0, O<x<1. 

From (1.4) and (1.5) we see that (4.4) is equivalent to 

f(~) >fUi). 

Let U I (x) and U2 (x) be the smooth stationary waves with 
initial values U and U, respectively. Since U > 0, clearly 
u l (x) > 0 > u2(x), and so C(x)h (u l (x)) < C(x)h (U2(X)) in 
the stable case C(x)h'(u) <0, O<x<l. We know from 
(4.3) that at x = 0 f(ul(x)) =f(u) =f(u) =f(u2(x)). 
Thus the solutions U I (x) and U2 (x) of the stationary equa
tion (1. 7) satisfy 

f(u 2(x))>f(u l (x)), O<x..;;1. 

Evaluated at x = 1, we have feu) =f(u2(l)) 
> flu I ( 1)) = f( u). This proves (4.4). According to the rela
tive positions of U e and u" we have the following cases. 

Case 1.1: ue ..;;U •. When Ur 0, we connect Ue to u. by a 
backward wave, u. to 0 by a subsonic stationary wave, and 0 
to U r by a forward rarefaction wave. The backward wave is a 
rarefaction wave (shock wave) when Ue ..;;U. (u e > u.) (see 
Figs. 9 and 10). 

When U r < 0 the asymptotic state consists of a backward 
wave (UJl r) and a stationary wave (ur,u r). 

Case 1.2: u. <Ue <u*. When ur>O, the asymptotic 
state contains a supersonic rarefaction wave (O,u r ). The re
maining of the asymptotic state may be viewed as the result
ing wave pattern of the interaction of the shock wave 
(ue,u.) in x..;;O and the stationary wave (u. ,0). Since 
ue > u.' the speed of (ue ,u. ) is positive. As (ue ,u. ) propa
gates to the right through (u.,O) it decelerates (Sec. II). 
Since u. < u.' the stationary wave to the left of the shock 
wave with initial value U e at x = 0 cannot be extended to the 
whole interval O";;x";; 1. Consequently, the shock wave even
tually decelerates to become a stationary shock wave at xo, 
o < Xo < 1. Another argument, more direct and without re
sorting to the stability analysis in Sec. II, can also easily be 
put forth to conclude that the asymptotic state consists of a 
supersonic stationary wave for O";;x < xo, a stationary wave 
at x = xo, a subsonic stationary wave for Xo <x";; 1, and a 
supersonic rarefaction wave (O,u r ) for x > 0 (see Fig. 11). 
Here Xo is uniquely determined by U e • 

When U r < 0 and ue < ur the asymptotic state consists of 
a supersonic stationary wave over O..;;x < xo, a stationary 
shock Xo is uniquely determined by U e and U r • 

When Ur < 0 and Ur..;;Ue' the asymptotic state consists of 
a backward shock wave (u .. ur ) and a subsonic stationary 
wave (u"u r ). 

t 

Subsonic 
Stationary 

----~----~---~ 1 ](=1 
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t 

Stationary / / 
Subsonic I 

o 1/ Ur 

------'-------'---- ]( 

x=O x=1 

FIG. 10. u. -;.u/ > u*,u, > O. 

Case 1.3: Ue >u*. Since Ue >u*, there exists a supersonic 
stateu l withu l = Ue. Whenur>u I the asymptotic state con
sists of a stationary wave (u e ,U I) and a forward wave 
(uI,u r )· 

When Ur < ul and ur>ue the asymptotic state consists of 
transonic stationary waves with a stationary shock wave at 
x = Xo, 0 < Xo < 1. Here Xo is uniquely determined by Ue and 

When ur,,;;ue the asymptotic state consists of a back
ward shock wave (Ue'Ur ) and a subsonic stationary wave 
(ur,ur ). 

From ( 4.4) and (4.4') it follows that the subcases above 
do not overlap. Thus given the end states Ue and u" there 
exists a unique asymptotic state connecting them. Conse
quently, one expects every asymptotic state to be time-as
ymptotically stable. This is certainly consistent with our 
analysis in Secs. II and III and will be wholly justified in the 
last section. 

We next turn to the unstable case C(x)h '(u) > O. In this 
case we have, instead of ( 4.4) and (4.4'), 

~>~ foranyu>O, whenC(x)h'(u) >0, O<x<l, 
(4.5) 

U >u*>O, whenC(x)h'(u) >0, O<x<1. • 
There are two cases. 

2.1: Ue ..;;u*. When ur>O the asymptotic state consists of 
a backward wave (ue,u.), a subsonic stationary wave 
(u ,0), and a forward rarefaction wave (O,ur)· 

• When Ur < 0, the asymptotic state consists of a back
ward wave (ue,ur ) and a stationary wave (ur,u r ). 

Case 2.2: Ue > u*. Since Ue > u* there exists a unique 
UI > 0 with u l = Ue. When Ur>UI the asymptotic state con
sists of the stationary wave (U.,u I) and a forward wave 
(ul,u r )· 

When ur>u I and ur ,,;;ue the asymptotic state consists of 
a transonic stationary wave with a transonic stationary 
shock wave at x = xo, O,,;;xo";; 1. 

When ur < ue the asymptotic state consists of a back
ward shock wave (ue,ur) followed by a stationary wave 
(Ur,U r)· 

t 

standing 
shock 

Supersonic Subsonic 
Stationary Slationory 

__ ~L-__ ~ __ -L ___ ]( 

x=o x=1 
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Unlike the stable case, we have from (4.5) and (4.5') 
that the three subcases in case 2.2 overlap when u,>uI and 
u,<ue or, equivalently, u<ii,<i'i l . In this case there exist 
three asymptotic states which connect given end states Ue 

and u,. The one with a stationary shock wave is unstable 
(Sec. II). When u*<ue<u. and u,>O there are also three 
asymptotic states. Again, the one with a stationary shock 
wave is unstable. 

Remark: The strong coupling hypothesis ( 1.3) is neces
sary for obtaining a finite number of asymptotic states with 
given end states. It is also necessary to avoid the neutral 
stability in the analysis in the preceding two sections. More
over, the waves in x < ° (x> 1) with negative (positive) 
speed in an asymptotic state correspond to boundary layer at 
x = ° (x = 1) for the steady state solutions of the associated 
viscous equation. With (1. 3), asymptotic states for (1.1) 
would correspond to steady state solutions of the associated 
viscous equation. The same would hold for general physical 
models. In summary, the hypothesis (1.3) is necessary for 
the model ( 1.1 ) to capture the nonlinear resonance phenom
ena observed in the nozzle flow and the MHD with a moving 
magnetic force. 

v. EXISTENCE OF SOLUTIONS 

A. Numerical scheme 

In this subsection we introduce a numerical scheme for 
the initial value problem (1.1) 

~ + al(u) = C(x)h(u), (0) () U x, = Uo x . 
at ax 

(5.1) 

The scheme is based on the random choice method,4.9 and 
uses elementary waves for the conservation law (1.6) and 
stationary waves, (1.7), as building blocks. The scheme 
differs from a previous one5 in that it can treat that transonic 
flow. Choose an equidistributed sequence {ao,al,az,"'} in 
(0,1) and mesh sizes Ax and t::.t satisfying the usual Cour
ant-Friedrichs-Lewy condition. At each time level 
t =jt::.t + ° the approximate solution Uc,. (x,t), t::.=Ax, con
sists of piecewise stationary waves with discontinuities at 
x = iAx, i = 0, ± 1, ± 2, .... Suppose that Uc,. (x,t) has been 
defined for t<jt::.t. Then Uc,. (x,t), jt::.t < t< (j + 1)t::.t is con
structed as follows: Resolve the discontinuity of Uc,. (x,jt::.t) 
at x = iAx for the conservation law (1.6) and denote its so
lution as uij(x - iAx)I(t - jt::.t)). Here uij consists of ei
ther a shock wave or a rarefaction wave depending on 
Uc,. (iAx - O,jt::.t) > Uc,. (iAx + O,jt::.t) or Uc,. (iAx - O,jt::.t) 
<,uc,. (iAx + O,jt::.t). When ° <aj+ I <,~ we set 
uc,.(iAx + O,(j + 1 )t::.t + 0) = uij (aj+ I Axlt::.t) , 

(5.2a) 

and define u(x,(j+ 1)t::.t+O), iAx<x<(i+ I)Ax, to be 
the stationary wave with prescribed value (5.2a). When 
! < aj + I < 1, we set instead 

uc,.((i + I)Ax - O,(j + 1)t::.t + 0) 

=u(i+I)j(1-aj+I)Axlt::.t), !<aj + 1 <1. (5.2b) 

There exists the problem of not being able to solve the sta
tionary equation (1. 7) over iAx < x < (i + 1) Ax with the 
given value (5.2). This can happen because (1.7) is singular 
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at sonic, U = 0. The problem is resolved by employing the 
analysis in the preceding sections. 

Because of the source term C(x)h(u), the shock waves 
and rarefactions waves issued at x = iAx, i = 0, ± 1, ± 2, ... 
change their speed and strength. The above procedure ap
proximates the shock speed and characteristic speed by con
stants. A wave with positive speed is accelerated to the right 
by Ax at the next time level if aj + I Axl t::.t is less than its 
speed, and so on. As we have seen in Secs. II and III, this may 
not always be a good idea. A shock wave close to being sta
tionary should be viewed as being stationary. This will pre
vent unnecessary oscillation of the location of the shock 
wave in the stable case C(x)h '(u) > O. In the unstable case 
the mechanism prevents large time-asymptotic error of tran
sonic shock waves. Thus if the elementary wave issued from 
(iAx,jt::.t) is a transonic shock wave with speed 0', 

10'1 <,C~, then we set uij to consist of a sing Ie discontinuity 
with zero speed. This also eliminates the problem of not be
ing able to solve (1.7) with given data (5.2) provided that C 
is chosen sufficiently large, cf. (3.8). From Sec. III we know 
that when a rarefaction wave propagates toward the sonic 
state it will reflect as a compression wave. Thus when 
C(x) h (u) < ° and a supersonic rarefaction wave is issued at 
(iAx,jt::.t), then u(x, (j + 1 )t::.t), iAx <x < (i + 1) Ax is de
fined as follows: Let u~ be the supersonic state which can be 
connected to sonic state by a stationary wave uo(x) over 
iAx < x < (i + 1) Ax. If the rarefaction wave takes values 
over (0, u~) and the random choice picks up one of these 
values, i.e., 0< aj Axl t::.t <I' (u~), then we set, instead of 
(5.2), 

u(x,(j + 1)t::.t + 0) = uo(x), iAx <x < (i + 1 ) Ax, 

(5.3 ) 

The case of a subsonic rarefaction wave and 
C(x)h(u) > 0 is treated analogously. This completes the de
scription of the scheme. 

B. Convergence 

We want to establish the convergence of the scheme for 
initial data having bounded total variation 

TV=total variation uo(x) < 00. (5.4 ) 

This situation is complicated by the fact that the approxi
mate solutions may not have uniformly bounded total vari
ation because the stationary equation (1. 7) is singular at 
sonic. Consider, for instance, uo(x) =0 and C(x)h(u) <0, 
O<,x<,1. Then the approximate solution at t = ° consists of 
subsonic stationary waves with zero right end states. Since 
( 1.7) is singular at sonic, the left end states of each station
ary wave in O<x<,1 is of the order - (Ax) 1/2. There are 
(Ax) - I such waves and their total variation is of the order 

(Ax) 1/2(Ax) -I = (Ax) -1/2, 

which becomes unbounded as the mesh size Ax ..... O. Thus the 
analysis for hyperbolic conservation laws6

,IO needs to be re
fined and generalized. The convergence of the scheme is es
tablished by considering the variation of a new variable, 
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t/J(u) == (U f'(v) dv for u>O, 
Jo (h(v») 

(U I' (v) 
== - Jo (h(v») dv for u <0. (5.5 ) 

The reason for introducing t/J( u) is that the stationary equa
tion (1. 7) becomes 

t/J(u)x = C(x) (5.6) 

and a stationary wave u(x) satisfies 

t/J(u(x») + JX C(y)dy = const. (5.6') 

From (1.4) and (1.5), t/J( u) is monotonically increasing in 
u. However, t/J' (0) = 0 and so the inverse oft/J has a singular
ity at u = o. Though the total variation for u may not be 
uniformly bounded, we show that the total variation for 
t/J( u) is uniformly bounded. We establish this for the case 
C(x)h(u) <Of orO <x < 1, the general case is shown by sim
ilar arguments. We set 

F(t) == I{lal:a the strength of shock waves, rarefaction 

waves, and subsonic stationary wave in 

Uto (x,jAt + a)} 

+ 3 I {Ia I: a the strength of supersonic stationary 

waves in Uto(x,j.:lt+O)}, j.:lt<J<(J+ l).:lt. 
(5.7) 

Here the strength of a wave is measured by the jump of t/J 
across it. From (5.6') we have 

F(O) <total variation t/J(uo(x») + fIC(Y)ldY. (5.8) 

We claim that 

F(t2)<I(td for t2>t1>0. (5.9) 

This is shown by checking each case of wave interactions. 
From (5.6') the propagation of a nontransonic wave 

through a stationary wave conserves F. When a transonic 
shock wave propagates to the left through a stationary wave 
the states on each side of it move away from the sonic state 
since C(x)h(u) < O. Consequently, the strength of the shock 
wave increases by twice the amount of the increase in the 
strength of the subsonic stationary wave to the right of it. 
This is offset by the decrease in the strength of the supersonic 
stationary wave to the left of the shock wave. Notice that in 
(5.7) we have weighted thrice as heavily the strength of su
personic stationary waves as other waves. Thus F remains 
constant in this case. When a rarefaction wave is reflected as 
a shock wave, the stationary wave changes from being super
sonic to subsonic and again F remains constant. Thus F de
creases only when shock waves and rarefaction waves can
cel. This proves (5.9). 

From (5.8) and (5.9) 

F(t)<total variation t/J(uo(x») + fIC(Y) Idy 

= O(l)TV + f IC(y)ldy, t>O. (5.10) 

This shows that the total variation inX oft/J(uto ) is uniform-
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ly bounded. By the diagonal process there exists a sequence 
€k -0 such that as .:l==.:lx = €k -0, t/J(Uto (x,t)) converges 
locally for all rational t and all x not in the countable set to a 
limit function t/J* (x,t). For any given irrational to we want to 
show that the same sequence also converges for all x not in a 
countable set. Since t/J(Uto (. ,I)) has bounded total variation, 
there exists a subsequence €kj of €k such that t/J(u to (x,to») 
converges to t/J* (x,to) as .:l = €kj - 0 for all x not in a count
able set. Let Xo be any continuity point of t/J* (x,to)' then the 
total variation of of t/J* (x,to) is small around x = Xo. The 
same is true of t/J(u to (x,to»)' A = €kj small enough, provided 
that there is no strong cancellation of shock waves and rar
efactions around (xo,to). Since the total amount of waves is 
finite, (5.10), such strong cancellation can occur only 
around countable points. Excluding these points, t/J(u to (x,l)) 
has small variation around (xo,to) and for .:l = €kj small. 
Since t/J(u to (x,t») converges for .:l = € k and t rational, we 
conclude, by choosing t arbitrarily close to to that t/J(u to (x,!)) 
has small variation around (xo,to) for.:l = €k small. Conse
quently t/J(u to (x,t)) converges locally in (x,t) at (xo,to). In 
other words t/J( u to (x,t») converges to a limiting function 
t/J*(x,t) as .:l = €k -0. Since t/J(u) is a monotonically in
creasing function of u, Uto (x,t) converges to a limit function 
u(x,t) ==t/J-1(t/J*(X,t)) as .:l = €k -0. After the proof of the 
consistency of the scheme in the next subsection, we con
clude that u (x,t) is an admissible weak solution of (1.1). It is 
well known that admissible weak solutions for the initial 
value problem of ( 1.1 ) are unique. This implies that u to (x,t) 
converges to u(x,t) as .:l-O. To be able to invert t/J we need 
to assume that either t/J(u) is unbounded, 

1t/J(u)I-O as lul-oo 

or the initial data is not too large, 

F(O) + min{t/J(uo( - 00) ),t/J(uo( + oo»)} 

<min{It/J( - 00)1,1t/J( + 00)1}· 

(5.11 ) 

(5.12 ) 

The above convergence arguments for t/J(Uto ) based on 
( 5.10) are similar to those of Secs. 10 and 12 of Ref. 11, 
where the details may be found. 

C. Consistency 

It remains to show that the limiting function u (x,t) just 
obtained is a weak solution of ( 1.1) and (5.1), that is, the 
scheme is consistent. We use the technique of wave tracing.9 

Since the total variation of U to may not be uniformly bound
ed, a certain refinement of the technique is necessary. In 
particular, we find it is convenient for our analysis to assume 
that the sequence {ao,a l,a2' ... } be sufficiently well equidistri
buted. We need to show that 

Eto == (00 foo [u to aq; + I(uto ) aq; - C(X)h(uto)q;] 
Jo - 00 at ax 

x (x,t)dx dt + J: 00 (utoq;)(x,O)dx-O as .:l-+O, 

(5.13 ) 

for any smooth function q;(x,t) with compact support in 
t>O. The value of Uto (x,t) , defined in Sec. V A for t = jAt, 
j = 0,1,2, ... , has a natural generalization to all t>O. Instead 
of using the exact solutions constructed in Secs. II and III, 
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we approximate the shock locations and characteristic 
waves for rarefaction waves by straight lines in each time 
layer (jilt, (j + 1) At ). In the case of the reflection of a super
sonic (subsonic) rarefaction wave into a compression wave, 
we set the value of U ll. in the block by the subsonic (super
sonic) stationary wave connecting the sonic state (5.3). 
With this, the error term Ell. consists of two parts: 

Ell.==EI +E2 , 

EI ==jto f: 00 [u(x,jilt) - u(x,jilt + 0) ]cp(x,jilt)dx. 

Here E2 is the error for t #-jilt, j = 0, 1 ,2, ... , due to the 
approximation just made. 

We first show thatEI--Oas ilx--O. Suppose that the test 
function cp is supported in O,;;;;t,;;;; T. Partition each shock wave 
and rarefaction wave into subwaves so that each subwave 
stays together and has a constant strength in t/J (u) until it is 
cancelled, if ever, cf. Ref. 6. As a subwave propagates ac
cording to (5.2) and (5.3), it contributes to E I • Fix a small 
positive constant E. In the region where a subwave takes 
value away from sonic by E, its strength in u is dominated by 
its strength in t/J(u) times E- I

/
2• In this case, we may apply 

the arguments in Refs. 3 and 6 to show that the error due to 
the subwave is dominated by the strength in t/J(u) times 
(E- 1J2 )ilx. This analysis fails as E--O. The refinement is 
explained below for each type of wave propagation. 

Consider the propagation of a rarefaction subwave to
ward the sonic state at x = 0. Let 8 be its strength in t/J( u) 
and x = iilx its location. The strength in u is of the order 

a i == (iilx + 8) 1/2 - (iilx) 1/2 

=8[(iilx+8)1/2+ Uilx)1/2]-I, 

and its speed is of the order, cf. (3.7) and (3.8), 

Ai == (iilx) 1/2. 

Let E be a small fixed positive number 

E== (lilx)1/2== (2Kilx) 1/2. 

The strength in u of the rarefaction wave at iilx, Iii >1, is 

O( 1 )ai = O( 1 )bE- I = O( 1 )8. 

Thus as we mentioned earlier, we need only to study the 
error due to the wave when it is located at iilx, Iii < l. When 
it moves from (i + 1) ilx to iilx toward the sonic state it 
creates an error 

O( 1) (ilx - Aiilt)ai . 

As it moves, without stopping, from - I ilx to ° the total 
error is 

I 

0(1) I (ilx - Aiilt)ai 
;=0 

I 

=0(1) Iilx8(iilx)-1/2 
i=O 

= O( 1 )8(ilx) 1/21 1/2 = O( 1 ) bE, 

which is linear in 8 and arbitrarily small as E --0. However, 
the wave may stay at each location iilx for many time steps 
and creates additional error. Let bi be the time steps it stays 
at iilx, then this error is 
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I I 

0(1) I biaiAjilt = 0(1)8bilt, b== I bi' 
;=0 ;=0 

Thus we need to estimate bilt, the total amount of time the 
wave stl1ys between x = lilx and x 0. For the exact solu
tion, (3.7) and (3.8), bAt is O( 1) (lilx)1/2 = 0(1 )E, which 
is again arbitrarily small. We now show that this remains so 
for the approximate solutions provided that the sequence 
{aO,al,a2''''} is well equidistributed. We say that the se
quence is equidistributed in (0,1) if aiE(O,l), i = 0,1,2, ... , 
and 

A(L,N)IN IL 1+ O(N)IN, (5.14) 

as N ...... 00. Here A (L,N) denotes the number of n, O';;;;n ';;;;N, 
an belongs to any subintegralL of(O.l),and IL I the length 
of L. The best equidistributed sequence has the estimate 

O(N) = O( 1 )log N, 

and the average is 

O(N) = O( l)N 1/2. 

For our purpose we require that 

O(N) =O(1)Na, for some O<a<j. (5.14') 

This includes most of the equidistributed sequences. We now 
continue the error analysis for rarefaction waves. Let Ck be 
the number of time steps the wave spent between x = 2k ilx 
and x 2k+ I ilx, 

2k+ I 

ck == I bi' 
i=2k 

The wave speed lies in (2k ilx) 1/2, (2k + I ilx) 1/2). It takes 
2k + I 2k = 2k jumps for the wave to move from 
x = 2k + I ilx to x = 2k ilx. The wave jumps at time jilt if 
aj ilx is less than Aj At. Since A j E ( (2k ilx) 1/2, (2k+ 1 ilx) 1/2) 
we have from (5.14) and (5.14') that 

(2kilx)l/2~+0(1) (ck)a 
ilx Ck 

<:.l:':....<:.(2k+lilx)1/2~+0(l) (ck)a. 
'" Ck '" ilx Ck 

We apply this to k sufficiently large 

0(1)( Ck )a';;;;2k (5.15 ) 

so that the above yields 

Ck = 0(1 )(2k I ilx) 1/2. 

This in turn implies that (5.15) is equivalent to 

2k;:;'0(l)(ilx) - al(2 - a). (5.15') 

For those k satisfying (5.15') the error is 
K K 

0(1 )8ilt I Ck = 0(1 )8ilt(ilx) -1/2 I (2k) 1/2 
k=O k=O 

= O( 1 )8ilt(ilx) -1/2(2K) 112 

= O( 1 )8(lilx) 1/2 = O( 1 )bE, 

which again is linear in 8 and becomes small as E ...... O. For 
those k which fail to satisfy (5.15') we derive a cruder esti
mate as follows: When aj lies in (O,ilx), the wave definitely 
moves toward the sonic. It takes 2k moves to reach sonic 
from x = 2k ilx. Let Ie be the smallest integer satisfying 
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(5.15') and C the number of time steps the wave spends 
between x=2"t::.x and x=O. We have from (5.14) and 
(5.14') that 

2" IC> (t::.x) 1/2 + O( 1) [(c)a IC] 

provided that 

2">0(1)(C)a. 

It follows that 

C<;2"(t::.x)-1/2 

and (5.16) is equivalent to 

2">0(1 )(t::.x) - a/(2- 2a). 

The error is dominated by 

O( 1 )~C6.t = O( 1 )~2"(t::.x) 1/2. 

(5.16 ) 

(5.16') 

We want the above two cases to be exhaustive, in other 
words, the smallest integer k = Ie satisfying (5.15') also sat
isfies (5.16'). This is so because 

(t::.x) - al(2 - 2a) > (t::.x) - al(2 - a) 

for t::.x < 1 and a > O. The last error is then 

0(1 )~2"(t::.x) 1/2 = 0(1 )~(t::.x) 112 - al(2 - a) 

= O( 1 )~(t::.x) (2 - 3a)/(2 - a), 

which is linear in ~ and tends to zero as t::.x-O because 
o <a <~, (5.14'). Our analysis shows that the total error due 
to the rarefaction wave is linear in ~ and tends to zero as 
t::.x-O. 

Consider next the propagation of a nontransonic shock 
wave. If the shock wave does not interact with other shock or 
rarefaction waves then we may use the above argument for 
rarefaction wave for the error analysis. The change in shock 
speed due to interaction has to be estimated in the general 
analysis. Since wave strength in U may not be uniformly 
bounded near sonic, the total amount of waves interacting 
with the shock wave may be large. However, only the oscilla
tion of the shock speed is relevant for error analysis and it 
depends on the oscillation of waves interacting with the 
shock wave. Away from the sonic state the oscillation of 
waves is dominated by their variation in u, which is equiva
lent to the total variation in ¢(u) and is thereby uniformly 
bounded. Near the sonic state, the oscillation is small by 
definition. In short, the change in shock speed can be con
trolled and we obtain similar error bound, which is linear in 
the wave strength of the shock wave in ¢(u) and tends to 
zero as t::.x-O. 

Finally we consider a transonic shock wave, which may 
oscillate around the sonic state and so the above arguments 
do not apply. However, we will show that the total amount of 
transonic shock waves in both u and ¢( u) is nearly uniform
ly bounded. Precisely, we have the following: Suppose that 
C(x)h(u) >0, O<;x<;l. We may artificially push all shock 
waves and rarefaction waves to x = 0 without increasing the 
functional F(t). This moves the end states of waves away 
from sonic. Given any fixed € > 0, transonic shock waves in u 
increases by at least C€1/2, C some positive constant. We 
have a transonic shock wave that has strength greater than 
C€1/2, its strength measured in u is 0(1 )~€-1/2, ~ its 
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strength in ¢(u). We thus conclude that the total strength of 
transonic shock waves in x > € for any given time is 

O( 1 )F(t)€-1/2 = O( 1 )F(0)€-1I2. 

Thus we may use previous arguments and a standard one,3,6 
to obtain the desired error analysis for transonic shock waves 
in x> €. The error analysis for the region O.;;;x<;€ is trivial 
because the area {(x,t): O<;x<;€, O<;t<;T} goes to zero as 
€ - 0 and because u A are uniformly bounded. 

We consider next the error term E 2 • Only the error due 
to the reflection of rarefaction waves to compression waves 
(5.3) is analyzed; the rest follows from arguments similar to 
those above. Note that rarefaction waves may disappear due 
to cancellation but not be created. Different rarefaction 
waves at t = 0 reach sonic at different x later. Consequently, 
the total area of the region of wave reflection, where (5.3) 
applies, in the (x,t) plane is no larger than at and the corre
sponding error in E2 is O( 1 )at. 

Summing up the above error analysis we conclude that 
EA of (5.13) satisfies 

EA = O(1)(€ + O(t::.x») + 0(1)F(0)0(t::.x)€-1/2, 

which is 0(1 k as t::.x-O. Since € is arbitrarily chosen, we 
have EA -0 as t::.x-O. Thus the limiting function obtained 
in Sec. V B is a weak solution. 

The solution obtained by the scheme has the property 
that ¢(u (x,t») has bounded total variation in x for t>O, 
(5.10), and that u(x,t) is uniformly bounded. It is well 
known that the nonlinearity f" (u) =1= 0 has a regularizing 
effect in that if u (x,t) is bounded and measurable then 
u(x,t') is of bounded local variation for t' > t, It' - t I small. 
Thus our solution u (x,t) is ofloca11y bounded variation in x 
for all t. In fact it is of bounded variation because u (x,O) is of 
bounded variation and (1.1) is a conservation law for 
XE [0,1 ] . We summarize our results in the following 
theorem. 

Theorem 5.1: Suppose that the initial data u(x,O) have 
bounded total variation (TV) and (5.11) or (5.12) holds. 
Then (1.1) has a unique global solution u(x,t) which is of 
bounded variation in x for all t and is the limit of approxi
mate solutions U A (x,t) as a-O. 

The uniqueness of the solution follows from general the
ory of hyperbolic conservation law. As we mentioned above, 
due to the nonlinearity f" (u) =1= 0, we may relax somewhat 
the hypothesis that u (x,D) is of bounded total variation. This 
is, however, not of importance in the present context. Our 
primary concern is the qualitative behavior of nonlinear 
waves and efficient numerical computation. 

VI. QUALITATIVE BEHAVIOR OF SOLUTIONS 

In this section we study the regularity and large-time 
behavior of solutions of (1.1). Since solutions u(x,t) ob
tained in the last section are of bounded variation, the regu
larity theory for hyperbolic conservation laws (see Ref. 3 
and references therein) can be straightforwardly generalized 
and applied here. There are countable points of wave interac
tions, a countable set of Lipschitz continuous curves of 
shock wave, and the solution is continuous elsewhere. As in 
Sec. VB, we may refine the argumentofSecs. 12-15 of Ref. 3 
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to show that our scheme in Sec. V A converges locally for 
points of continuity of the solution and computes shock 
waves sharply. 

We next turn to the large-time behavior and show that 
the solution tends to an asymptotic state constructed in Sec. 
IV. Since the solution u(x,t) is of bounded variation and at 
x = ± 00 (1,1) is the conservation law ( 1.6), the end states 

U e =u( - oo,t), U r =u( + oo,t) 

are time invariants. From the analysis in Sec. III and the first 
part of Sec. V C, we see that there is no rarefaction in O,;;;x';;; 1 
after finite time. Similarly nontransonic shock waves also 
move out ofO.;;;x.;;; I in finite time. It is obvious, that, without 
the presence of rarefaction waves and nontransonic shock 
waves in O';;;x,;;; 1, there exists at most one transonic shock 
wave in O';;;x';;; 1. This is so under the present simplified as
sumption of C(x) #0 for O.;;;x.;;; 1, cf. Ref. 2. In the region of 
xEl; [0,1], ( 1.1) is the same as the conservation law ( 1. 6), for 
which it is well known that waves eventually become nonin
teracting.4 In the present situation, only one shock or 
rarefaction wave with negative (positive) speed eventually 
survives inx < 0 (x> 1). In summary, U (x,!) tends to a non
interacting wave pattern, an asymptotic state of Sec. IV as 
t -+ 00. The rate of this convergence is t -\ /2 as in the case of 
conservation law. 
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Solutions of the boomeron type are found in two nonlinear integrable systems describing the 
interaction of a long wave with a short wave packet. These solutions follow from two-soliton 
solutions if certain additional conditions are imposed on their parameters. The results are 
relevant to some problems of plasma physics, solid-state physics, hydrodynamics, etc. 

I. INTRODUCTION 

The present paper is devoted to the following phenome
non. In the nonlinear integrable systems considered below 
we find solutions having asymptotics of the one-soliton type 
as t -+ ± 00. However, the sets of essential parameters of 
these solitons are different. In particular, these sets of pa
rameters may be chosen so that the solitons mentioned above 
would have opposite directions of motion. In this case, each 
solution of this kind describes a wave going from infinity. 
Then, the parameters of this wave change (in particular, the 
direction of propagation). As a result, the wave begins prop
agating in the opposite direction, and finally, goes back to 
where it started. In other words, it's as though the wave is 
reflected. 

The following fact is to be noted. Let us take an arbitrary 
small E> O. Let t _ be such that at t < t _ the difference be
tween our solution and the first soliton is less than E. Then let 
t + be such that at t> t + the difference between the solution 
considered and the second soliton is also less than E. It turns 
out that t _ and t + may be chosen so that the difference 
t + - t _ as E -+ 0 would be of an order of - In E. This means 
that the rearrangement process of one soliton into another 
takes place during a comparatively small interval of time, 
and consequently, the calculation of such solutions by com
puter is a very nontrivial problem. 

The aforesaid will be demonstrated by two examples of 
nonlinear evolution systems, one describing the interaction 
of waves on the xy plane; and the second, the interaction of 
waves on the x axis. 
II. INTERACTION OF TWO WAVES ON THE xy PLANE 

We proceed with the following system of equations: 

We take the functions D and <P of the form 

a 2U a [au a ( 2 a 2U 2)] 3--- -+- 3u +-+8xicpj =0, 
aT ax at ax ax2 

(2.1) 

where i = J=T, describing (under certain conditions) the 
interaction of a long wave with a short wave packet propa
gating on the xy plane at an angle to each other. Here u is the 
long wave amplitude, cp is the complex short wave envelope, 
and the parameter x satisfies the condition x 2 = 1. One can 
easily be convinced that system (2.1) has solutions of the 
form 

(2.2) 

exp[iv(x+2vy)+iO"t] [ '( 2 _2)] cp = a exp - I J.l + v- Y , 
cosh [J.l (x + 2vy - 1"t)] 

where the real parameters J.l, v, and 1" and the complex quan
tity a satisfy the sole condition 

(2.3 ) 

and consequently, these solutions may exist only if the con
dition [1" - 4(J.l2 - 3",z) ] x;;;. 0 is fulfilled. In this case the 
parameter 0" may acquire arbitrary real values. The inverse 
scattering method 1.2 allows one to consider the interaction of 
an arbitrary number of waves of the form (2.2). 

For our aim it is sufficient to consider the interaction of 
two such waves. 

D = 1 + a l exp[2J.l1 (x + 2vI y - 1"lt )] + a 2 exp[2J.l2(X + 2v2y - 1"2t)] + Yo exp[2J.l1 (x + 2v) y - 1"1t) 

+ 2J.l2(X + 2v2y - 1"21)] + 200 exp [J.l I (x + 2v) y - 1"1t) + J.l2(X + 2V2Y - 1"2t) ] cos (), 

<I> = 2a l{1 + /32 exp[2J.l2(X + 2v2 y - 1"2t) ]}exp [J.l I (x + 2v) Y - 1"1t) ]exp [ivi (x + 2v) y) + iO"lt - i(J.l~ + ~)y] (2.4) 

+ 2a2{1 + /3) exp[2J.l1 (x + 2vI y -1"It) ]}exp [J.l2 (x + 2v2y - 1"2t)] 

xexp[iv2(x + 2v2y) + i0"2t - i(J.l~ + ~ )Y], 

r 
where 0") = - 4(3J.l~ - ~ )v) + 4(3J.l~ - ~ )V3' 
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71 4(lli - 3~) + 4(1l~ - 30 )Ill III 3 , 

72 = 4(1l~ - 3~ ) + 4(1l~ - 3~ )1l2 11l4' 

8= (V2- Vj)X+ (1l7 -~ -Il~ +~)y 

+ (0"2 - O"I)t + 80, 

WI = III + iVt, W2 = 112 + iv2, 

W3 = 113 + iV3' W4 = 114 + iv4 , 

(2.5) 

-3 -3 -3 -3 
_ W2 - WI W4 - W3 P _ Wt - W2 W3 - W4 

PI - a l _ -3 3' 2 - a2 -3 3 
W2 +W t W4 +W3 WI +W2 W3 +W4 

I 
WI - W2121 W~ - wi 12 

Yo a la2 3 3 
WI +W2 W3 +W4 

2 IWt + w,1 IW2 + w21 Iw~ + W~ I Iw! + W! I 
80 = la,a2 1· 

IWI +w212Iw~ +W!12 
Here and everywhere the bar above any quantity means a 
complex conjugation. According to the results in Ref. 2 the 
functions 

a 2 <I> 
U = 2 -2 In D, qy = D ax (2.6) 

satisfy system (2.1), i.e., are its solutions. One can easily see 
that if the conditions 

[71 - 4(lli 3~) ]'00, [72 - 4(1l~ - 3~) ],,>0, 

IWI +w.llw2+W21Iw~ +w~llw! +w!1 
<Iw. + w2121w~ + w! 12 

(2.7) 

(2.8) 

are fulfilled, we have a.>O, a 2>0, 0<8~<ala2' Yo>O and 
consequently, the function D is positive at any real x,y, and t. 
This means that the functions u and qy defined by (2.6) have 
no singularities at any real values of x, y, and t. 

Let us now analyze the behavior of this solution. Con
sider first the case (WI - (2)(W~ - w!) #0. Then, at VI #V2 

and at any fixed t in the region 1l2(X + 2v2 y - 72t) ~ lour 
solution has asymptotics of the form 

2112 
+ ~. 

U-U I = , 
cosh2 [1l.(x + 2vl y - 7.t) + 8t] 

exp[iv.(x + 2v l y) + iO"l t J qy - qy t = a t __ ~--'--'--__ !":"c __ -'--=--_ 
cosh [Ilt (x + 2vI Y - 7.t) + 8t ] 

Xexp[ - i(lli + vi )y] , (2.9) 

where 

8t = !(In Yo -In a 2). at = a.a2 I P2 exp( - 8t ), 

and in the region Il 2 (x + 2V2Y - 72t) ~ - 1 theasymptotics 

2lti 

_ exp[iv. (x + 2vj Y) + iO"l t ] (2.10) 
qy -qy I = at 

cosh [Ill (x + 2vI Y - 'lIt) + OJ- ] 

Xexp[ - Hlti + ~ )y], 

are fulfilled, where 

81- =! In aI' a l = a l exp( - 81-), 

By virtue of (2.5) we get 

2604 J. Math. Phys., Vol. 28, No. 11, November 1987 

Now moving on the xy plane to infinity along the straight 
line III (x + 2vJ Y - 'lIt) + 81+ = 0, asymptotics (2.9) are 
seen to hold as y ..... 00 if (v2 - V I)lt2>0 and vice versa if 
(V2 -VI )1l2<Oasymptotics(2.9)holdasy ..... - 00. Analo
gously, moving to infinity along the straight line 
III (x + 2vI y - 'lIt) + 81 = 0 we easily find that asympto
tics (2.10) are valid at (v2 - VI )1l2 > 0 as y ..... - 00 and if 
(v2 - v l )1l2 <0, asymptotics (2.10) are valid asy ..... 00. 

Then one can easily be convinced that at VI #V2 and at 
any fixed t in the regionll l (x + 2vI y - 'lIt) ~ 1 the solution 
considered has the asymptotics 

21l~ 
u-ut - , 

- coshZ[1l2(X + 2v2 y - 7 2t) + 82+] 

+ + exp[iV2(x + 2v2y) + iO"zt] 
qy-qy 2 = a2 

cosh [llz(X + 2v2y - 72t) + 82+ ] 
(2.11) 

xexp[ - i(1l~ + ~ )y] , 

where 

8t =!(lnyo-Ina.), a2+ =apl-·p.exp(-02+)' 

and in the region IlI(x+2vIY-71t)~-1 it has 
asymptotics of the form 

_ exp[ivz(x + 2V2Y) + i0"2t ] 
=a2 

cosh [1l2(X + 2v2 y - 7Zt) + 82-] 

(2.12) 

Xexp[ - i(1l~ + ~ )y] , 

where 

82 =! In a 2 , az- = az exp( - 82 ). 

By virtue of (2.5) we find that 

la2+ 1= la2 I· 
Moving on the xy plane to infinity along the straight line 
1t2(X + 2V2Y - 72t) + °2+ = 0, we find that asymptotics 
(2.11) are valid at (VI - vz)1l1 >0 as Y ..... 00; vice versa if 
(VI - vz)1l1 <Oasymptotics (2.11) are fulfilled asy ..... - 00. 

Analogously, moving to infinity along the straight line 
1l2(X + 2V2Y - 721) + 82 = 0, we easily get that at 
(VI - v2)1l1 >0 asy- - 00 asymptotics (2.12) hold and if 
(VI - v 2)1l1 <0 asymptotics (2.12) are valid asy ..... 00. 

Thus at (WI - (2) (w~ - w!) #0 and VI #V2 our solu
tion describes the interaction of two solitary waves of the 
form (2.2) propagating on the xy plane at an angle to each 
other. The nonlinear nature of the interaction leads to a large 
distortion of these waves in the vicinity of the intersection 
point of straight lines 

x + 2vI y - 'lIt + !(Ol+ + 81- )1l1- • = 0, 

x + 2V2Y - 72t + !(02+ + 82- )1l2- I = O. 
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However, if one moves to infinity along the crest of any of the 
interacting waves, each wave acquires the form indicated 
above. Far away from the interaction region the result of 
interaction leads to a phase shift of both waves. 

In the case when (UJ I UJz) (UJ~ - UJ!) #0 and VI = V1, 

our solution describes the interaction of two waves only if 
Tl #Tz· Both waves in this case propagate in the same direc
tion if TITz > 0 and in the opposite directions if TITz < O. Note 
that if ( T I - T 2 )fJ2 > 0 as t --> 00 the asymptotics of one of the 
waves have the form (2.9) and as t- - 00 its asymptotics 
have the form (2.10). In the opposite situation, if 
( T I - T Z )fJ2 < 0, then as t -+ 00 the asymptotics of this wave 
have the form (2.10) and as t- - 00 they have the form 
(2.9). Note further that if (T2 - TI )fJl > 0, then as t ..... 00 the 
asymptotics of the second of the interacting waves have the 
form (2.ll) and as t-- 00 its asymptotics have the form 
(2.12). In the opposite situation, if (t2 - TI)fJI <0, then as 
t- 00 asymptotics (2.12) hold and as t- - 00 asymptotics 
(2.11) are valid. The distortion of these waves in this case is 
maximal at the time moment 

(8t + 81 )fJz (82+ + 82- )fJ I 
to = -.:....---=---=--::.-----=----=--.-:-~ 

2(TI - Tz)fJtflz 
and tends to zero as t -+ ± 00. 

Finally, at (UJ I - UJ2) (UJ~ - UJ!) #0 and VI Vz, TI 

= T 2 our solution describes one solitary wave formed by two 
merged waves that move as one. However, the shape of this 
wave differs greatly from that of the initial waves. For in
stance, let UJ I = fJ + iv, UJ2 = 2fJ + iv, and the quantities 
UJ3 = fJ3 + iV3 and UJ4 = fJ4 + iV4 be chosen so the conditions 
(fJ~ - 3~ )fJ3 = 3fJ3 and (fJ~ - 3v~ )fJ4 = 0 are fulfilled. 
Assuming then that a2 0, one can easily obtain that the 
expressions for D and <f> are 

D = 1 + al exp [2fJ(x + 2vy - Tt») 

+ a2 exp[ 4fJ(x + 2vy - Tt)] 

+~ala2exp[6fJ(x+2vy 'Tt)], 

<I> = 2a l {1 -1 a z exp[ 4fJ(x + 2vy - Tt)]} 

Xexp[fJ(x + 2vy - Tt)] 

X exp [iv(x + 2vy) + iat - i(fJz + V2)y], 

where 

a l = xla 11
2/3fJ4, T 4(4fJ2 - 3v1

), 

a = 4(3fJ2 - v 1 )v + 4(3fJ~ - v~ )v3, 

and the quantity a z can be chosen arbitrarily. Assuming 
az = ja; we find that 

D = {I + ja 1 exp[2fJ(x + 2vy - 'Tt) lP. 
Atx = 1 anda l #0 we havea l >0, and consequently, D> 1 
at any real values of x, y, and t. Thus, the solution under 
consideration has the form 
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6fJ2 
U= , 

cosh2 [fJ(x + 2vy - Tt) + 8] 
sinh[fJ(x + 2vy - Tt) + 8J 

gJ =a 
coshZ[fJ(x + 2vy - Tt) + 8] 

Xexp[ivx + iat i(fJ2 - y)y], 
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where 

8=pn(aI/3)=ln(la II/3fJ2
), a a l exp(-8), 

and consequently, the equality lal = 3fJ2 is valid. 
The situation changes radically if the condition 

(UJ I - UJz) (UJj ill!) = 0 is fulfilled. Consider first the case 
VI #v2• Then, at any fixed t in the region 
fJz(x + 2v2 y 'Tzt) ~ lour solution has the zero asympto
tics and in the regionfJz(x + 2V2Y - Tzt) < - 1 the follow
ing asymptotics hold: 

2fJf 
u- , 

cosh2 [fJI (x + 2vI y - TIt) + 81 ] 

~ exp[ivl(x + 2v1y) + ia1t] 
gJ-a l 

cosh [fJ I (x + 2v} y - TIt) + 8t1 
Xexp[ - i(fJ~ + vf )y] , 

(2.13) 

where 81 = ~ In a l and al = a l exp( 81), Then, at any 
fixed t in the region fJl (x + 2vI y - Ttt) > 1 the solution 
considered has the zero asymptotics and in the region 
fJl (x + 2vI y 'TIt) < - 1 the asymptotics 

u- z ' 
cosh [fJ2(X + 2vzy - Tzt) + 8z] 
~ exp[ivz(x + 2v2y) + iazt] 

gJ-a 2 
cosh[fJz(x + 2V2Y - T2 t ) + 021 

xexp[ -i(fJ~ +~)y] 

(2.14 ) 

are fulfilled, where O2 = ! In a 2 and a2 a2 exp ( - 82 ), Ac-
cording to (2.5) the equalities 

4xla l 1
2 

= 4(fJ; - 3~ )fJtfl3 = [TI - 4(fJi 3vf ) ]fJi, 

(2.15 ) 

3~ )fJ2fJ4 = [T2 - 4(fJ~ - 3~) ]fJ~ 

are valid, which are analogous to relations (2.3). Thus, mov
ing on the xy plane to infinity on the straight line 
fJl(X + 2v1 y - Ttt) + 01 0, we find that at 
(V2 - V 1)fJ2 > o andy- 00 our solution has zero asymptotics 
and as y..... - 00 asymptotics (2.13) are valid, vice versa if 
(v2 - VI )fJ2 < 0, then moving to infinity along this straight 
line we see that asy- - 00 our solution has the zero asymp
toties and as y -- 00 asymptotics (2.13) are fulfilled. Analo
gously, moving to infinity along the straight line 
fJ2(X + 2v2y T2t) + O2 0, we easily get that at 
(VI - V 2 )fJI >0 our solution has zero asymptotics asy- 00 

and as y - - 00 asymptotics (2.14) are valid. In the oppo
site situation, if ( V I - V 2) fJ 1 < 0, moving to infinity along the 
straight line mentioned above we see that our solution has 
zero asymptotics as y -+ 00 and asymptotics (2.14) are 
valid asy- 00. Hence it follows that at (UJ I UJ2 ) (UJ~ - UJ! ) 

o and VI #V2 our solution describes the cancellation of 
one soliton by another. This phenomenon has recently been 
discovered in another nonlinear integrable system.3 

Let us analyze now the position of nonzero asymptotics 
of both the solitons. With (2.15) we get (fJ; - 3~ ) (fJ~ 

3~ )fJtflzfJ3fJ4 > O. Then, based on the equality 
(UJI - UJ2) (UJ~ UJ!) = ° we find that [(fJ~ - 3~ )fJ3 

(fJ~ - 3~ )fJ4] (fJI - fJ2) = O. Thus the inequalities 
fJtfl2 > 0 and (fJ; - 3~ ) (fJ~ - 3~ )fJ3fJ4 > ° are valid. 
Hence, it follows that in the situation under consideration 

V. K. Mel'nikov 2605 



                                                                                                                                    

inequality (2.8) is valid, i.e., the solution considered does 
not possess singularities at any real values of x, y, and t. 

Moreover, by virtue of the inequality f-LJi1-2 > 0, the in
equality (VI V2)f-LI >0 results in (v2 - Vj)f-L2 <0. This 
means that if (VI - V2)f-Lj > 0, in the upper half-plane, i.e., at 

y;!l> f-L/j l - f-Ll +..!.-. 72 - 71 t 
2(v2 - V1 )f-LJi1-2 2 V2 - VI 

our solution has asymptotics (2.13) and in the lower half
plane, i.e., at 

y.:a;; f-L/>2 - f-L2 +..!.-. 71 - 72 t, 
2(V I - V2)f-Ltf.LZ 2 VI - V2 

asymptotics (2.14) hold; vice versa if (VI - V1)f-L1 < 0, in the 
upper half-plane, i.e., at 

y;!l> f-L/j2 - f-L2 +..!.-. 71 - 72 t, 
2(v l - V2)f-Ltf.L2 2 VI - V2 

our solution has asymptotics (2.14) and in the lower half
plane, i.e., at 

y.:a;; f-Lij l - f-LI +..!.-. 72 - 71 t, 
2(V2-VI )f-Ltf.L2 2 V2 -VI 

asymptotics (2.13) are valid. Thus nonzero asymptotics of 
both solitons are always on different sides of some straight 
line parallel to the x axis. 

Consider finally the case when (WI - ( 2 ) (w~ - w!) 
= 0, VI = V 2, and 71 #72, Assume that V = VI = V 2• Then at 
( 7 I - 72 )f-L2 > 0 as t - - 00 our solution contains a moving 
wave of the form 

2f-L~ 
u 

cosh2[f-LI(X+2vY-71t) +8 1 ] , 

A exp[iv(x + 2vy) + ieTlt ] 
a l 

cosh [f-L I (x + 2vy - 71t) + 8 1] 
(2.16 ) 

Xexp[ - i(f-Li + v)y], 

where 01 =! In aI' 0 1 = a 1 exp( - 01), and at (71 72)f-L2 
<Othis waveappearsatt- 00. Moreover, at (72 - 71 )f-LI >0 
as t - 00 our solution contains the second moving wave 

2f-L~ 
u 

cosh2[f-L2(x + 2vy - 72t) + O2] , 

A exp[iv(x + 2vy) + ieTzt] 
az 

cosh [f-L2(X + 2vy - 72t) + 82] 
(2.17) 

xexp[ - i(f-L~ + v)y], 

where O2 = pn a 2, O2 = a2 exp( - 8z) and at (72 71 )f-Lj 
< 0 this wave appears as t - 00 • 

By virtue of f-LJi1-2 > 0 it follows from the aforesaid that 
when (7j - 72)f-L2 > 0 as t-+ 00 our solution has asympto
tics (2.16) and as t -+ 00 asymptotics (2.17) are valid; and 
vice versa w1:ten (71 7z )f-L2 <0 and t ..... - 00 asymptotics 
(2.17) hold and asymptotics (2.16) hold as t -+ 00. Thus in 
the situation under consideration our solution describes the 
evolution of soliton (2.16) into soliton (2.17) and vice versa. 
In the process of evolution the soliton parameters change. By 
virtue of the equalities 
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4xlod 2 = [7 j - 4(f-Li - 3v2) ]f-Li, 

4xl0212 = [72 - 4(f-L~ - 3v) ]f-LL 
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the relations 

71 = 4f-Li + 4xlo I1
2/f-Li - 12v2, 

72 = 4f-L~ + 4xI0212/f-L~ - 12v2 
(2.18 ) 

are fulfilled, from which it follows that the quantities f-Li 'f-L~' 
10 II, and 1021 may take any positive values satisfying the con
dition (f-LI f-L2) (f-L21 0 11 2 f-LlI ( 21 2) = O. Assume that these 
quantities are chosen so as to fulfill the condition (f-Li 
+ xIOjI2)f-L~ # (f-Li + xI(212)f-Li, i.e., 71 #72, Thenletbl and 

b2 be equal to a smaller and a larger of the quantities 
jef-Li + XiOI12f-L1- 2) and j(f-L~ + x102 1

Zf-L2 2), respectively. 
Then from (2.18) it follows that if v is outside the interval 
(bl,b2) the inequality 7172> 0 holds; otherwise, i.e., at 
V

2E(bl,b2) we have 7 j72 <0. This means that if VE(bl,b2)' 
solitons (2.16) and (2.17) move in the same direction, but if 
VE(bl,b2)' solitons (2.16) and (2.17) move in opposite di
rections. Thus at VE(bl';2) the solution under considera
tion describes such a transformation of one soliton into an
other, which does not change the direction of motion. In the 
opposite situation, at V

2E(bl,b2) our solution describes a 
transformation that changes the direction of the soliton mo
tion to the opposite one as though the soliton is reflected. It is 
to be noted that the inclusion OfVE(bj,b2) is possible only if 
b2 > 0, i.e., in the case when at least one of the quantities f-Li 

+ xl0 112 andf-Li + xl0212 is positive. 

III. INTERACTION OF TWO WAVES ON THE x AXIS 

Now we use the functions D and <i> following from the 
functionsD and <I> oftheform (2.4) ify is changed by t and t 
by y. According to (2.6) the functions 

A a2 
A. A <i> 

u = 2 -1 In D, rp = -;;;::- (3.1 ) 
ax D 

satisfy the system of equations 

3 a
2
u _l!..[au +l!..(3U2 + a

2
u +8xl~12)] 

at 2 ax ay ax ax2 
=0, 

(3.2) 
a;;' A. a 2;;' 

i _7'_ = urp + _7'_ , 

at ax2 

resulting from system (2.1) with the same change of vari
ables. Now, in solution (3.1), we change x by x 4cy, i.e., 
assume 

V(x,y,t) = u(x - 4cy,y,t) , I/;(x,y,t) = tj;(x - 4cy,y,t) , 

(3.3 ) 
where c is an arbitrary real constant. One can easily be con
vinced that by virtue of (3.2) functions v and I/; satisfy the 
system of equations 

a 2V a 2V a 2 ( a 2V ) 3------- 4cv+ 3v1 +--+ 8xll/;12 =0, 
at 2 ax ay ax2 ax2 

(3.4 ) 
i al/; = vI/; + a 21/; . 

at ax2 

It follows from (2.4) that if the conditions 

71 = 4c = 72 + 4c = 0, eT j - 4cv j = eT2 - 4CV2 = 0 
(3.5) 

are fulfilled, the solution of system (3.4) thus obtained is 
independent of y, i.e., satisfies the system of equations 
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a2
v a2 

( a2
v ) 3 --2 - -2 4cv + 3v2 + --2 + 8xl¢1 2 = 0, at ax ax 

(3.6) 

that is important in many branches of mathematical physics. 
With (2.5) equalities (3.5) are equivalent to relations 

c(V I + (Vi + iii~ = 0 and C(V2 + (V~ + iii! = O. Using these re
lations we eliminate the quantities (V3 and (V4 from the ex
pressions for the functions jj and <i>. As a result, we get func
tions .:l and \II of the form 

(VI = fll + ivl , (V2 = fl2 + iv2, 

xla l 1
2 

a _ 
a l = - (c + fli _ 3vi )fli' 2-

.:l 1 + a l exp[2fll (x + 2v l t)] + a 2 exp[2fl2(X + 2v2t)] 

+ Yo exp [2fl I (x + 2v l t) + 2fl2(X + 2v2t)] 

+ 2tJo exp[fll (x + 2v lt) + fl2(X + 2v2t) ]cos B, 

2a l {1 + /32 exp[2fl2(X + 2v2t) J}exp [fl I (x + 2v1t) 1 

X exp [ivJ (x + 2v j t) - i(fli + vi )t ] 
+ 2a2{1 + /31 exp[2fll (x + 2v1t) J} 

X exp [flz (X + 2v2t)] 

xexp[iv2(X + 2vzt) - i(fl~ + ~)t], 

where 

(3.7) 

/3 
«(V2 - (Vj)2 (V~ + (V2(V1 + (Vi + C /3 «(VI - (V2)Z (Vi + (VI(VZ + (V~ + C 

I = a I _ 2 2 _ -2 ' Z = a2 2 2 - -2 ' 
«(Vz + (V I) (V2 - (V2(V I + (V I + C «(V I + (V2) (V I - (V 1(V2 + (V2 + C 

I 
(V j (V21 4

1 (Vi + (V 1(V2 + (V~ + C /2 
YO=alaZ - 2 - -z ' 

(VI + (Vz (VI - (Vj(V2 + (Vz + C 
(3.8) 

2 I(VI + (VdZI(Vz + (V2I ZI(Vi - (VI(VI + (Vi + cll(V~ - (V2(V2 + (V~ + cl 
Do = lalazl, 

I(VI + (V21 4 1(Vi - (VI(VZ + (V~ + cl 2 

B = ('liz - vl)x + (fli - vi - fl~ + ~ )t + Bo· 

By virtue of (3.1) and (3.3) the functions 

a2 \II 
v = 2 -2 In.:l, ¢ = -ax .:l 

(3.9) 

satisfy system (3.6). One can easily verify that if the conditions 

(c+fli -3vi)x<0, (C+fl~ 3v~)x<0, (3.10) 

I(VI + (Vd 21(Vz + (V21 21(Vi - (VI(VI + (Vi + cll(V~ - (Vi;J2 + (V~ + cl 
- 4 2 - -2 2 < I, (3.11 ) 

I(VI + (Vzl I(VI - (V1(V2 + (V2 + cl 

are fulfilled, then using (3.7) and (3.8) one finds that the 
function .:l is positive at any real values of x and t, and conse
quently, the solution of system (3.6) defined by (3.9) has no 
singularities at any real x and t. 

Now let us analyze the behavior of this solution. We 
shall begin with the case when (VI =f(Vz and (Vi + (V1(V2 + (V~ 
+ c=fO. Assume that VI =fV2' Then, at (v2 VI )fl2 > 0 and 

t -+ - 00 our solution contains a moving wave of the form 

_ 2fli 
V~VI = , 

cosh2 [fll(X + 2vlt) + DI-] 

.1, .1,- _ - exp[iv j (x+2v l t)] 
'I'~'I'I -a l 

cosh[fll(X + 2vlt) + tJ l 

(3.12 ) 

xexp[ - iCfli + vi)t] , 

where 

tJ l- =! In ai' a l- a l exp( - D1-). 

At t -+ 00 this wave has the form 

+ 2fli 
V~VI = -------.::.....::...-----

cosh2[fll(X + 2v l t) +tJ l+] 
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(3.13 ) 

where 

tJt = !(In Yo In a z)' a 1+ = aJaZ- 1/32 exp( - tJt). 

By virtue of (3.8) the following equalities are valid: 

tJ + tJt - tJ 1-

21n + In , I 
(VI (Vzl I (Vi + (Vj(V2 + (V~ + c I 
(VI + (V2 (Vi - (V1(V2 + (V~ + c 

lat 1= lal-I· 

Note that if (v2 - v l )fl2 <0, then as t- - 00 the asympto
tics of the wave considered have the form (3.13) and as 
t- 00 they have the form (3.12). Furthermore, our solution 
contains the second moving wave. At (VI - v2)flj > 0 as 
t -+ - 00 it has the form 

2fl~ 
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• /, ./,_ _ _ exp[ivz(x+2vzt)] 
'f'-'f'2 - a2 

cosh [,uz (x + 2vzt) + 8z- ] 

xexp[ - i(,u; + V;)t] , (3.14) 

where 

8z- = ~ In az, az- = az exp( - 8z- ), 

and as t-. 00 the asymptotics of this wave have the form 

2,u2 + 2 
v-~ = , 

coshZ[,uz(x + 2vzt) + 8z+] 

./, ./,+ _ + exp[ivz(x + 2vzt)] (3.15) 'f'-'f'z - az 
cosh [,uz (x + 2vzt) + 8t ] 

Xexp[ - i(,u; + V;)t] , 

where 

8z+ = !(In Yo -In al)' at = aZa l-
1 /31 exp( - 82+), 

With (3.8) we get that 

8z = 8z+ - 8z-

= 2ln + In , I 
WI - wzl I wi + WIW2 + w~ + c I 
WI + li)z wi - W lli)Z + li)~ + c 

It is obvious that if (VI - VZ),u1 < 0, asymptotics of the sec
ond wave as t-. - 00 have the form (3.15) andast-. 00 they 
have the form (3.14). 

Thus, at WI =/-W2' wi + wIWZ + w~ + c=/-O, and VI =/-vz 
the solution under consideration describes the interaction of 
two waves. The nonlinear nature of the interaction leads to 
the distortion of both the waves in the vicinity of the point 
x =xo, where 

xo= 
(8t + 8z- ),uIVI - (8t + 81- ),uzvz 

2(vz - v.),uIf-lz 

This distortion becomes maximal at the time moment t = to, 
where 

(8t + 81- ),uz - (8t + 8z- ),ul 
to = ------------

4(vz - vl),uIf-lz 

and tends to zero as t -. ± 00. Far from the point x = x o, 
t = to each of the waves has a form given by one of the 
asymptotics (3.12 )-( 3.15). The interaction gives exception
al results in the phase shifts of both the waves, i.e., the inter
action is elastic. 

In the case when W. =/-Wz, wi + wIWZ + W~ + c=/-O, and 
VI = Vz the solution under consideration describes one soli
tary wave formed by two merged waves that move as one. 
However, the shape of this wave differs strongly from that of 
the initial waves. For instance, let WI = 2,u + iv and 
Wz = ,u + iv, where the quantities,u and V satisfy the condi
tion ,uz - 3v + c = 0. Assuming then that az = 0, one can 
easily find that the functions l:i and 'I' in this case are 

..:l = 1 + a 2 exp [2,u(x + 2vt)] + a l exp[ 4,u(x + 2vt)] 

+ §a la2 exp [6,u(x + 2vt)], 

'I' = 2a l{1 + ja2 exp [2,u(x + 2vt) ]}exp [2,u(x + 2vt)] 

Xexp[iv(x + 2vt) - i(4,u2 + V)t], 
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whereal = - xla.l z/12,u4 andaz can be chosen arbitrarily . 
Assuming a z = (3a I) liZ we find that 

..:l={1 + (a./3)·/z exp [2,u(x+2vt)]Y 

At x = - 1 and a. =/-0 we have a l > 0, and consequently, 
t::. > 1 at any real values of x and t. Thus, the solution under 
consideration has the form 

6,uz 
V= , 

coshZ[,u(x + 2vt) + 8] 

./, _ exp[iv(x + 2vt)] [ _ '(4 z _2)t] 'f' - a exp I /-l + v- , 
coshZ[,u(x + 2vt) + 8] 

where 

8 =! In(al/3) = pn( la l l/6,uz), a = ~al exp( - 28) 

and consequently, the equality lal = 3,uz is valid. 
Finally, at WI = W2 our solution degenerates into a one

soliton solution. 
Now consider the case when W. =/-wz but wi 

+ W IW 2 + w~ + c = 0. Assume that 

w2+ = - wJ2 + (il2)( 3wi + 4c) I/Z, (3.16) 

Wz- = -wl/2- (il2)(3wi +4c)l/z. (3.17) 

Now we use the complex plane WI and remove from it a piece 
of the straight line connecting the points W t = 2i (c/3 ) liZ 

and w.- = - 2i(c/3) liZ of the imaginary axis if c > ° and 
the points wt = 2( - c/3) liZ and w.- = - 2( - c/3) liZ 

of the real axis if c < 0. In the complex plane (V I with such a 
cut the equalities (3.16) and (3.17) define the mappings F + 

and F _ into the complex plane W 2. It follows from (3.16) 
that at c=/-O and at large IWII the mapping F + is close to the 
rotation by the angle 21T/3 and from (3.17) it follows that at 
c=/-O and at large IWII the mappingF _ is close to the rotation 
by the angle - 21T/3. At c = ° these mappings are simply 
rotations by the angles 21T/3 and - 21T/3, respectively. Now 
in the complex plane WI with the above cut we take the re
gions G + and G defined by the inequalities 
(,ui-3vi+c),u1>0 and (,ui-3vi+c),u1<0, respec
tively. One can easily see that the region G + consists of three 
components HI' H 3 , and H s' and the region G _ consists of 
three components Hz, H 4, and H6 determined as follows: 

HI = {(,uI,V I ): ,ul >0, ,ui - 3vi + c>O}, 

Hz = {(,uI'V I ): ,u1>0, vl>o,,ui -3vf +c<O}, 

H 3 ={(,uI,vl ): ,u1<0, v.>O,,ui -3vf +c<O}, 

H4 = {(,uI'V I ): ,ul <0, ,uT - 3vf + c>O}, 

Hs = {(,uI'V.): ,ul <0, VI <0, ,uT - 3vi + c <o}, 

H 6 ={(,uI,vl ): ,u1>0, vl<O,,ui -3vf +c<o}. 

Let r I, ... ,r 6 be boundaries of the regions H., ... ,H6, re
spectively. By using (3.16) and (3.17) one can easily be 
convinced that the equalities 

F+(r l ) = r 3 , F+(rz) = r 4 , 

F+(r3 ) = r s, F+(r4 ) = r 6 , 

F+(rs) = r l , F+(r6 ) = r z, 

F_(r l ) = r s, F_(rz) = r 6 , 
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F _(r3 ) = r l , F _ (r4 ) = r 2, 

F_(rs) = r 3, F_(r6 ) = r 4 

are valid. On the basis of the well-known theorems of the 
theory of conformal mappings there follow analogous rela
tions between the regions H I , ••• ,H6 and their images for the 
mappings F + and F _, i.e., 

F+(HI) =H3 , F+(H2 ) =H4 , 

F+(H3 ) =Hs, F+(H4 ) =H6 , 

F+(Hs) =HI, F+(H6 ) =H2 , 

F_(HI) =Hs, F_(H2 ) =H6 , 

F_(H3) =HI, F_(H4) =H2, 

F_(Hs) =H3 , F_(H6 ) =H4 • 

In the complex plane {V I with the above cut we now 
take the regions H + and H _ defined by the inequalities 
(fli - 3vi + C )fli > 0 and (fli - 3vi + C )fli < 0, respec
tively. It is easily seen that H + = HI UH4 and H _ = H2 
UH3 UHs UH6 • It follows from that aforesaid that F + (H +) 
nH+ = F _ (H+) nH+ = 0, and vice versaF +(H_) nH_ 
=H2 UHs, F_(H_)nH_ =H3 UH6• This implies that 

whatever point {V I Eli + might be used, in the regionH + there 
is no point {V2 that would satisfy the relation {Vi 

+ {V1{V2 + {V~ + C = O. On the contrary, for any point 
{V I Eli _ there will be only one point {V2Eli _ and that {Vi 

+ {V1{V2 + (V~ + C = O. In this case the following relations 
occur: 

(1) if {VIEli2' then {V2 = F _ ({VI )Eli6 , 

(2) if {V I Eli3 , then {V2 = F + ({VI )Elis, 

(3) if {V I Elis, then {V2 = F _ ({VI )Eli3 , 

(4) if {VIEli6' then {V2 = F + ({VI )Eli2• 

This implies that the real fl l,fl2 and imaginary V I,V2 parts of 
the points {V I and {V2 satisfy the conditions fl Ifl2 > 0 and 
VIV2 <0. According to (3.8) it follows that at x = 1 the in
equalities al>O, a 2>0, and 0.;;;156 ';;;a la 2 are valid. Thus in 
the considered case our solution has no singularities at any 
real values of x and t. 

Let us analyze the behavior of this solution. It is easily 
seen that at (v2 - v l )fl2>0 as t-+ - 00 our solution has a 
moving wave of the form 
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2fli 
V= ., 

cosh2[fll(X + 2vlt) + 15 1 ] 

t/J=G
1 

exp[iv l (x+2v lt)] 

cosh [fl I (x + 2v l t) + 15 1 ] 

(3.18 ) 

xexp[ - i(fli + vi)t], 
where 15 1 = ~ In ai' GI = a l exp( - 15 1 ), and at 
(v2 - VI )fl2 < 0 this wave appears as t -+ 00. Moreover, at 
(v I - V 2 )fll > 0 as t -+ - 00 our solution has the second 
moving wave 

2fl~ 
V= , 

cosh2 
[fl2 (x + 2v2t) + 152 ] 

t/J = G
2 

exp[iv2(x + 2V2t)] 

cosh [fl2(X + 2V2t) + 152] 
(3.19 ) 

Xexp[ -i(fl~ +~)t], 

where 82 = ~ In a 2, G2 = a 2 exp( - 152 ), and at 
(V1 -v2)fll<0 this wave appears as t-+oo. By virtue of 
fl Ifl2 > 0 from (v2 - VI )fl2 > 0 there follows the inequality 
(VI - v2)fll < O. This means that if (v2 - VI )fl2 > 0, then as 
t -+ - 00 our solution has asymptotics (3.18) and as t -+ 00 it 
has asymptotics (3.19). On the contrary, if (V2 - V I )fl2 < 0, 
then as t-+ - 00 asymptotics (3.19) are valid whereas 
asymptotics (3.18) hold as t -+ 00. Thus in the considered 
situation our solution has essentially different asymptotics 
as t -+ - 00 and t -+ 00. Then, by virtue of the inequality 
VI V2 <0 the moving waves (3.18) and (3.19) have opposite 
directions of motion, i.e., at (V2 - V I )fl2 > 0 soliton (3.18) 
comes from infinity, then its parameters change, it changes 
the direction of its motion to an opposite one, and finally, 
goes to infinity in the form (3.19). At (V2 - v l )fl2 <0 the 
process proceeds in the opposite order, i.e., soliton (3.19) 
comes from infinity and soliton (3.18) goes to infinity. Note 
that according to (3.8) the following relation is valid: 

IG I 12 (fli - 3vi + c)fli fll 

IG21

2 
= (fl; - 3v; + C)fl~ = fl2 

In conclusion we should like to note that solutions anal
ogous to those considered above have earlier been found in 
another system of equations.4 

'v. K. Mel'nikov, Lett. Math. Phys. 7,129 (1983). 
'V. K. Mel'nikov, JINR preprint P2-86-689, Dubna, 1986. 
3V. K. Mel'nikov, JINR preprint P2-86-234, Dubna, 1986. 
4F. Calogero and A. Degasperis, Lett. Nuovo Cimento 16, 425 (1976). 
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A search is conducted for new solutions to Yang-Mills classical field theory defined on S 3 X S I 
using Witten's Ansatz. Then some sort of non-Abelian plane waves giving rise to a divergent 
energy are obtained. 

I. INTRODUCTION 

The interest in looking for new solutions of the classical 
Yang-Mills field equations arises from the hope that a 
greater knowledge of the classical theory will help us to un
derstand the quantal aspects. Many interesting solutions 
have been found (see Actor l for a review), but we think also 
that its study needs to continue. One of the more celebrated 
Ansiitze was given by Witten,2 who was also able to solve the 
self-dual SU(2) equation derived from it, obtaining then a 
multi-instanton solution. While Witten exposed it in Euclid
ean space-time, we shall use the corresponding Minkowski 
version of it, with the obvious changes when necessary, and 
we refer to Witten's paper2 for the notation. 

On the other hand, the pure Yang-Mills theory is invar
iant under the full conformal group SO ( 4,2), and we can use 
this fact in order to obtain further information. In particular, 
O( 4) X 0(2), the largest compact subgroup ofSO( 4,2), has 
revealed special interest and has led many authors to the 
discovery of new solutions (see Refs. 3 and 4) . We shall 
profit from this formalism by projecting the SU (2) Yang
Mills theory on the hypertorus, and then by using Witten's 
Ansatz, we shall try to find solutions to the general non-self
dual field equations. As many authors have described in de
tail how this process works (see Refs. 5-7), we shall not 
repeat the procedure, but in order to fix the notation it is 
worth noticing that we define the nontrivial hypertorus an
gles (j), w as 

(j) = arctan[2t 1(1 + r - t 2)], 

W = arctan [2r 1 (1 + t 2 - r)] . 

As in Witten's Ansatz we restrict ourselves to (t,r) coordi
nates. We only need to consider the angles (j), w to describe 
the situation. 

II. THE SOLUTIONS 

Unlike Witten, we are interested in non-self-dual sec-
ond-order equations that follow from his Ansatz 

a, (riOI) = 2 (¢IDr</J2 - ¢2Dr¢I)' 

ar (riOI) = 2(¢ID'¢2 - ¢2D'¢I)' 

r(D,D, - DrDr )¢a = ¢a (1 - ¢i - ¢~ ), a = 1,2, 

into the new coordinates ((j),w). We fix the gauge by the 
condition a Pap = 0, which is easily seen to be fulfilled by the 
choice ap = X(w)ap(j), where X(w) is a function to be deter
mined, ap=(ao,a l ), and we do not restrict ¢1((j),W), 
¢2((j),W) for the moment. Then, after some manipulations 
we obtain for the motion equations 

sin2 w Xww + 2 sin w cos w Xw 

+ 2{¢1(¢2)", - ¢2(¢1)", - x(¢i + ¢~)} = 0, 

¢1(¢2)w -¢2(¢I)w =0, 

(¢I)",,,, - (¢I)ww + 2X(¢2)", - X2¢1 

= ¢I (1 - ¢i - ¢~ )/sin2 W, 

(¢2)",,,, - (¢2)ww - 2X(¢I)", - X2¢Z 

= ¢z(1 - ¢i - ¢~ )/sinz W. 

The second equation can actually be integrated giving the 
relation ¢2 ((j),w) = a ((j) )¢J ((j),w), where a is an arbitrary 
function of his argument. Although it is possible to simplify 
the equations, they are still difficult to solve. We shall con
centrate henceforth on those fields fulfilling the requirement 
that a be a constant. Then demanding consistency to the full 
set we obtain that the following relation must be fulfilled: 

X(¢J )," (az + 1) = o. 
(We shall henceforth drop the index and write ¢J =¢.) Con
sider first the case when X = 0, and also a = O. By substitut
ing we obtain an equation that admits the solution 

X = ¢z = 0, ¢ = cos W. 

But this is not anything new. It isjust the meron-antimeron 
solution of De Alvaro, Fubini, and Furlan but in a different 
gauge (see Refs. 8 and 9). We must then look for more origi
nal solutions. 

Now we shall concentrate on the former equations when 
x,¢=lO and a 2 + 1 = O. With these conditions we obtain 

sinzwxww +2sinwcoswxw =0, 

¢"'''' - ¢ww + 2iX¢", - X2¢ - ¢/sinz w = o. 
We can immediately integrate the first equation giving 

X = Q cot w + Qz, 

where Q, Qz are integration constants. The second one is 
then 

¢"'''' - ¢ww + {2iQ cot w + 2iQ2}¢", - {Q Z coe w 

+ 2QQ2 cot w + Q ~ + lIsin2 w}¢ = o. 
In order to solve this partial differential equation we shall 
assumethat¢((j),w) = A ((j) )B(w), whereA, B are unknown 
functions. When substituting such an expression carefully, 
we realize that we have to consider the two cases Q = 0, 
Q =I 0 separately because the solution corresponding to the 
first case is more general than that corresponding to the sec
ond one when taking the Q--+O limit, and can never be 
reached from the general case. 
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(a) Q 0, then we have thatA,B must verify 

AWl" + 2iQ0w -IlA = 0, 

Bww + {Q~ + l/sin2 w - p}B = 0, 

whenp is an arbitrary constant. By solving the first equation 
we find that in order for the solution to be a global one (that 
is to say, periodic), we must have 

Q2 = n, p = n2 - m 2, 

where n,m are arbitrary integer numbers. The general solu
tion to the field equations is then 

00 

~ {c ei(m~n)'" + C e~i(m+n)w} 
L.. I.m 2.m 

m= 

x [ sin W]a{C3,mlF(a,b,!, - cos 7(tJ) 

+ C4,m {- cosw}1/ 2lF(a + !,b + M, - cosw)}, 

where IF (a,b,c) is the hypergeometric function, and 

a = (1 + .J3i) 14, a = a + m/2, b = a - m/2. 

We see that for fixed m, ¢J depends on two independent func
tions of w. Curiously enough such a thing does not happen in 
the general case. 

(b) Q :;;60, looking again for a solution in the way 
¢J(w,w) A(w)B(w) we find that A must verify 

Aw pA, 

wherep is an arbitrary constant. But in order for the solution 
to be periodic we impose p = im, m being any integer. More
over, we have the following equation for B: 

Bww + {Q2 coe W + 2Q(Q2 + m)cotw 

+ (Q2 + m)2 + (1/sin2 w)}B = O. 

Before considering the solution to this equation, we shall 
investigate first the case when Q2 + m = 0, The equation 
now becomes simplified and we can write its solution as fol
lows: 

¢J(w,w) = e ~iQ2W sin2v w{CIlF(a,/3,y,sin2 w) 

+ C2 (sin2 w) 1 r 

XlF(a + 1 - y,/3 + 1 - y,2 - y,sin2 w)}, 

where 

v = [1 +.J - (3 + 4Q 2) 1/2, Q2EZ, 

a = (2v + iQ)/2, 

/3 (2v - iQ)/2, 

y= 2v+!. 

SinceRe (a +/3 - y) = - !,wecan say that our solution is 
convergent on the whole disk Iyl < 1, withy = sin2 W, that is 
to say, it converges for every value of w: O<W<1T. This is a 
pleasant property of this solution that together with its rela
tive simplicity has led us to consider it separately. We now 
shall proceed to investigate the general case, namely when 
Tr=Q2 + m:;;60. In order to solve the subsequent equation 
we carry out the following change of variables: 

cotw i(1 - 2y), 

B(w) exp{ - a [arctan(i(1 2y»)]}{4y(y - l)Pf(y), 

and then we can reduce the equation to a hypergeometric 
form provided we choose the parameters a,b as 

a=irJ, b=iQ. 

The solution then turns out to be 

+C ___ -iQ-1I 
( 

eiW ) 
2,m 2 sin w 

( 
1 + i

2
cot w ) }, XlF 1 +a-y,l +/3-y,2-y,----

where IF is the hypergeometric function of parameters 

a (1 + 2iQ + .J - 3 - 4Q 2) 12, 

/3 (1 + 2iQ - .J - 3 - 4Q 2 ) 12, 

Y 1 + rJ + iQ. 

Some comments are now in order. First, we observe that the 
superposition, in the index m, of solutions is also a solution. 
In the second place, we note that in order for our solution to 
be convergent we must request that ReUQ - rJ) <0. Final
ly, it is worth noticing that under the simultaneous changes 
7] ..... - iQ and Q ..... i7] we obtain another solution, although 
with similar properties to the former. 

In the conditions already stated, our solutions are con
vergent in the region 1T/4<w<31T/4. As the angle w sweeps 
over the region O<w< 1T, we must also give the form of the 
solution on the excluded regions. We do it by means of ana
lytic prolongation and we obtain 

¢J - ~ {C r(y)r(/3 - a) C r(2 - y)r(/3 - a) } 
- m ~ 00 I.m r (/3) r(y - a) + 2,m r(1 + /3 - y)r(1 - a) 

xeimWe-i1lW(2 ~iW _) -a IF(a,a + 1 _ y,a + 1 _ /3, 2 si~ w) 
sm w e"" 

+ f {C r(y)r(a -/3) + C rea -/3)r(2 y) }eimWe-i1lW 
m=-oo 1.m r (a)r(y_/3) 2,m r (1+a-y)r(1/3) 

X -.-_ IF /3,1 +/3- y,/3 + I-a, --._- . ( 
e'w )-13 ( 28inw) 

2 stn w e"" 
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This prolongation is valid, strictly speaking, in the regions 
o <w<;17/4, 31T/4<;w<1T. As we also want to include the 
point w = 0, which corresponds in Minkowski space to the 
origin of coordinates r = 0, we must study what happens at 
that point. We find that for Q real we can extend the solution 
to this point without problems while for Q imaginary pure 
Q = iv, VEIR the solution is finite only if - 1 <;v<; 1. Finally, 
if Q = p + iv we obtain the same condition. We shall see that 
the physically interesting cases are just those corresponding 
to Q real or Q imaginary pure with I Q 1<; 1, so in this respect 
the behavior of our solution is the right one. 

It is interesting now to see when our solutions are self
dual. It can be seen that these kinds of solutions must verify 

Dr¢= -D,¢ 

and also necessarily Q = i. Solving the former equation we 
obtain as the general solution 

¢ = sin w e - Q,wiH(w - w), 

where H(w - w) is an arbitrary function. But we must im
pose also a periodicity condition in the wangle, that is to say 
H(w - w) = H(w - w + 21T). Then we can develop it in 
the Fourier series as 

00 

¢= I ameim(W-W)sinwe-Q,wi 

m = - 00 

which is the general form of a self-dual solution in our partic
ular Ansatz. 

On the other hand, in the general case, when Q = i the 
constants a,{J are integers so that the hypergeometric series 
is now degenerate. Using Gauss recurrence relations we ob

I 

tain that the solution to the second-order equations is then 

We can identify the first term with the self-dual solution, 
while the second one does not have anything to do with these 
kinds of solutions. So, summing up, we can say that for our 
particular Ansatz we obtain self-dual solutions only when 
Q = i, and in this case only some special cases are self-dual 
(whenbm =0). 

We now turn to the description of some physical proper
ties of our solutions. First we recall that our solutions are 
complex. 

It is known 1o
•
11 that a theory with gauge group G and 

complex potential is equivalent to a theory with real poten
tial but in which the gauge group is now the complex exten
sion of G. In our case, it would be SU (2,C). In these refer
ences, it is also shown that in the SU (2,C) theory the energy 
is not positive definite. We shall check it for our particular 
solutions, and we shall see shortly that under some condi
tions we can get a real and positive energy momentum ten
sor. This fact, together with the observation that the only 
gauge invariant property of our solution ¢ (w,w) is its modu
lus, lets us think that our solutions are physically acceptable 
(although we do not claim that they have a clear physical 
meaning). On the other hand, it is known that a self-dual 
solution in Minkowski space-time12 or also the Minkowski
an solutions obtained through the 414 Ansatz are necessarily 
complex, 13 so it is not too strange that our solutions are also 
complex. We now go on to consider the form of the electro
magnetic potentials A f in terms of the solutions we have just 
obtained, 

I t is also interesting to know the expressions for the electric and magnetic fields, but as they get very cumbersome we shall only 
give them for the case of self-dual fields in which case they are much more simple. We have 

Bj=iEj, j=1,2,3, a=I,2,3, 

For the components of the energy momentum tensor we ob
tain 

000 = (1 + Q 2)/2r4, 

(Jij = (Dij -Xix/r) (1 + Q2)/2r4. 
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Let us now study when the energy momentum tensor is posi
tive definite. Clearly it is true for any real value of Q, 0 even 
for Q imaginary pure, Q = iv with Ivl <; 1. We recall that in 
these cases the solution was not divergent in any place so 
clearly that we have to restrict ourselves to this range of 
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values of the parameter. That is to say, the only solutions 
which can be physically acceptable are those for which Q is 
real or even better, where Q = iv with Ivl < 1 (in which case 
the energy gets diminished, and so the solution is more sta
ble), because under these conditions the energy density is 
positive, and our solution can be defined over the whole hy
pertorus. 

Other quantities of interest are just the pseudoscalar 
density and the action 

!iJ=EfB~= _Q/r4, Y=O-Q2)/2r4. 

We see that in most of the cases these quantities are diver
gent, although in some situations they are not. In particular, 
when Q = i the energy is zero, which is not surprising as long 
as the self-dual solutions correspond just to this case. 

Generally speaking, we can say that our solutions repre
sent some sort of plane waves with strong traces of nonlin
earity. (This is because we obtain them from an equation in 
which the fields tP and X were coupled. Note also that a su
perposition in Q, Q2 of solutions is not a solution.) It does 
not look like they have any relation with Coleman's plane 
waves. Anyway, except in the case Q = i, they carry a diver
gent energy, and in general also an infinite action. They are 
not confined to any region of the space, so they do not have 
any similarity with other solutions as instantons, merons, 
monopoles, or solitons. In fact, we think that although phy
sically acceptable, our solutions have not the pleasant fea
tures of the solutions just named, so their physical interpre
tation is not very clear. But if we consider instead the 
equivalent problem of the Abelian Higgs model in a two
dimensional space-time~ we can give a physical meaning to 
these solutions: They describe how an electric pole of charge 
Q, located at the origin is interacting with a charged field, 
namely the tPi' giving then rise to some complicated waves, 
represented here in terms of hypergeometric functions. 
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The interaction is due to the curvature of the manifold in 
which they are living, corresponding to a nontrivial metric 
tensor goo = - gIl = r, gOI = O. 

III. CONCLUSIONS 

We have given a set of, in general, non-self-dual solu
tions to Yang-Mills field equations using the invariance of 
this theory under the conformal group. These solutions are 
not localized and in some sense are some sort of non-Abelian 
color plane waves, then giving rise to a divergent energy. 
Then, they do not share the properties that can lead us to 
interpret them as a localized particle, a fact from which their 
physical meaning is not transparent. Anyway, we think that 
it is always worth knowing a little bit more of the Yang
Mills classical theory in order to understand the subsequent 
quantized theory, particularly in the nonperturbative sector. 
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It is shown within the Hilbert space formulation of quantum mechanics that the total 
noncommutativity of any two physical quantities is necessary for their satisfying the 
uncertainty relation or for their being complementary. The importance of these results is 
illustrated with the canonically conjugate position and momentum of a free particle and of a 
particle closed in a box. 

I. INTRODUCTION 

The aim of this paper is to contribute to the problem of 
commutativity in quantum mechanics. It will be shown that 
any two physical quantities which either satisfy the uncer
tainty relation or which are complementary are also totally 
noncommutative. These results will be illustrated by the im
portant examples of canonically conjugate position and mo
mentum observables of a free particle and of a particle closed 
in a box. 

Throughout this paper the standard Hilbert space for
mulation of quantum mechanics will be applied. To fix the 
notations and terminology we shall briefly recall its basic 
ingredients here. 

In the Hilbert space formulation of quantum mechanics 
the description of a physical system is based on a (complex, 
separable, generally infinite-dimensional) Hilbert space H, 
with the inner product ('1'), We let L(H) denote the set of 
bounded linear operators on H, and P(H) the subset of 
L (H) consisting of the (orthogonal) projections. Any phys
ical quantity of the system is represented as (and identified 
with) a self-adjoint operator A in H. The spectral measure of 
A is denoted by EA: B(R) -L(H), where B(R) is the Borel 
u-algebra of the real line R [and B (R2) that of R2]. Any 
state of the system is represented as (and identified with) an 
element T ofthe set Ts (H) 1+ of positive normalized trace 
class operators on H. In this representation, the pure states 
of the system appear as the (normalized) one-dimensional 
projection operators lip ) (ip Ion H, ipEH, so that they may be 
identified, modulo a phase factor, with the unit vectors ip of 
H. Here HI denotes the set of unit vectors ofH. The proba
bility measure E1 [E1(X) : = tr(TEA (X»), XEB(R)] de
fined by a physical quantity A and a state T is interpreted as 
the probability distribution of the values of the quantity A in 
the state T. In particular, the variance 

(where i: R-R is the identity map) of the probability mea
sureE1 will be denoted by Var(A,T), and it is interpreted as 
the variance of A in the state T. (For further details of this 

aJ Permanent address: Department of Mathematics, University of Turku, 
20500 Turku, Finland. 

formulation of quantum mechanics we refer to Beltrametti 
and Cassinelli. I ). 

In studying the commutativity of two physical quanti
ties A and B their commutativity domain com(A, B) 
: = {ipEHIEA (X)EB (Y)ip = EB (y)EA (X)ip for all X,Y 
EB(R)} has turned out to be highly useful (see, e.g., Harde
gree,2 Pulmannova,3 Pulmannova and Dvurecenskij,4 

LahtV Ylinen,6 and Busch and LahtC). Here com (A ,B) is a 
closed subspace of H, which is invariant under the spectral 
projections of A andB, i.e.,EA (X) (com(A,B»)Ccom(A,B) 
and EB (Y)(com(A,B»)Ccom(A,B) for all X,YEB(R). 
Clearly, A and B commute (in the sense that all their spectral 
projections commute) if and only if com (A ,B) = H. 

The notions of commutativity and commutativity do
main admit both probabilistic and operational characteriza
tions. On the one hand, com(A,B) consists exactly of those 
(vector) states ipEHI for which the map X X Y 
I--+(ip lEA (X) /\EB (Y)ip), X,YEB(R), extends to a proba
bility measure B(R2) - [0,1], ZI--+E1~~(<p I (Z) .4,6,8 On the 
other hand, ipEcom (A ,B) if and only if <1»1- . <1»~ 
X lip ) (ip I = <1»~ '<1»1-lip ) (ip I for allX,YEB(R), i.e., the von 
Neumann-Liiders measurements <1»1- and <1»~ of A and B 
associated with the value sets X and Y commute in the state 
lip) (ip 1. 9 [Here, e.g., <1»1- denotes the von Neumann-Liiders 
operation TI--+<1»1-T: = EA (X) TEA (X), TETs (H) 1+ ]. 

These results can readily be generalized to arbitrary states 
TETs (H) t , but to avoid some technical details we omit the 
more general formulations here. 

Physical quantititesA and B are totally noncommutative 
if com (A,B) = {O}, i.e., if 0 is the only vector with respect to 
which the spectral projections of A and B commute. From 
the probabilistic point of view this is to say that A and B have 
a joint probability E1~~(<p1 in no state lip )(ip I, ipEH I. No 
probabilistic predictions on their joint values can then be 
done. The operational content of this result appears most 
directly in the fact that in any state lip) (ip I, ipEHI' some of 
the von Neuman-Liiders sequential measurements <1»1-. <1»~ 
and <1»~' <1»1- are distinguishable, i.e., independently of the 
state of the system the order in which A and B are measured 
in sequence is, in general, relevant to the measuring result. 

In the next two sections we shall show that any two 
physical quantities that either satisfy the uncertainty rela
tion or are complementary are also totally noncommutative. 
In Sec. IV we shall briefly demonstrate the relevance of these 
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results for position and momentum observables of a "free 
particle" as well as of a "particle closed in a box." 

II. UNCERTAINTY RELATION AND TOTAL 
NONCOMMUTATIVITY 

Let A and B be any two physical quantities. We shall 
now study the product Var(A,T)' Var(B,T) of their vari
ances in a state TETs (H)t. We denote h(A,B) 
=inf{Var(A,T)'Var(B,T)ITETs(H)t} so that h(A,B) 
= Oor h(A,B) > O. Ifh(A,B) >0 we say that A andB satisfy 

the uncertainty relation. In that case the "uncertainty prod
uct" Var(A,T)' Var(B,T) of A andB has a state independent 
positive lower bound. 

Lemma 2.1: If XCR is a Borel set contained in an 
interval [a,b], and cpE£A (X)(H), Ilcp II = 1, then 
Var(A,lcp ) (cp i) < (b - a)2. 

Proof The probability measure E ~) ('PI satisfies 

E~)('PI (Y) = (cp IEA(y)cp) 

= (EA(X)cp IEA(Y)EA(X)cp) 

= (EA(X)cp IEA( ynX)cp) 

for all YEB(R), so that it is concentrated on [a,b]. Thus 
Si dE1'P)('P1 = cE[a,b], and so 

Var(A,lcp)(cpl) = r Ci-c)2dE1'P)('PI«b-a)2. 
J[a,b] 

• 
Proposition 2.2: If com (A ,B) =1= {O}, then h (A,B) = O. 
Proof' Suppose cpEcom (A ,B), cp =1= O. Given E> 0, let 

(X; ) l"= 1 and (lj) j~ 1 be two partitions of R into unions of 
disjoint half-open intervals of length 8 = min{E,l}. Since 
multiplication in L(H) is separately continuous in the 
strong operator topology, we get 

cp = [;tlEA(X;)] [jtlEB(lj)]cp 

00 00 

= I IEA(X;)EB(lj)cp, 
;= lj= 1 

so that for some i andj, ifJo = EA(X; )EB( lj)cp =1=0. Denote 
ifJ= IlifJoll-lifJo' Then ifJEEA(Xj)(H), and since 
EA (X; )EB ( lj)cp = E B ( lj )EA (X; )cp, we also have 
ifJEEB ( lj ) (H). Applying Lemma 2.1 we thus obtain 
Var(A, lifJ) (ifJl) . Var(B, lifJ) (ifJl) <84 <E. • 

Corollary 2. 3: If A and B satisfy the uncertainty relation, 
then they are totally noncommutative. 

Remark 2.4: The result 2.3 was originally obtained 
within the so-called quantum logic frame by Pulmannova 
and Dvurecenskij.4 The result is formulated here within the 
Hilbert space frame of quantum mechanics so that the proof 
is now more direct. 

III. COMPLEMENTARITY AND TOTAL 
NONCOMMUTATIVITY 

Experimental arrangements which admit unambiguous 
operational definitions of complementary physical quanti
ties are mutually exclusive. This old intuitive idea of Bohr 
and Pauli has systematically been developed by Lahti5

•
IO

,11 

and by Beltrametti and Cassinelli. 1 The notion of comple-
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mentary physical quantities is based on the mutual exclu
siveness of any two instruments (i.e., operation valued mea
sures) which uniquely define these quantities. Here we do 
not need the notion of instrument. Thus we shall adopt here 
a formally equivalent though less informative definition of 
the notion of complementarity of physical quantities: Two 
physical quantities A and B are complementary if 
EA (X) AEB (Y) = 0 for all bounded X,YEB(R) for which 
neither EA (X) nor EB (Y) equals 1. 

We say that a physical quantity A is constant if 0 and 1 
are the only spectral projections A has. Clearly, if A is con
stant it commutes and is complementary with any other 
quantity B. The converse result is an immediate consequence 
of Proposition 3.2. Before proving it we shall state a lemma 
which characterizes nonconstant physical quantities 
through some simple properties of their spectral measures. 

Lemma 3.1: For a spectral measure E: B(R) ..... L(H) 
the following conditions are equivalent: (i) E (B (R») 
=I={O,l}; (ii) supp (E) [: = n(XEB(R)IX is closed and 
E(X) = 1)] contains more than one point; (iii) there is a 
partition (X; );~ 1 of R into a union of disjoint bounded in
tervals such that E(X;) =1=1 for all i = 1,2, .... 

Proof Clearly (i) ~ (ii), for if supp(E) = {a}, then 
E (X) = 1 if aEX, and E (X) = 0 otherwise. If (ii) holds true, 
then we get (iii) by choosing any partition (X;) of R such 
that two distinct points of supp(E) are interior points of 
distinct intervals X;. The implication (iii) ~ (i) is even 
more immediate. • 

Proposition 3.2: LetA and B be two nonconstant comple
mentary physical quantities. Then com(A,B) = {O}. 

Proof' Let us assume that K = com(A,B) =1= {O}. Since K 
is a closed subspace which is invariant under the spectral 
projections of A and B, we obtain two spectral measures jj;A : 
B(R) ..... L(K) and jj;B: B(R) ..... L(K) by setting jj;A (X) 

= EA (X), IK: K ..... Kfor XEB(R), anddefiningjj;B similarly 
in terms of EB .6 Choose partitions (X; ) and (lj) for EA and 
EB as in Lemma 3.1. Then 1 K = l:~ lEA (X; ) 
= l:j~ 1 E B ( lj ), the projections jj; A (X; ) and jj; B ( lj ) com

mute, and [jj;A (X;) Ajj;B( lj)]cp = [EA (~) AEBJ lj)]cp 
for _ all cpEI£.6 It follows that O=l=EA (X; )EB (lj) 
= EA (X;) A EB (lj) = 0 for some i,j. This contradiction 

proves that K = {o}. • 
Remark 3.3: The fact that nonconstant complementary 

quantities are necessarily noncommutative was obtained by 
Lahti 10 within a more general quantum logic frame. The 
stronger result 3.2 was claimed without proof by Pulman
nova and Dvurecenskit also in a more general context. Here 
the result is obtained within the Hilbert space quantum me
chanics applying the methods developed by Ylinen.6 

IV. TWO EXAMPLES 

In this section we illustrate the above results with two 
examples. The first essentially refers to the canonically con
jugate position q and momentum p of a free particle (in R), 
and the second to the same observables of a particle closed in 
a (one-dimensional) box (of unit length). 

Example 4.1: Let H be the Lebesgue spaceL 2 (R,B(R), 
dx,q, and let F denote the Fourier-Plancherel operator on 
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H. We define two spectral measures EI : B (lR) -+ L (H) and 
EP: B(lR) -+ L(H) by the formulas Eq (X) f = Xxf for all 
XEB(lR),JEH, and EP (Y) = F lEq (Y)F for all YEB(lR), 
and denote the corresponding self-adjoint operators in H by 
q andp.1t is well known that q is the multiplication operator, 
(qf) (x) = xf(x), xElR, with the domain 

D(q) = {fEHI L P dE fr) (JI < oo}, 
where Ern(J1 (X) = (flEq (X)I> (inner product in H). 
Similarly, it is known that the domain of p is 
D(p) = {fEHlfis absolutely continuous on every compact 
interval andj'EH}, and (pf)(x) - i(d Idx)f(x) (a.e.) 
forfED(p) (see, e.g., Stone, 12 p. 441). For example, iff is in 
C;' (lR), the space of infinitely differentiable functions with 
compact support, a straightforward calculation shows that 
(qp - pq)f = if, i.e., the formula 

qp-pq=iI (1) 

holds on the dense subspace C;' (lR) of H. Moreover, as 
Var(q,J) 'Var(p,J) = VarlfI2'Varl/12>~ for all fEH, 
and the lower bound! is reached with any Gaussian proba
bility density function (see, e.g., Cowling and Price, 13 p. 152, 
but compare also Busch and Lahti 14 for historical remarks) 
we have the well-known formula 

h(q,p) =!. (2) 

(Here/is the Fourier transform off) The property 

Eq(X) I\EP( y) = ° for all bounded X,YEB(lR) (3) 

is also well known (see, e.g., Lenard l5
, but compare also 

Busch and Lahti I4
). According to Corollary 2.3 and 

Theorem 3.2 both (2) and (3) imply that q and p are also 
totally noncommutative, i.e., 

com(q,p) = {o}. (4) 

(Compare Hardegree2
, p. 505.) As is well known, the above 

operators q and p represent the canonically conjugate posi
tion and momentum of a free particle (in lR). 

Example 4.2: Let m be the normalized Haar measure of 
the compact Abelian group 'f {ZEC! Iz I = 1} (i.e., m is the 
Lebesque measure on the Borel a-algebra of [0,1) 
transferred by the map t ~el2".t), and H = L 2 (m) 

= L 2('f,B('f),m,q. Here 'f can be identified with the quo-
tient group lR/Z, and then the dual group of'f is identified 
with 21TZ. For fEH define as usual f 21TZ-+C by 
/(21Tn) = fTf(z)"zndm(z). It is well known that we get an 
isometric isomorphism F: L 2(m) -+/2(21TZ) by F(f) =/; 
this is the Fourier-Plancherel transformation. We again de
fine two spectral measures Q: B('f) -+L(H) and P: 
B(21TZ) -+L(H) by the formulas Q(X) f = Xx J, XEB('f), 
and P( Y) f = F -IXyFJ, YEB(21TZ). First we note that 

Q(X) 1\ P( Y) = 0, (5) 

whenever XEB('f) is a set with m(X) < 1 and YC21TZ is a 
finite set. Indeed, iffEP( Y) (H) for a finite set YC 21TZ, then 
fis a trigonometric polynomial which implies thatf=O orf 
vanishes only at finitely many points, so that iffEQ(X) (H) 
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wherem(X) < 1, thenf= 0. Now let 8: [0,1) -+'fbethemap 
~i21rt and define Qo (X) = Q(8(XrI [0,1)), XEB(lR). For 
YEB(lR), define poe Y) = P( Yrl21TZ). Then Qo and Po are 
spectral measures on B (lR), and from ( 1) it follows at once 
that the corresponding physical quantities q = fax dQo(x) 
and p Sax dPo(x) are complementary, i.e., 

Qo(X) 1\ poe y) = ° for all bounded X, YEB(lR) 

for which Qo(X) #! #Po( Y). (6) 

Thus by Theorem 3.2 they are totally noncom mutative, i.e., 

com(q,p) = {O}. (7) 

(In Ylinen l6
,17 this is proved in a different way.) Since the 

spectrum ofp is 21TZ, and thus discrete, q andp do not satisfy 
the uncertainty relation; we have 

h(q,p) = 0. (8) 

Naturally, L 2( [0,1) can be identified with L 2( [0,1]), so 
that 8 defines an isometric isomorphism U: H -+ L 2 ( [0,1 ] ). 
Thus Qo and Po can be regarded as maps into L(L 2( [0,1] »). 
With this interpretation, q and p are simply the canonically 
conjugate position and momentum observables of a particle 
closed in a one-dimensional box of unit length. In fact, in 
Ylinen l6,18 it is shown that D(q)=L 2 ([0,1]), 
(q/)(x) = xf(x) , D(p) = {fEL 2 ([0,1]) If is absolutely 
continuous, f( 0) = f( 1), and j' EL 2 ([ 0,1 ])}, and 
(pf)(x) = - i(d Idx)f(x) (a.e.). From this one then gets 

qp pq=iI (9) 

on a dense subspace of L 2( [0,1]) {e.g., on {f [0,1 J -+C!f is 
infinitely differentiable and supp ( f) C (0,1 )}). 

Remark 4.3: The two (q,p) pairsofexamples4.l and 4.2 
manifestly differ in the fact that the first pair satisfies the 
uncertainty relation while the second does not. In spite of 
that, the two examples share a common general structure: 
each one is a concrete and physically important realization 
of an abstract Weyl pair on a Hilbert space H, based on a 
locally compact Abelian group G and its dual group G. In the 
first case G is the group of translations of lR so that G and G 
can be identified with the additive group lR. The relevant 
Hilbert space H is then L 2 (lR,B(lR),dx,q. In the second 
example G is the group of translations on [0,1) (mod 1). As 
noted there, G may be identified with the torus group 'f, and 
G with 21TZ, and in this case the Hilbert space is 
L 2('f,B('f),m,q. For details of obtaining the pair (q,p) 
from the duality between 'f and 21TZ we refer to Ylinen l6

,18 

whereas the first case is well known (see, e.g., von Neu
mann I9

). 
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The formal equivalence between the wave equations of two-particle relativistic quantum 
mechanics, based on the manifestly covariant Hamiltonian formalism with constraints, and the 
Bethe-Salpeter equation are shown. This is achieved by algebraically transforming the latter so 
as to separate it into two independent equations that match the equations of Hamiltonian 
relativistic quantum mechanics. The first equation determines the relative time evolution of the 
system, while the second one yields a three-dimensional eigenvalue equation. A connection is 
thus established between the Bethe-Salpeter wave function and its kernel on the one hand and 
the quantum mechanical wave function and interaction potential on the other. For the sector 
of solutions of the Bethe-Salpeter equation having nonrelativistic limits, this relationship can 
be evaluated in perturbation theory. A generalized form of the instantaneous approximation 
that simplifies the various expressions involved in the above relations is also devised. It also 
permits the evaluation of the normalization condition of the quantum mechanical wave 
function as a three-dimensional integral. 

I. INTRODUCTION 

The interpretation of the Bethe-Salpeter equation 1-3 as 
a relativistic wave equation for interacting particle systems 
has met difficulties in the framework of relativistic quantum 
mechanics. The reason for this is the dynamical role played 
by the relative time variables, leading, in general, to relative 
energy excitations in the spectrum of the bound states.4

•
5 

These new excited states, the so-called "abnormal" solu
tions, do not have the usual nonrelativistic behavior of mas
sive states when the velocity of light c goes to infinity. In
stead, in that limit, they disappear from the spectrum. 

On the other hand, in the Hamiltonian description of 
particle systems the time component of each coordinate 
four-vector is not assigned a dynamical role, but is consid
ered as a parameter. Similarly the energy component of each 
momentum four-vector is expressed in terms of the other 
independent variables of the system. Thus for a system of 
particles interacting at a distance (i.e., by means of poten
tials) the number of degrees offreedom is equal to the sum of 
the degrees of freedom of each particle. Because this way of 
describing particle systems is closer to physical experience 
that Hamiltonian relativistic quantum mechanisms of a fin
ite number of interacting particles6 is an appropriate tool for 
the study of systems of particles, where radiation and inelas
tic effects have been neglected or treated approximately. It is 
also for this reason that the knowledge of the Hamiltonian 
content of the Bethe-Salpeter equation is of major interest. 

The attempts to construct a relativistic mechanics of 
interacting particle systems have met, for a long time, con
ceptual and technical difficulties. 7 It is only in recent years 
that a definite progress was achieved with the aid of the man
ifestly covariant formalism with constraints. 8

-
1O The point 

which was still missing in the latter approach concerned its 
relation with field theory and, in particular, with the Bethe
Salpeter equation, where the wave function has a precise 

a) Laboratory associated with C.N.R.S. 

definition in terms of the local fields of the theory and where 
the interaction kernel is determined by means of the interac
tion Lagrangian. 

It is the purpose of the present paper to exhibit the con
nection, in the two-particle case, of the manifestly covariant 
wave equations of Hamiltonian relativistic quantum me
chanics with the Bethe-Salpeter equation. We shall show 
that the former can actually be derived from the latter and 
contain at least the sector of solutions which have Galilei 
invariant nonrelativistic limits (the so-called "normal" solu
tions). 

This connection is established by transforming the 
Bethe-Salpeter (BS) equation by algebraic manipulations 
so as to separate it into two independent equations that have 
the same structure as the wave equations of relativistic quan
tum mechanics. The first equation determines the relative 
time evolution of the system, while the second one yields a 
three-dimensional eigenvalue equation. The BS wave func
tion and the BS kernel on the one hand, the quantum me
chanical wave function and the corresponding potential on 
the other, are connected, respectively, to each other by defi
nite relations. These involve integral operators containing 
the BS kernel and could, in principle, be evaluated in pertur
bation theory for the sector of normal solutions of the BS 
equation. II 

The question concerning the validity of the above con
nection also for the sectors of abnormal solutions of the BS 
equation is not examined in this paper, but several possibili
ties are invoked in the concluding remarks (Sec. VII) for 
future investigations. 

Another method of approach, the "quasipotential" ap
proach, was also developed in the past to reduce the Bethe
Sal peter equation to a three-dimensional one. 12-18 Here one 
derives a reduced form of the BS equation by starting from 
two-times four-point Green's functions. 12 Thus, from the 
start, one eliminates the sectors of relative energy excita
tions. This equation is also usually transformed into a Lipp-
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mann-Schwinger-type equation. 
Our approach differs from the quasi potential approach 

in that it is formulated in configuration space and uses wave 
functions as basic ingredients, rather than scattering ampli
tudes. For this reason it is more amenable for quantum me
chanical problems. The quasipotential approach seems to be 
more suitable for scattering problems, where the basic ingre
dients are scattering amplitudes and where the direct con
nection with the local fields of the underlying field theory 
becomes less transparent. Wave functions are defined in a 
more indirect way. 

Because their starting point is the Bethe-Salpeter equa
tion as far as the sector of normal solutions is concerned, and 
because the transformations introduced are of algebraic na
ture, we think that the quasipotential approach 12 and our 
approach are equivalent, when considered in their general 
and complete forms, that is, before any specific approxima
tion is utilized. The advantages of each approach depend, 
however, as we outlined above, on the framework or the type 
of problem considered. 

In order to be able to extract the main physical informa
tion from the relations we established between the quantum 
mechanical and the BS equations, we devise an approxima
tion, which we call "the relativistic instantaneous approxi
mation." It is a generalization, in some sense, of the old "in
stantaneous approximation," 11,19 and has four main 
advantages: first, it is manifestly covariant and does not des
troy the relativistic invariance of the system; second, it does 
not necessitate any truncation of the interaction kernel; 
third, it permits a partial summation of the iteration series 
involved in the exact relations; and, fourth, it automatically 
selects the sector of normal solutions of the BS equation. 
This approximation leads to a considerable simplification of 
the expressions of the relations and will be widely utilized 
throughout this paper. In particular, in this approximation, 
and when the radiative corrections of the external particle 
propagators are neglected, the covariant relative time de
pendence of the BS wave function becomes completely de
termined in an explicit and kinematic way, irrespective of the 
form of the BS kernel. 

The relativistic instantaneous approximation is also 
close in spirit to the method introduced by Blankenbecler 
and Sugar13 in the framework of the quasipotential approach 
to reduce the BS equation to a three-dimensional one and to 
simplify its treatment. Here one starts with the BS equation 
written as an integral equation for off-mass-shell scattering 
amplitudes. One then subtracts from and adds to the kernel 
K of the equation another kernel K, appropriately chosen, 
such that K, rather than K, serves as the starting point for the 
physical calculations and reduces at the same time the inte
gral equation to a three-dimensional one. The rest of the 
kernel, K - K, is then treated as a perturbation in an iter
ation series. There are, of course, many choices for the kernel 
K, 13-15.18 but these, in general, take into account the physical 
properties of the system at low energies, such as the unitarity 
condition and the nonrelativistic limit. 

The relationship between the BS wave function and the 
quantum mechanical wave function also permits one to ob
tain the normalization condition of the latter from that of the 
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former. 3,20.21 It is obtained, in its relativistic instantaneous 
approximation, as a three-dimensional integral. 

The plan of the paper is as follows. In Sec. II we consider 
the case oftwo spin-O boson systems. (The results concern
ing two equal mass spin-O bosons were already presented in 
Ref. 22) In Sec. III, we introduce the relativistic instanta
neous approximation and apply it to the general results ob
tained in Sec. II. The case of spin-! fermion-antifermion sys
tems is treated in Sec. IV, while systems composed of one 
spin-! fermion and one spin-O boson are considered in Sec. V. 
The normalization condition of the quantum mechanical 
wave function is presented in Sec. VI. The Conclusion fol
lows in Sec. VII. 

Throughout this paper we always consider bound states, 
or two-particle scattering states, which have a real and posi
tive total mass squared, p2 > 0, and positive total mass, 
(p2) 1/2 > O. 

II. TWO SPIN-O BOSON SYSTEMS 

In the manifestly covariant relativistic quantum me
chanics the wave function of the two spin-O particle system 
satisfies two independent wave equations,IO each of them 
being a generalization of the Klein-Gordon equation for 
particle 1 or 2, 
Ha \II(X I ,x2) == (p~ - m~ - V)\II(X I ,x2) = 0 (a = 1,2), 

(2.1 ) 

where V is a Poincare invariant interaction potential. 23 

These two wave equations must, however, be compatible 
among themselves and one therefore gets the compatibility 
(or integrability) condition 

(2.2) 

This equation is a constraint on the potential. By de
manding that it be satisfied in the strong sense one gets 

[pi-pLV] =0. (2.3) 

The Poincare invariant general (local) solution of this equa
tion is 

V = V(XT2,xT'V,p2,V2,p'v), 

where we use the following notation: 

p =PI +P2' v = !(PI - P2), 

X=~(XI+X2), X=X I -X2, 

T (A)A A /( 2)1/2 XI-' = XI-' - p'X PI-" PI-' =PI-' P , 

p2> 0, XT2 = X2 _ (p·X)2. 

(2.4 ) 

(2.5) 

For any vector Ywe shall define its "transverse" and "longi
tudinal" parts with respect to the total momentum P by 

Y! = YI-' - (p' Y)pl-" Y~ = (p' Y)pl'-' YL = (p' Y). 
(2.6) 

By subtracting the two equations (2.1) from each other 
we get an equation that determines the covariant relative 
time evolution of the system: 

(pi - p~)\11 = 2p'v\ll = (mi - m~ )\11. (2.7) 

The solution of this, for eigenfunctions of PI-" is 

,T,( ) _ - ip'X - i(mr - m~)p'x/(2p2).,,( T) 
TX.,x2 -e e 'l'X' (2.8) 

and tjJ(XT) defines a three-dimensional "internal" wave 
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function. Taking the sum of the two equations (2.1), one 
gets the "eigenvalue" equation 

[l/J2 - ~(mi + m~) + (l/4p2)(mi - m~ )2 

+ vT
' - V],p(x T

) = 0, (2.9) 

which is a three-dimensional Schrodinger-type equation. If 
the potential V is chosen to be of order c2 (c is the velocity of 
light), then, in the nonrelativistic limit, Eq. (2.9) reduces to 
a Galilei invariant Schrodinger equation.24 

The wave equations (2.1) can also be generalized so as 
to include nonlocal potentials (in XT): 

(p~ - m~ )'I'(X,x) = f V(XT,X'T;p)'I'(X,xvX'T)d 3X'T 

(a = 1,2), (2.10) 

where V is a Poincare invariant function, may depend on p2 
and also act as a derivative in the relative (transverse) co
ordinates, and X'T is defined as the transverse part of x' with 
respect to p, with x~ = XL' As a consequence of Eqs. (2.10) 
the wave function 'I' has the same dependence on the longitu
dinal variable XL as in Eq. (2.8) and one ends up with a 
three-dimensional nonlocal Schrodinger-type equation. 

Up to Poincare invariant canonical transformations,23 
Eqs. (2.10) are the most general Poincare invariant wave 
equations satisfying the compatibility condition (2.2). 
Therefore, one has to expect that any other Poincare invar
iant description of a two spin-O particle system, having a 
nonrelativistic Galilei invariant limit, is equivalent, by 
means of some nonsingular transformation, to the one ob
tained with Eqs. (2.10). It appears that this is actually the 
case for the Bethe-Salpeter equation and we intend to show 
in the rest of this section, the existence of such a transforma
tion. 

We first notice that the quantum mechanical wave func
tion '1', (2.8), cannot be identified, except in the free case, 
with the BS wave function <1>. The reason is that the latter 
exhibits a complicated relative time dependence (in XL) 

which is dictated by its spectral properties in momentum 
space; in sum, it has to satisfy a Deser-Gilbert-Sudarshan 
representation,25 which is typical for vertex functions, 
whereas the relative time dependence (in XL) of '1', (2.8), is 
rather trivial. We therefore have to expect that the quantum 
mechanical wave function 'I' is related to the BS wave func
tion <I> by some nontrivial transformation, which in turn 
should relate the BS equation to Eqs. (2.10).26 

To find this relationship we start from the Bethe-Sal
peter equation written in its integrodifferential form: 

(pi - mi )<I>(xt,x2) 

'fd 4 d 4 d4' d4 , K( " . a . a ) = -I Yt Y2 x t X2 Yt'Y2,X I ,X2;1-,I-
aX I aX2 

x~a2F(X2 - Y2,m2)84(x I - Yt)<I>(x; ,x;), (2.11a) 

(p~ - m~ )<I>(xt,x2) 

'fd 4 d 4 d 4 , d4 , K( " . a . a ) = -I YI Yz XI X2 YI'Y2,X t X2;1-,I-
aX t aX2 

x!aIF(X I - Yt,m t )84(x2 - Y2)<I>(X; ,x;), 
(2.11b) 
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where ~aF (x,m) is the free propagator27 

~aF(x,m) =_1_' -f e-
ik

'
x 

d 4k 
2 (21T)4 k 2 - m 2 + iE 

2(m2 _ VT2) 1/2 

X exp [ - iJxL J (m2 - vT2 ) t/2 ]83(XT), 
(2.12) 

ma (a = 1,2) representing the renormalized masses, and we 
have included, in the form of derivative operators acting on 
X I and x 2, all radiative corrections of the full propagators 
~a~F (a = 1,2), in the kernel K. 

To see the latter feature, we notice that we are consider
ing nonconfining systems, in which case the pole terms in the 
renormalized masses of the full propagators can be factored 
out. In this case the full propagator ~a;, (x,m) satisfies the 
representation 

1 A, _ i f e-ik'xaRa(k) d 4k 12 
-L.l F(X ,m ) --- (a = , ), 
2 a a a (21T)4 k 2 _ m~ + iE 

where Ra (k) represents the contribution of the radiative 
corrections to the free propagator, other than the additive 
corrections included in the renormalized mass m. Further
more, the function Ra (k) does not vanish at the pole value 
k 2 = m~. The above equation can then be written as 

!a~F(Xa,ma) = -i(a; +m;)-IRa(i~)84(Xa). 
aXa 

Thus the factorsR di(a lax/) )andR2(i(a laxz) ) of part i
cles 1 and 2, respectively, can be included, in multiplicative 
form, in the usual BS kernel 

K( " . a .a) YI'Y2,X I ,X2;1-,I-
aX I X2 

=KO(Yt>Y2'X; ,x; )RI(i~)Rz(i~) 
aX I aX2 

-K ( ")R (. a . a ) = 0 Yt,Y2,X t ,XZ 1-,1- . 
ax ax 

We notice that Eqs. (2.11) are also valid for scattering 
systems. 

Because of translation invariance, the kernel K actually 
depends on three relative coordinate four-vectors and we 
write it in the form28 

=K (z t,zz,x' ;p,v), (2.13 ) 

and we introduce the notation 

Zt=Yt- X;, ZZ=Y2-X;, 

X'=!(xi +x;), x'=x; -x;, w=x-x'-z. 

Furthermore the wave function <1>, being an eigenfunc
tion of PI-" can be written as 

<I>(x t,x2) = e-ip'Xcp(x). (2.15) 

We now take the difference and the sum of the two equa
tions (2.11). After making the change of variables (2.14) 
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and using (2.15) we get 

p·v<l>(X,X) = !(mi m~ )<l>(X,x) 

- !L1 IF (w)eiP-WI2] <l>(X,x') , (2.16) 
I 

[
.!.p2+VT2+ (p-V)2 -.!.(mt +m~)]<l>(x,x) 
4 pZ 2 

= - ~fd4Zd4Zd4X' K(ZI,z2,X';P,v} 

Xeip·Z [!L12F ( - w)e - ip'w/2 

+ !L1tF (w)eiP'w/2] <l>(X,x'). (2.17) 

Equation (2.16) can be used to find the function 'I' that 
satisfies Eq. (2. 7). By using representation (2.12) and rear
ranging certain terms one finds 

'I'(X,x} =<l>(X,x) + ~ 1/2fd 4Z d 4z d 4x' K(ZI,z2,X';p,v)eiP 'Z 
4(p ) 

X { 1 [B(wL}e - i(b, a)wL + B( _ w
L 

)ei(b, + a)WL] 
b1(bl+a+c) 

+ 1 [B(wL)e - i(b, + a)wL + O( _ w
L 

)/(b, - a)WL] 
b2 (b2 + a - c) 

+ 2e - iCWL [O(w )(e - i(b, - a - C)WL _ 1) + B( _ w ) (ei(b, - a + C)WL _ 1) ] }03(WT)<l>(X x'} 
(a2 + c2 _ ! ( b i + b i » L L , , 

where we have defined 

a (p2) 1/2/2, b l = (mf _ VT2 ) 1/2, 

b2 = (mi - vTZ ) 1/2, c = (mi mi )/2(p2) 112. 

(2.19) 

If the BS wave function <l> belongs to the sector of solu
tions of the BS equation which have nonrelativistic limits, 
then the operations defined inside the brackets in relation 
(2.18) are well defined and have nonrelativistic limits. 

We shall write Eq. (2.18) with the symbolic notation 

'I'=<l> + KI*<l>. (2.20) 

In perturbation theory, and hence for the sector of nor-
mal solutions of the BS equation, II this relation can be in
verted and <l> can be expressed in terms of 'I' : 

<l>(X,x) = (1 +KI*)-I'I'(X,X) 

='I'(X,x) + f d 4x' K 2(x,x';p)'I'(X,x'). (2.21) 

Next, we replace the operator (p-v)2inEq. (2.17) by its 
expression obtained from Eq. (2.16), on which we apply the 
operator p- v. After using representation (2.12), we bring 
some of the terms of the right-hand side of Eq. (2.17) to the 
left, to make the function 'I' (2.18) appear. We then get the 
equation 

(2.18 ) 

(2.22) 

The right-hand side has the same XL dependence (2.8) of the 
function 'I' of the left-hand side as it should be. 

Replacing <l> by its expression (2.21) in terms of 'I' we 
obtain the second equation satisfied by '1': 

[
.!.n2 _ .!.(m2 + m2) + (mf m~ }2 + vTZ]'I'(XX) 
41' 2 I 2 4p2 ' 

= - ~ 1/2fd4Zd4Zd4X'K(ZI,z2,xI;P,V} 
2(p } 

XeiP'Zo\wT)e-iCWL(1 +KI*)-I'I'(X,X'), (2.23) 

which is to be compared to Eq. (2.1O) [the half-sum of the 
two equations (2.1O) ]. By identifying the right-hand sides of 
both equations [(2.10) and (2.23)] we get the expression 
for the potential V in terms of the kernel of the BS equation: 

i fd4Zd4 d4 "d I K(" T) 2 1/2 Z X XL Zt,Z2,x ;p,vL = c,v 
2(P } 

(2.24) 

Equations (2.18 )-( 2.24) determine, in the spin-O case, the relationship between the quantum mechanical wave function 
and its interaction potential on the one hand, and the corresponding BS wave function and the BS kernel on the other, for the 
sector of solutions that have nonrelativistic limits. 

We end this section by noticing that relation (2.18) can also be expressed by means of the propagator functions, after 
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using representation (2.12) (Ref. 27); this renders the graphical interpretation of the corresponding iteration series in 
perturbation theory more transparent: 

or 

'I'(X,x)=4>(X,x) + ~fd4Zd4Zd4X' K(zl,zz,x';p,v) 

e i(b, a + ( 
~----"- b2 

(bz -a +c) 
(2,25) 

4>(XI,x2) = 'I'(X I,x2) ~ f d 4YI d 4Y2 d 4x; d4X~ K(YI xi ,Y2 x;,x';p,v) 

-'-------- (b l + i aIL) ]04(X2 
1 /(b 1 a c)(x 

X 1 
(b l + a + c i€) (b l a c i€) 

+ 1 
i€) [

1 
1 e 

i(b, a+c)(x 

+ i a2L ) ] 
(b2 + a - c (b2 a+c 

X~(XI 
1 

Yz,m2) }4>(X; ,x:i). YI)-a2F (X2 
2 

III. THE RELATIVISTIC INSTANTANEOUS 
APPROXIMATION 

The relations between the two sets of quantities ('I', V) 
and (4),K) can, in principle, be exactly evaluated in pertur
bation theory. This implies the occurrence of two kinds of 
series: the first one appearing in the evaluation of the kernel 
K itself, the second one in the evaluation of the inverse of the 
operator (1 + K 1 *) in (2.21). 

The lowest-order approximation of the perturbation ex
pansion would correspond to the ladder approximation of 
the kernal K: 

K(zl>zz,x';p,v) 04(ZI )04(Z2)D(x',PI,P2)' (3.1) 

where the eventual dependence of D on the momenta comes 
from the couplings of the mediating field to the external par
ticles.29 In this approximation one also neglects the operator 
Kl in (2.20). One then gets 

4> '1', 

~ I/OfdXL D(XL,XT,PI'Pz), 
2(p) ~ 

(3.2) 

which is nothing but the covariant form of the old instanta
neous approximation. 1,19 

We shall not pursue this procedure here, since, to higher 
orders, the expressions become rather complicated and ex
plicitly dependent on the type of the interaction Lagrangian, 

In order to have a clearer insight into the contributions 
of the higher-order terms in the iteration series, we shall now 
appeal to an approximation that considerably simplifies the 
structure of the equations. We call it "the relativistic instan
taneous approximation," for it appears to be a generalization 
of the old instantaneous approximation. It consists in replac
ing the various kernel operators appearing in the integrals by 
their mean values with respect to the covariant relative time 
variables (more precisely the longitudinal components of 
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(2.26) 

the relative coordinates), concentrated at the origin of these 
variables. Thus the operator K(z I,Z2'X';P' v) will undergo the 
approximation 

(3.3 ) 

Besides the simplifications it results in, this approxima
tion has several other advantages. First, it is manifestly co
variant and hence it preserves the relativistic invariance of 
the theory, considered as that of a system of two particles. 30 

Second, it does not necessitate any truncation of the interac
tion kernel and therefore can be applied to any order of the 
accuracy of the evaluation of the latter. Third, it permits a 
partial summation of the iteration series involved in the ex
act relations. Fourth, it automatically eliminates the even
tually existing abnormal solutions of the BS equation. This 
phenomenon is very analogous to the approximation, in one
dimensional quantum mechanics, of potential wells by 8-
functions, in which case only the ground state solution (in an 
approximate form) is retained. Here, of course, the sector of 
ground state solutions in the relative time variable just corre
sponds to the sector of normal solutions of the BS equation. 
Furthermore, as is the case with the instantaneous approxi
mation, this approximation yields, in the nonrelativistic lim
it, the exact expressions of the various quantities. 3 

I 

As we emphasized in the Introduction, this approxima
tion is close in spirit to the method introduced by Blanken
becler and Sugar13 in the framework of the quasipotential 
approach to reduce the BS equation to a three-dimensional 
one and to simplify its treatment. 

When approximation (3.3) is made, Eqs. (2.18) and 
(2.22) become, respectively, 
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'I'(X,x)=ct>(X,x) + i fd4Zd4Zd4X'K(Z,z x'.;pV){ 1 [O(X )e-i(b,-a)XL+O(_X )i(b,+a)XL] 
4(p2) 1/2 I 2' " b

l 
(b

l 
+ a + c) L L 

+ 1 [ O(X
L 

)e - i(b, + a)xL + O( _ XL )i(b, - a)XL] + 2e - icxL 

b2(b2 +a-c) (a2 +c2 -!(bi +b~») 

X [O(XL ) (e - i(b, - a - c)xL _ I) + O( _ XL) (ei(b, - a + c)xL _ I) ] }<53(XT - X,T - ZT)ct>(X,xi. = O,x,T), (3.4) 

[~p2 _ ~(m2 + m2) + (mi - m~ )2 + VT2 ]'I'(X,x) 
4 2 I 2 4p2 

= _ i !d4Zd4Zd4X'K(z,z,x";PV)<53(XT_X'T-ZT)e-iCXLct>(X,x' =OX'T) (3.5) 
2(p2)1/2 I 2 " L , . 

We now factorize in K the multiplicative term coming from the radiative corrections of the external propagators: 

K(ZI,Z2,x';P,V) = R (p,V)KO(ZI,z2'X'). (3.6) 

We also define 
- T R=R(p,vL = C,V ). (3.7) 

Equations (3.4) and (3.5) become 

'I'(X,x) = ct>(X,x) + 4(P~) 1/2R {"'} f d 4Z d
4
z d 4x' K O(ZI,z2,x')<53(XT - X'T - ZT)ct>(X,xi. = O,x'T), (3.8) 

- [I 1 (mi-m~)2] R -I _p2 _ _ (m2 + m 2 ) + + VT2 'I'(Xx) 
4 2 I 2 4p2 ' 

= - i fd4Zd4Zd4x' K (z,z ,x')<53(XT _X,T _zT)e-icXLct>(Xx' =O,x,T) (3.9) 
2(p2) 1/2 0 I 2 , L , 

the dots in the curly brackets of Eq. (3.8) representing the terms in the curly brackets of Eq. (3.4). 
We can now replace the integral in Eq. (3.8) by its equivalent expression given by the left-hand side ofEq. (3.9). After 

some algebra we get 

ct>(X,X) = RR _1{_I_(a + c + bl)e -i(b,-a-c)XLO(xd + _I_(a + c _ bl)ei(b, +a+c)XLO( - XL) 
2b l 2b l 

+ _I_(a _ c _ b2)e - i(b, + a - C)XLO(XL ) + _I_(a _ c + b2)ei(b, -a + C)XLO( - XL) }'I'(X,x). (3.10) 
2b2 . 2b2 

After applying the operator v L , contained in R (p, v L ,vT), on the variable XL appearing on its right in the above equation 
[also note that the XL dependence of 'I' is given by exp ( - icx L ) ] one can take the limit XL = 0 and then replace the function 
ct>(X,xL = 0, XT) in terms of 'I' in (3.9) to get the dynamical equation of '1'. For the sake of simplicity we shall, however, 
neglect henceforward the contributions of the radiative corrections of the R terms and present the results without these terms. 

Relation (3.10) then becomes 

ct>(X,x) = {_I_(a + c + bl)e-i(b, -a-c)xLO(xd + _I_(a + c - bl)i(b, +a+c)XLO( - XL) 
2b l 2b l 

+ _I_(a _ c _ b2)e - i(b, + a - C)XLO(XL ) + _I_(a _ c + b2)ei(b, - a + C)XLO( - XL) }'I'(X,X), 
2b2 2b2 

or, in terms of the propagator functions [Eq. (2.12) (Ref. 27)], 

For the value XL = 0, relation (3.11) gives 

ct>(X,XL = O,xT) = (a + c + a - C)'I'(X,xL = O,xT) 
2b l 2b2 

= f d 3x,T {(a + c) ~ aIF(XT - x,T,m l ) + (a - c) ~ a 2F ( - XT + x,T,m2) }'I'(X,XL = O,X'T). 
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After replacing this function in the integral in (3.9), one 
gets the wave equation for '1': 

_p2 _(m2 + m2) + I - Z + uTZ 'I'(Xx) [ 
1 1 (m

2 
m

2 
)z ] 

4 2 I Z 4p2 ' 

i 
= 2(p2) lIZ 

X fd4Zd4Zd4X' K(ZI,zZ,x')c53(XT _X'T 

X --+-- 'I'(X,xux ), (
a +C a - C) 'T 

2b; 2b~ 
(3.13) 

where b; and b ~ are defined as in (2.19), but with uT re
placed by U,T (i.e., acting on X,T). 

Comparison with Eqs. (2.10) yields the expression of 
the potential V in terms of the kernel K: 

Xc53(XT _ X,T _ ZT)(a + c + a - C). 
2b; 2b; 

(3.14 ) 

This equation, together with Eq. (3.12), can also be rep
resented in the form 

f V(xT ,x'T;p) 'I' (X,xL ,x'T)d 3X'T 

- ~ I/Zfd
4
Z d

4
z d

4
x' K(zl>zz,x') 

2(p ) 

Xc53 (XT _X'T _zT)e-icXLcf>(X,x
L 

=O,X,T). (3.15) 

It is convenient now to define the "effective" kernel Kby 
the equation 

K(xT,x'T) 

f d 4Z d 4z dx~ K(Zlh,x')c53(XT - X,T ZT), 

(3.16) 

the expression of which in the ladder approximation (3.1) is 

K(xT,x'T) = c53 (XT - x'T)D(xT), (3.17) 

with 

(3.18 ) 

Notice that the function D above may also contain momen
tum dependences coming from the coupling of the mediating 
field with the external particles. 

With notation (3.16), Eqs. (3.13)-(3.15) take the 
simpler forms 

[ 
1 z -p 
4 

_(m2 + m 2 ) + I - 2 + uTZ 'I'(Xx) 
1 (m

2 
m

2 
)2 ] 

2 I 2 4p2 ' 

-- X X ,x --+--i fd 3 'TK-( T 'T)(a + c a - C) 
4a 2b; 2b; 

X'I'(X,XL,x'T), (3.19 ) 

V( T ,T.) i K-( T 'T)(a+c+a-c) x x p = -- x x -- --
" 4a' 2b; 2b;' 

(3.20) 
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f V(xT ,x,T;p)'I'(X,xUX,T)d 3x,T 

= - :a f K(xT,x'T)e - iCXLcf> (X,xL = O,x'T)d 3X'T. 

(3.21 ) 

Equations (3.11) and (3.14) [or (3.20)] givetherela
tionships between the two sets of quantities ('I', V) and 
(cf>,K) in the relativistic instantaneous approximation. 
Compared to the general formulas (2.18) and (2.24) they 
appear to be much simpler, but still keeping contributions of 
high-order terms in the iteration series. The remarkable fea
ture with relation (3.11) is that it no longer makes any ex
plicit reference to the kernel K; the effects of the operator K I 
in (2.21) have been replaced by kinematic integral opera
tors, irrespective of the form of K. Similarly Eq. (3.20) pro
vides a more transparent relationship between V and K, 
where the effects of the operator KI have been replaced by 
the kinematic integral operator ( a + c) 12b; + (a c) I 
2b~). 

A. How to get local potentials 

We now search for the kinds of approximations needed 
in order to have for the potential Va local function (i.e., not 
an integral operator). It is these kinds of potentials that are 
most commonly used in practical calculations in quantum 
mechanics and very often they provide the main physical 
features of the problems under study. The first approxima
tion to be considered is, of course, the ladder approximation 
of the kernel K [(3.1) and (3.17)]. Here the function D(x) 
should not be necessarily regarded as the lowest-order 
expression of the propagator of the mediating field, but 
could even represent its full propagator. More generally it 
might also represent an effective local approximation of the 
kernel K involving a series of high-order diagrams. 

With approximation (3.17) relation (3.20) becomes 

V(XT,X'T;PI'PZ) 

= - (i14a)c53 (XT - x'T)D(XT;PI,P2) 

x(a + c)/2b; + (a - c)/2b ;). (3.22) 

We see that even in the ladder approximation the quan
tum mechanical potential V is still a nonlocal operator in x T, 

due to the presence of the integral operators (a + e)1 
2b) + (a - e)/2bz) in Eq. (3.22). In the old instantaneous 
approximation (3.2) this term is absent. The potential V 
becomes a local function in x T only after the latter integral 
operator is approximated by some local function. The sim
plest approximation would correspond to its replacement by 
a constant mean value of the type 

(a = 1,2), 

(3.23 ) 

the mean value being taken either as the same one for all the 
states (therefore representing an order of magnitude) or 
representing the true mean value (calculated, for instance, in 
the L2 norm in the c.m. frame) for each state. 

With approximation (3.23) Vbecomes a local function 
inxT

; 
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V(xT ,x'T ;PI,P2) 

= - U/4a)153 (XT - X'T)D(XT;PI,P2) 

x(a + e)/2(b l ) + (a - e)/2(b2»)~ (3.24) 

It is to be emphasized that, even in this simplified ver
sion, the relativistic instantaneous approximation provides 
nontrivial corrections coming from the iteration series of the 
operator K I (2.20). The correction term of the last parenthe
ses becomes mostly crucial in the case oflight (nearly mass
less) bound states, where the numerator tends to 0, while the 
denominator, because of the quantity (vT2

), remains fin
ite.32 

In sum, to have local potentials in quantum mechanics, 
one needs the following three successive approximations of 
the field theoretic quantities: (i) the ladder approximation 
of the BS kernel, (ii) the relativistic instantaneous approxi
mation ofthe kernel operator, (iii) a mean value approxima
tion of kinematic integral operators. 

B. Nonrelativistic limit 

We next examine the relationship between the BS wave 
function and the quantum mechanical wave function in two 
different limiting cases: the free limit and the nonrelativistic 
limit. 

It is evident from the general relation (2.18) that in the 
free case (i.e., whenK = 0), \{I and <I> are identical, 

\{Ifree = <l>free. (3.25) 

We could also check whether this relationship remains 
true after the relativistic instantaneous approximation has 
been used. In the free case \{I satisfies the wave equation 

[J.- p2 _ J.- (m2 + m2) + (mi - m~ )2 + vT'] \{I free = 0 
4 2 I 2 4p2 

== (a + e + b l ) (a + e - bl)\{Ifree = 0 

(3.26) 

Because the physical Hilbert state is determined by the range 
of values P'PI >0 andp'P2>0 (see Ref. 10, Sec. III), the 
factors (a + e + b l ) and (a - e + b2 ) are positive. Using 
then Eqs. (3.26) in (3.11) one finds again relation (3.25). 

To study the nonrelativistic limit, we use the following 
expansions (here, e is the velocity oflight): 

Po = Me2 + E + p2/2M + O(e- 2), M = m l + m2, 

(p2) 1/2 = Me2 + E + O(e- 2), XL = et + O(e- I), 

XaO = eta (a = 1,2), t = tl - t2, xl; = O(e-2), (3.27) 

xi = Xi - t( pJM) + O(e- 2), vl; = O(eO), 

vi = CUi + O(e- I
), U = (m2PI - m IP2)/M. 

We also define the nonrelativistic c.m. variables 

(3.28) 

With these expansions, relation (3.11) becomes, to 
leading order, 
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<I>(X,x) = {o(t)exp[ - i;i (~ - E)t ] 

+ O( - t)exp[<~; (;; - E )t ]}\{I(X,X). 

(3.29) 

[Notice that the arguments of the exponentials in (3.11) 
contain a factor (fie) -I; also in the nonrelativistic limit the 
exponentials ei(b, + a + C)XL and e - i(b, + a - C)XL disappear by 

rapid oscillations.] Relation (3.29) shows that, even in the 
nonrelativistic limit, the wave functions <I> and \{I are not 
identical. 

To get the full expression of the wave function <I> in 
terms of the internal wave function t/J(x T

), we also expand 
the function \{I. Using expression (2.8) and the variables 
(3.28) one ends up with the formula 

<I> (X I ,x2) 

= exp[ - i(Me2 + p2/2M + E) Tc.m . ] 

Xexp[ - ip·Xc.m.] {o(t)exp[ - i(2:
1 

- ;; E)r ] 
+ O( - t)exP[iL:

2 
- ';; E)t ]}t/J( x - ~ t) . 

(3.30) 

For bound state problems (in nonconfining interac
tions) E is negative. We therefore deduce that for positive 
values of the relative time variable t, the internal part of <I> 
has positive frequencies and for negative values of t it has 
negative frequencies, in accordance with the general proper
ties of the BS wave function, as first demonstrated by Wick.4 

As far as the potential is concerned, it reduces from rela
tion (3.22), or even from (3.20), to the usual static potential 
obtained with the old instantaneous approximation in the 
extreme nonrelativistic limit. 1.19 [Its covariant form is given 
in this case by (3.2).] 

c. Analyticity property in the relative energy variable 

To end this section we shall examine the impact of the 
relativistic instantaneous approximation on two theoretical 
properties of the BS wave function. The first one concerns its 
analyticity property in momentum space of the relative ener
gy variable. The second one concerns the causality property 
of the commutator part of the BS wave function. 

As was shown by Wick,4 for bound state problems in 
nonconfining interactions, the BS wave function displays an 
analyticity property in the momentum space of the relative 
energy variable. Stated differently, the internal wave func
tion, for positive values of the relative time variable, contains 
positive frequencies only, while for negative values of the 
relative time variable, it contains negative frequencies only. 
This result is obtained by inserting a complete set of states in 
the matrix element defining the BS wave function and by 
noticing that the bound states have total masses (p2) 1/2 
smaller than the sum of the masses of each constituent 
[(p2)1/2<M]. 

This property was already checked previously in the 

H. Sazdjian 2625 



                                                                                                                                    

nonrelativistic limit [from formula (3.30)], but we also 
wish to check it in the general case from formula (3.11). 
First, we note that the quantum mechanical wave function 'I' 
contains a relative time dependence of the typeexp( - icxL ) 

I 

The argument of the first exponential in the curly brack
ets is (besides the factor - ixL ), 

(3.32) 

and, since vT is spacelike, 

bl-a-cL>m1-_1 (p2)1/ 2 =ml I--P-- >0, 
2 m (( 2)1/2) 

M2 M M 
(3.33 ) 

because (p2) 112 < M for bound states in nonconfining inter
actions. Therefore the frequency for XL> ° is positive. Simi
lar analyses can be repeated for the other terms in the curly 
brackets of relationship (3.31). The general result remains: 
the relativistic instantaneous approximation maintains the 
relative energy spectral properties of the BS wave function. 

We now come to the causality property of the commuta
tor part of the BS wave function. As is known, the latter is 
defined as the matrix element of the T product of two fields 
between vacuum and the state IP). The general spectral 
properties of this function are those of vertex functions satis
fying the Deser-Gilbert-Sudarshan representation. 25 In
stead of the Tproduct we could consider as well the matrix 
element of the commutator of two fields, in which case the 
vertex function should display causal properties (i.e., should 
vanish for spacelike relative distances x). The question 
arises as to whether this property is also maintained by the 
relativistic instantaneous approximation. The answer is, in 
general, negative. 

The phenomenon is best seen in the equal-mass case 
m I = m2 = m. The relationship (3.11) can also be written in 
integral form 

CP(X,x) = 2(21T)3cP2r I2 
cos(p;x) - sin(P;x) a:

L

) 

X J 'I'(X,x,r) + aF(x - x'T,m)d 3x'T. (3.34) 

In order to obtain the expression of the "causal" wave 
function, given by the matrix element of the commutator of 
the two fields, one simply replaces the propagator function 
of the right-hand side of (3.34) by the Pauli-Jordan func
tion. One gets 
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(2.8), which balances the terms exp(icxL ) contained in the 
curly brackets in (3.11). Furthermore, using, instead of the 
variable X (2.5), Wick's total variableXc.m. (3.28), relation
ship (3.11) becomes 

(3.31) 

I 

CPc (X,x) = 2i(21T)3cP2r I2 
cos(p;x) - sin(P;X) a:

L

) 

X J 'I'(X,x,T)a(x - x,T,m)d 3X 'T. (3.35) 

Except in the hyperplane XL = ° and its neighborhood, 
determined by the spreading radius of the wave function 
rp(xT), the function CPc (X,x) does not in general vanish for 
spacelike values of x. This shows that the relativistic instan
taneous approximation does not preserve, in general, the 
causality properties of the local fields of the underlying field 
theory, although the relativistic in variance of the system, 
considered as that of two constituent particles, is maintained 
[because of the manifest covariance of the approximation 
and the compatibility of the two wave equations (2.10), the 
structure of which is not altered by this approximation] . 

IV. SPIN-~ FERMION-ANTIFERMION SYSTEMS 

In this section we consider systems composed of spin-! 
one fermion and one antifermion, although their masses 
might be different. The treatment of two fermion systems 
follows similar lines. 

In the manifestly covariant two-particle relativistic 
quantum mechanics the fermion-antifermion wave function 
satisfies two independent wave equations, 10 which are gener
alizations of the Dirac equations relative to the fermion 
(particle 1) and to the antifermion (particle 2) and are the 
analogs of Eqs. (2.1) of the spin-O case, 

HI'I'=. [Y'PI - m l - ( -1]'P2 + m2) V]'I' = 0, ( 4.1a) 

(4.1b) 

where the wave function 'I' is a 16 component spin or of 
rank 2, 

'I' = 'l'a,a, (X I,X2) (a l ,a2 = 1, ... ,4). (4.2) 

The matrices Y and 1] are the Dirac matrices acting on the 
fermion and antifermion spinor indices, respectively (la
beled by subindices 1 and 2): 

YI-' 'I'='YII-' 'I' = (YI-' )a,{3, 'I'{3,a, , 

1]1-' 'I'=.'I'Y21-' = 'l'a,{3, (YI-' ){3,a,· 

(The matrices yand 1] commute.) 

(4.3 ) 

The potential V is a Poincare invariant function of the 
coordinates, momenta, and Dirac matrices. The compatibi
lity condition (2.2) of the wave equations requires that V 
depend on the relative coordinates x through the transverse 
components x T alone 10 [(2.5)], 
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V= V(xT,Pt,P2,y,Tj) (4.4) 

[where V satisfies Eq. (2.3)]. 
Equations (4.1) completely determine the longitudinal 

relative coordinate XL dependence of the wave function 
through the equation 

(4.5) 

which is a consequence of Eqs. (4.1) and the solution of 
which is, for eigenfunctions of the total momentump, given 
by the decomposition (2.8). 

As is the spin-O case the potentials V can also be general
ized so as to include nonlocal potentials in XT (Le., integral 
operators) : 

(4.6b) 

where V has the same properties as the one appearing in the 
spin -0 case (2.10) and 'I' has the same dependence on the 
relative longitudinal coordinate XL as in Eq. (2.8) [it satis
fiesEq. (4.5)]. 

In order to find the relation of these equations with the 
BS equation, we start again from the integrodifferential form 
of the latter: 

(Y-Pt - m t )<I>(x t,x2) 

=i(Tj'P2- m 2) I d4Ytd4Y2d4X; d4X~ 

K( " . a . a) 1 A ( ) X Yt'Y2,X t ,X2;1 - ,1 - - U.2F X2 - Y2,m2 
aX t aX2 2 

X84(x t -Yt)<I>(x;,xi), (4.7a) 

(Tj'P2 + m 2)<I>(xt,x2) 

= i(Y'pt + m t ) I d
4
Yt d

4
Y2 d

4
x; d

4
xi 

K( " . a . a ) 1 A ( ) X Yt'Y2,X t ,X2 ;1- ,1- - U.tF Xt - Yt,m t 
aXt aX2 2 

X84(X2-Yz)<I>(X;,x~), (4.7b) 

where the radiative correction of the full external propaga
tors have been included as derivative operators in the kernel 
K.33 

We now multiply temporarily Eq. (4.7a) by 
(Y-Pt + m t ) and Eq. (4.Th) by (Tj'P2 - m 2). We get 

(pi - mi )<I>(x t,x2) 

2627 

= i(Y'pt + m t )(Tj'P2 - m 2 ) Id("') K 

X!~2F(X2 - Y2,m2)84(x t - Yt)<I>(x;,x~), 

J. Math. Phys., Vol. 28, No. 11, November 1987 

( 4.8a) 

(4.8b) 

Compared to Eqs. (2.11), these equations have the 
same structure as the latter, except for the overall multiplica
tivefactor - (Y-Pt + m t )(Tj'P2 - m 2). We can now repeat 
the same procedure as for the spin-O case and define the wave 
function 'I' that must satisfy Eq. (4.5) and have the structure 
(2.8). The answer is 

(4.9) 

where the operator K t* is defined by Eqs. (2.18)-(2.20). 
The wave function 'I' satisfies a Klein-Gordon type 

equation similar to Eq. (2.22), but with the right-hand side 
multiplied by the factor - (Y'Pt + m t )(17'P2 - m 2). To 
get the corresponding two Dirac-type equations, it is then 
sufficient to divide the equation either by (Y'Pt + m 1) or by 
(Tj'P2 - m 2)· We finally get 

(4.lOa) 

(Tj'P2 + m 2)'I'(X,x) 

XK(Zj,Z2'X';P,V )eip'ZtP (wT)e - iCWL<I> (X,x' ), 

(4.lOb) 

with notation already introduced in (2.14) and (2.19). 
In perturbation theory, and for the sector of solutions 

having nonrelativistic limits, Eq. (4.9) can be inverted to 
express <I> in terms of 'I' . Then it is replaced in the integrals in 
Eqs. (4.10) to get the final equations satisfied by '1'. By iden
tification with Eqs. (4.6) one then gets the relation between 
the potential V and the kernel K, in a similar way to Eq. 
(2.24) of the spin-O case. 

In the remaining part of this section, we shall concen
trate on the relativistic instantaneous approximation (also 
neglecting the radiative corrections of the external propaga
tors) in which case the above relationships become simpler 
and more transparent. 

After approximation (3.3) is made and definition 
(3.16) is used,33 Eqs. (4.9) and (4.10) become, respectively, 

H. Sazdjian 2627 



                                                                                                                                    

IJI(X,X) = <P(X,X) - i(Y-PI + m l )(rrp2 - m2) ; 1/2 fd3XfT 
4(p ) 

XK(XT,XfT) { 1 [B(xL)e - feb, - a)xL + B( _ XL )/(b, + a)xL] 
bl(bl +a+e) 

+ 1 [ B(x
L 

)e - i(b, + a)xt. + ()( _ xL)e i(b, - a)xL] 
b2 (bz + a - e) 

+ 2e - iext. [B(x
L 

)(e- i(b, - a - e)xL _ 1) + B( XL )(ei(b, a + e)xL - 1)} 
(a2+cZ_!(b~ +b~») 

X<P(X,XL = O,X,T), (4.11) 

(Y-PI-ml)IJI(X,X)= : I/2(r"p2-m2)fd3x'TK(Xl~XfT)e icXL<p(X,XL=O,x,T), (4.12a) 
2(p ) 

(rrp2 + m 2 )IJI(X,x) = : 1/2 (Y'P! + m l ) f d 3x'T K(XT,x'T)e icXL<p(X,XL = O,X,T). (4.12b) 
2(p ) 

Comparison of Eqs. (4.12) with Eqs. (4.6) shows immediately that relation (3.21) of the spin-O case holds also in the 
spin-! case. 

We now consider relation (4.11). Because the radiative corrections of the external propagators have been neglected, we 
can bring the curly brackets outside the integral. We then commute the operators (Y'PI + m l ) and (rrpz - m 2 ) with the 
expressions contained in the curly brackets and also apply the longitudinal components of P I and P2 on the variable XL' Finally 
we use Eqs. (4.12) and (3.21) to get the explicit relationship between <P and IJI: 

<P(X,x) = {( 1I2bl )(a + e + bl)e - l(b, -0 - C)xLB(xL ) + (1I2b l )(a + e _ b
l 
)/(b, + a + C)XLB( XL) 

+ (1I2b
2
)(a - C - bz)e -- feb, + a - C)XLB(xL ) + (l/2b2)(a _ e + b

2
)ei(b, - a + C)XLB( - XL )}IJI(X,x) 

+ {( 1I2b
l 
)(B(xL )e - i(b, a - c)xL + ()( _ XL )ei(b, + a + C)XL) 

_ (1I2b
2
)(B(xL )e- i(b,+a-c)XL+ B( -XL)/(b, a+C)XL)} 

X [Y'p(1]"Pz - m 2 ) -1]}(Y-Pl + ml) J f V(XT,XfT;Y,1];p)IJI(X,XL,X'T)dVT 

+ {(1I2b
l

) [B(xL)(a + e - bl)e -l(b, -a-c)xL + B( - xL)(a + e + bl)eHb, +a+c)xL J 
+ (l/2b2) [B(xL)(a - e + b2)e - i(b, + a c)xL + B( _ xL)(a _ e _ b

2
)ei(b, - a + C)X/-]) 

XY-P 1]'P f V(XT,XIT;Y,1];p)IJI(X,XL,XIT)d3X'T. 

In the hyperplane XL = 0, this relation becomes 

<P(X,xL = O,XT) = (a + e + a - C)IJI(X,XL = O,XT) + (_1_ 
2b l 2b2 2b 1 

2~ )[Y}(1]'P2 - m z) -1]'P(Y-PI + m l )) 
Z 

Xf V(Xl~x'T;y,1];p)IJI(X,XL = O,x'T)dVT 

where we have defined 

(4.13) 

(4.14) 

PIp. =Plp. -vi; +eA, PZp. =PZp. + vi; -epp.. (4.15) 

Insertil!¥ the expression (4.14) of<P(X,xL = O,xT) in relation (3.21) we get the relationship between the potential Vand the 
kernelK, 

V(XT,X,T) = _ i fd3XIIT K(Xl~XIIT){(a + e + a - C)03(XIIT _X'T) 
2(p2) 112 2b;' 2b ~ 

+( 1 1 )[Y-P<1]',D" m2)-rrp(y-p-;'+m])]V(x"T,x'T) 
2b~-2b~ 2 

+(a+e +~) ." '''V(X"TX'T)} 
2b" 2b" YP1]P , , 

I 2 

(4.16) 

where, for simplicity of notation, we have omitted from Vand K the momenta and Dirac matrices; the operators b ;: (a = 1,2) 
are defined as in relation (3.13) for b ~ . 
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In the ladder-type approximation (3.1) and (3.17), the previous relations simplify. Equation (4.16) becomes 

V(XT,x'T) = _ i D(XT){(a+c + a-c)83 (XT _X,T) +(_1 ___ 1_) 
2(pz) I/Z 2b l 2b2 2b

l 
2b2 

X [y·ft(7],pz - m z) -rj'p(Y-PI + ml )] V(XT,X'T) + (a + c + a - c)Y-P 7]'PV(XT,X'T)}, 
2b l 2bz 

( 4.17) 

whereD(xT) is defined as in (3.18), 

D(XT) = J dXL D(XL ,xT;Y,7];PI,P2)' (4.18) 

Also defining 

V(xT ,x,T) = V(xT)83 (XT _ X,T) ( 4.19) 

[notice that the potential V(x T
) above may still be an integral operator through operators lib I or lIb2 ] , Eq. (4.17) takes the 

form 

v = - _1_' D(XT){(a + c + a - c)(1 + Y'P 7]'PV) + (_1_ - _1_)ry,p(7}'PZ - m z) -7]'P(Y'PI + ml )] v}, 
4a 2b l 2bz 2b l 2bz 

( 4.20) 

which can be rewritten in several equivalent forms, 

V= - ~ [1 + _1_' D(_I_ - _1_){Y'P(7/'PZ - mz) -7]'P(Y-Pl + m1») 
4a 4a 2b l 2bz 

+_1_' D(a+c + a-c) .A .A] ID(a+c + a-c) 
4a 2b

1 
2bz Y P7J P 2b

l 
2b2 ' 

(4.2Ia) 

V = - _1_' D [1 + (_1_ - _1_)(y,p(7]'P2 - m z) 7]'P(Y-PI + ml») jD 
4a 2b l 2bz 4a 

+(a+c + a-c) .A( .A) iD] '(a+c + a-c) (4.21b) 
2b

l 
2b2 Y P 7] P 4a 2b

1 
2bz ' 

[1 ( 1 1)( A( - ) A( ») jD (a+c a-c) A( A) iD] + --- Y'P 7]'pz-mz -7]'P Y'PI +m 1 -+ --+-- Y'P 7J'p -
2bl 2b2 4a 2b 1 2b2 4a 

(
a+c a-c)[(a+c a-c)(1 A( A)V) (I 1)( A( - ) A( - »)V]-l = --+-- --+-- +Y'P 7]'P + --- Y'p 7]'P2 -mz -7]'p Y-Pl +ml ' 
2b1 2b2 2b, 2bz 2b l 2b2 

(4.22) 
Here again, the potential V, (4.21), is not a local function of XT, because of the presence of the kinematic integral 

operators b ,- , and b 2- 1, (2.19), It becomes a local function only after these integral operators are replaced by some local 
functions or mean values, such as in (3.23). 

Also notice that, contrary to the spin-O case, the relationship between the potential V and the kernel D, in its ladder 
approximation, is not as simple as in proportionality relations, as in relations (3,22) or (3,24), unless one retains lowest-order 
expressions in D in Eq. (4.21). 

Finally, with the expression (4.19) of V(xT, X'T), the relationships (4.13) and (4.14) between the wave functions <I> and 
IJ' become accordingly simplified. 

V. SPIN-l-SPIN-O PARTICLE SYSTEMS 

In this section we consider systems composed of one spin-! fermion (particle 1) and one spin-O boson (particle 2). Here 
the wave function is a four-component spinor 

1J'=lJ'a(x,,xZ) (a=I, ... ,4), (5.1) 

and satisfies, in the manifestly covariant two-particle relativistic quantum mechanics, two independent wave equations, 10 

which are generalizations of the Dirac and Klein-Gordon equations, respectively: 

H11J'= (Y'Pl - m l - V)IJ' = 0, (S.2a) 

(S.2b) 

The potential V is a Poincare invariant function of the coordinates, momenta, and Dirac matrices. The compatibility 
condition (2.2) of the wave equations requires that V depend on the relative coordinates x through the transverse components 
xTalone lO [(2.5)]: 

V = V(XT,Pl'Pz,Y) 

[ V satisfies Eq. (2.3)]. 
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Equations (5.2) completely determine the longitudinal relative coordinate XL dependence of the wave function through 
the equation 

(5.4) 

which is a consequence ofEqs. (5.2) and the solution of which is, for eigenfunctions of the total momentump, given by the de
composition (2.8). 

The potential V can also be generalized so as to include nonlocal potentials in x T
; 

(r'pt - mt)'I'(X,x) = f V(xT,xI1;r;p)'I'(X,xL,x'T)d3x'T, (S.5a) 

(S.5b) 

where V has the same properties as the one appearing in the spin-O case (2.10) and 'I' has the same dependence on XL as in Eq. 
(2.8) [it satisfies Eq. (S.4)]. 

In order to find the relation of these equations with the BS equation, we start again from the integrodifferential form of the 
latter, 

(Y-Pt - m l )<I>(x l ,x2) 

(S.6a) 

(p~ - m~ )<I>(X1,X2) 

= - i(r'PI + m t ) fd 4YI d
4Y2 d 4x; d 4xi K(Yt'h'X; ,xi;i ~ ,i~) ~ LlIF(X I - Yl,m l )o4(x2 - Y2)<I>(X; ,xi), 

aXI aX2 2 
(S.6b) 

with similar definitions for K as in Eqs. (2.11) and (4.7). 
We now multiply temporarily Eq. (S.6a) by (Y-Pt + ml) and we get 

(Pi mi ) <I> (X I,x2) = - i(Y-PI + m l ) f d("') K ~ Ll2F (X2 - Y2,m2)o4(x l - YI)<I>(x;,xi), (5.7a) 

(pi - mi )<I>(XI,x2) = - i(Y-PI + m l ) f d("') K ~ .:lIF(XI - YI,m l ) x04(x2 - Y2)<I>(x;,xi)· (S.7b) 

Compared to Eqs. (2.11), these equations have the same structure as the latter, except for the overall multiplicative factor 
(r'p I + m I)' We can now repeat the same procedure as for the spin-O case and define the wave function 'I' that must satisfy 
Eq. (S.4) and have the structure (2.8). The answer is 

'I' = <I> + (r'PI + ml)KI*<I>, (5.8) 

where the operator K I * is defined by Eqs. (2.18)-(2.20). 
The wave function 'I' satisfies a Klein-Gordon-type equation similar to Eq. (2.22), but with the right-hand side multi

plied by the factor (Y-PI + ml)' To get the Dirac-type equation of the fermionic constituent, it is then sufficient to divide the 
equation by (Y-PI + ml)' We get 

(r'pt - mt)'I'(X,x) = - ! 1/2 fd 4Z d 4zd 4x' K(ZI,z2,x';p,v)eiP'Zo3(wT)e-iCWL<I>(X,x'), (5.9a) 
2(p ) 

(pi m~)'I'(X,x) - 2(p!)1/2 (r'PI +mt ) f d 4Zd 4zd 4x' K(ZI,z2,X';p,v)eiP'Zo3(wT)e-iCWL<I>(X,x'), (5.9b) 

with notations introduced in (2.14) and (2.19). 
In perturbation theory, and for the sector of solutions having nonrelativistic limits, Eq. (5.8) can be inverted to express <I> 

in terms of '1'. Then it is replaced in the integrals in Eqs. (5.9) to get the final equations satisfied by '1'. By identification with 
Eqs. (5.5) one then gets the relation between the potential Vand the kernel K, in a similar way to Eq. (2.24) of the spin-O case. 

In the remaining part of this section, we shall concentrate on the relativistic instantaneous approximation (also neglect
ing the radiative corrections of the external propagators) in which case the above relationships become simpler and more 
transparent. 

After approximation (3.3) is made and definition (3.16) is used,33 Eqs. (5.8) and (5.9) become, respectively, 

'I'(X,x) = <I>(X,x) + ; 1/2 (r'PI +m l ) f d3X'TK(xT,x'T){ 1 
4(P) bl(bl+a+c) 
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(5.10) 

(5.11a) 

(5.11b) 

Comparison ofEqs. (5.11) with Eqs. (5.5) shows that relation (3.21) of the spin-O case holds also here. 
We now consider relation (5.10). Because the radiative corrections of the external propagators have been neglected, we 

can bring the curly brackets outside the integral. We then commute the operator (Y'PI + m l ) with the expressions contained 
in the curly brackets and also apply the longitudinal component of Pion the variable XL' Finally we use Eqs. (5.11a) and 
(3.21) to get the explicit relationship between <I> and '1': 

<I>(X,x) = {O/2b
l

) (a + c + bl)e-i(b,-a-C)XLO(XL) + (1I2b l ) (a + c - bl)/(b, +a + C)XLO( - XL) 

+ (1I2b2)(a - c - b2)e - i(b, + a - C)XLO(XL ) + 012b2)(a _ c + b2)ei(b, - a+ C)XLO( - XL) }'I'(X,x) 

_ {O/2b
1

) [O(xL)e - i(b, - a - c)xL + O( _ XL )ei(b, + a + C)XL] 

- (1I2b2) [O(xL)e - i(b, + a - c)xL + O( _ xdei(b, - a + C)XL] }Y"i' I V(xT ,x'T;y;p) 'I' (X,xL,x,T)d 3X' T. (5.12) 

In the hyperplane XL = 0, this relation becomes 

<I>(X,xL = O,xT) = (a + c + a - c)'I'(X,XL = O,xT)- (_1_ - _1_)r-p I V(XT,x'T;y;p)'I'(X,xL = 0,X'T)d 3x tT• 
2b l 2b2 2b l 2b2 

(5.13) 

Inserting the expression (5.13) of <I> (X'XL = O,xT) in 
relation (3.21) we get the relationship between the potential 
V and the kernel j( 

V(XT,x'T) = _ i Id3x"Tj(XT,xIT) 
2(p2)1/2 

X {(a + c + a - C)83 (XIIT _ X'T) 
2bj' 2b; 

_ (_1 __ _ l_)r-PV(X"T ,xIT)}, 
2bj' 2b; 

(5.14) 

where for the simplicity of notation we have omitted from V 
and K the momenta and Dirac matrices; the operators b ;: 
(a= 1,2) are defined as in relation (3.13) forb~. 

In the ladder-type approximation (3.1), (3.17), the pre
vious relations simplify. Equation (5.14) becomes 

V(xT ,x'T) 

where D(XT) is defined as in relations (3.18) and (4.18). 
Also using definition (4.19) of (VXT,x'T), Eq. (5.15) be
comes 

V= __ ,_' D(XT){(a+c + a-c) 
4a 2b1 2b2 

_(_1 __ 1 )Y"i'V}, 
2b l 2b2 

(5.16) 
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I 
which gives 

i [ i - ( 1 1) A] - I 
V= -4; l-4;D 2b

l 
- 2b

2 
y'P 

-(a + c a -c) XD --+--. 
2b l 2bz 

( 5.17) 

The potential Vbecomes a local function only after the 
integral operators b 1"1 and b 2- I, (2.19), are replaced by 
some local functions or mean values, such as in (3.23). 

With the expression (4.19) of V(xT ,x'T), the relation
ships (5.12) and (5.13) also become simplified. 

VI. THE NORMALIZATION CONDITION 

For bound states, the BS equation also provides the nor
malization condition of the internal wave function, written 
as a four-dimensional integral over the relative vari
ables.3,20.21 This is obtained, in general, by calculating expec
tation values of appropriate operators (among which the 
charge operator) in matrix elements involving the bound 
state itself and thus relating them to the BS amplitude again. 

If we now write the BS equation, in the spin-O case, in its 
differential form, as 

L *<1> = (Lo - K*)<I> = 0, 

where 

Lo = (pi - mi )(p~ - m~ ) 

(6.1 ) 

(6.2) 

and K is the BS kernel, including the radiative corrections of 
the external propagators (cf. Sec. II), then the normaliza
tion condition is, in the c.m. frame, 

(6.3) 
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where </J is the internal wave function, (2.15), and "¢a is the 
"conjugate" BS wave function, obtained from </J by complex 
conjugation and antichronological product [Le., by replace
ments ()( ± xo) -+ ()( + xo)]' 

In principle, we can express the set of quantities </J and K 
in terms of the set of quantum mechanical quantities if! and 
V. Since the dependence of if! on the longitudinal variable XL 
is rather trivial, (2.8), this replacement in relation (6.3) 
would permit one to evaluate the XL integration and to trans
form the normalization condition into a spatial three-dimen
sional integral, typical of quantum mechanics. This proce
dure, with the aid of the general formulas of the type (2.18) 
and (2.24), would, however, lead to rather complicated ex
pressions, which would not be easy to handle. Instead, the 
use of the relativistic instantaneous approximation once 
again leads to compact formulas that appear to be of practi
cal interest. It is this last procedure that we shall follow in 
this section, in order to express the normalization condition 
of the BS wave function as a three-dimensional integral for 
the quantum mechanical wave function if!. We shall consider 
the three different systems, studied above, those involving 
spin-O and/or spin-~ particles. 

A. Two spin-O boson systems 

We begin by writing the explicit form of the operation 
K *</J. With the definitions (2.11 )-(2.15) of Sec. II, we have 

K *</J(x) = f d 4Z d 4z d 4x' K(Zlh,x';p,v)eiP'Z 

X04(X - x' - z)</J(x') . (6.4 ) 

We then calculate the expression of the operator 
aLo/ap2. Although formula (6.3) is valid only in the c.m. 
frame, we shall continue to use a covariant notation, by writ
ing P!l = P!l (p2) 1/2 and deriving it by keeping P!l fixed. We 
get 

aLo 1 (1 2 T' 1 2 2) --=- -p +v --em +m ) 
ap2 2 4 2 I 2 

1 2 (mf - m~) 
--v + v 

2 L 2(p2) 1/2 L 

=~(a2 _!!l_ b~) _ ~ v2 + cv (6.5) 
2 2 2 2 L L' 

where, in the last expression, we have used the definitions 
(2.19). 

Next, we apply this operator on the wave function </J (x), 

expressed in terms of if!(xT) in the relativistic instantaneous 
approximation (3.11) (the radiative corrections of the ex
ternal propagators have been neglected). For this, it is suffi
cient to evaluate the action of the operator v L of (6.5) on the 
functions depending on XL' The result is 

2632 

= {~(a + c - bl)(a + c + b l ) [{)(xde-i(bt-a)xL 

_ {)( _ XL )/(b, + a)XL] 
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- !(a - c - b2)(a - c + bz) [()(xL )e-i(b,+a)XL 

-()( _xL )/(b2 -a)XL]}if!(xT). (6.6) 

The expression of the conjugate function (fa is obtained 
from (3.11), 

(fa(x) = if!*(xT){( l/2b l )(a + c + bl)ei(b, -a)XL{)( - XL) 

+ (l/2b
l

) (a + c - bl)e - i(b, + a)XL{)(XL ) 

+ (l/2bz)(a - c - bZ)ei(b, + a)XL{)( - XL) 

+ (l/2bz) (a - c + bz)e - i(b, - a)XL{)(XL )} , 

(6.7) 

where the derivative operators act on the left. 
With expressions (6.6) and (6.7) we can now calculate 

the first term of the normalization condition (6.3). After 
integrating over the variable XL and using some identities of 
the type 

(bz - a + c) (b l + bz + 2a) 
(b l + a + c) 

= (b l - a - c) (b
l 
+ bz + 2a) 

(bz + a - c) 

= (b l + b2 - 2a) , 

c=(bf-b~)/4a, 

we get 

( 6.8) 

(6.9) 

which actually is a double three-dimensional integral, be
cause of the presence of the integral operatorsb 1- I and b 2- I. 

We now turn to the calculation of the second term of the 
normalization condition (6.3), coming from the contribu
tion of the BS kernel itself. Using expression (6.4) this term 
IS 

if d4x (fa(x) aK *</J(x) 
apz 

= if d 4Z d 4z d 4x' d 4x (fa(x) 

x~ [K(ZI,zZ,X';p,v)eiP 'Z ]o4(x -x' -z)</J(x') . 
ap 

( 6.10) 

After using the relativistic instantaneous approximation 
(3.3) and neglecting the radiative corrections of the external 
propagators, relation (6.10) becomes 

if d 4x (fa(x) a~*</J(X) 
ap 

=i f d4Zd4zd4x'd3xT(fa(XL =O,xT) 

X(~K(ZI,zZ,x'»)03(XT _X,T _ZT) 
apZ 

x</J(XL = O,X,T) 
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f 
3 - Jj( 

= i d 3x T d X'T (r(XL = O,XT) Jp2 (XT,X'T) 

X¢(X'r- = O,X,T) , (6.11) 

where j( is defined by (3.16). 
Using the expression (3.12) of ¢(xL = O,XT) in terms of 

t/J(xT) , we get the final expression of the normalization con
dition 

+ifd3XTd3X'Tt/J*(XT)(a+c + a-c) 
2b l 2b2 

X Jj( (XT,X'T)(a + c + a - C)t/J(X,T) = 1 . 
Jp2 2b; 2b 2 

( 6.12) 

Notice that the reality condition of the norm requires 
from the kernel j( to satisfy the condition 

(6.13 ) 

in theL2 norm (in the c.m. frame). 
By using the relation (3.20) between Vand j( we could 

also make the former appear in the normalization condition. 
We shall, however, use this procedure in the ladder approxi
mation where it becomes more advantageous. 

In the ladder approximation (3.1), (3.17), and (3.18), 
the normalization condition becomes 

(t/J,t/J) =fd3xTt/J*(XT)(a+c + a-c) 
2b l 2b2 

X (a _ (b l ~b2)2)t/J(XT) 

+ ifd3XT t/J*(XT)(a + C + a - C) JD (XT) 
2b l 2b2 Jp2 

x(a + C + a - C)t/J(XT) = 1 . (6.14) 
2b l 2b2 

The reality condition of the norm now requires 

D + (XT) = - D(XT) (6.15 ) 

in the L2 norm (in the c.m. frame). 
In the ladder approximation V(XT,X'T) can be expressed 

as in (4.19). Using then the relationship between V and D, 
(3.22), one can express JD IJp2 in terms of JV IJp2 and V. 
The latter term can be eliminated by the use of the wave 
equations satisfied by t/J. One then gets the final result in the 
ladder approximation (in the c.m. frame) 

It is to be remembered that at the present stage of ap-
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proximation, Vis still an integral operator in x T [cf. (3.22) ]. 
If, furthermore, one makes the local approximation (3.23), 
which amounts to transforming Vinto a local function in XT, 
then the normalization condition becomes 

(t/J,t/J) =(a+c + a-c)fd3xTt/J*(XT) 
(2b l ) (2b2) 

x[a
2
-c

2 
-4a J~(XT,p2)]t/J(XT) = I, (6.17) 

a Jp 

which is also equivalent to 

f d 3x Tt/J*(XT) [4P'P I (P'P2) _4p2 ;; (XT,p2)]t/J(XT) 

= 2( 2) 1/2( P'PI 
p 2(mi _ (V T2» 1/2 

+ P'pz )-1 
2(m~ _ (V T2 » 1/2 

( 6.18) 

Notice that in this approximation, because of condition 
(6.15) and relation (3.22), V must be Hermitian in the L2 
norm (in the c.m. frame). 

The interest of the last formulas (6.17) and (6.18) lies 
in the fact that no explicit reference is now maintained as to 
the field theory kernel D. If one works from the start with 
relativistic wave equations of the type (2.1) with effective 
local potentials V, then the normalization condition (6.17) 
and (6.18) still keeps track of the underlying (effective) 
field theory. 

The presence of the term J V I Jp2 in the kernel of the 
norm is typical for potentials that depend explicitly on p2 (in 
the c.m. frame) and this aspect was already emphasized in 
Ref. 34. If V does not depend on p2 (in the c.m. frame) then 
the kernel of the norm (6.18) becomes simply proportional 
to that of the free norm of two spinless particle wave func
tions. The overall multiplicative factor ( (a + c) I 
(2b l ) + (a - c)/(2b2)jin the norm (6.17) is reminiscent of 
the field theoretic nature of the bound state IP). It represents 
a corrective factor relative to the two-constituent state inside 
the state IP), which actually is made, in interacting theories, 
of a series of multiconstituent states. 

Although the normalization condition (6.17) has been 
obtained from the Bethe-Salpeter equation, which, in tum, 
is established only in perturbation theory and for nonconfin
ing interactions, the fact that the validity of the relativistic 
wave equations (2.1) does not make any reference to the 
nature of the potential V (i.e., confining or nonconfining) 
strongly suggests that the normalization condition (6.17) 
might also be used for the case of confining interactions. 
Examples of applications for the calculation of meson decay 
coupling constants in quarkonium dynamics were presented 
in Ref. 35. It is to be emphasized that the overall factor 
(a + c)/(2b l ) + (a - c)/(2b2) j, which will also bernet, in 
the spin-! case, plays an important role for the case of light 
bound states in confining interactions, the masses of which 
are of the order of the constituent particle masses m l,m2, In 
this case the numerator is of the order of m I or m 2, but the 
denominator is of the order of 1 (v T ') 1

1/2
, which is governed 

instead by the confining interaction scale. It is the presence 
of this overall factor that ensured in Ref. 35 that the pion 
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decay coupling constant not vanish in the chiral limit and 
hence reproduce the qualitative feature of a spontaneous 
breakdown of chiral symmetry. We think that this result is a 
positive indication to also continuing the normalization con
dition (6.17), or its general forms (6.12 )-( 6.16), to the do
mains of confining interactions. 

A last remark concerns the positivity condition of the 
norm. It is well known that in relativistic quantum mechan
ics the shape and the strength of the interaction potentials 
cannot be arbitrarily chosen unless one runs into trouble 
with the positivity of the total mass squared p2. We assume 
that the choice of V satisfies this condition. Furthermore the 
physical Hilbert space is chosen as corresponding to the sub
space of solutions with positive eigenvalues of both p'P 1 and 
P'P2. 10 We observe that this condition ensures the positivity 
of the norm (6.18) for p2 independent potentials. When the 
potential V is p2 dependent (in the c.m. frame), one must 
also control its form in order to maintain the positivity of the 
norm. 

B. Spin-l fermion-antifermion systems 

Here the differential form of the BS equation is 

L *<1> (Lo + K *)<1> = 0 , (6.19 ) 
I 

with 

Lo = (Y-PI - m I )(rrp2 + mz) , (6.20) 

and the normalization condition is given, in the c.m. frame, 
by (6.13), where 

"¢;O(x) = [1P+(X)Yo7]o]Q, (6.21) 

the index a representing the antichronological product, ob
tained in the expression of ¢ by the exchanges 
()( ±xL ) ..... (}( ±xL )· 

The expression of the operation K *¢ is still given by Eq. 
(6.4), with K also having dependences on the Dirac matri
ces. The expression of aLo / apz is 

where the vectors P J and pz have been defined in ( 4.15) (they 
no longer contain the longitudinal derivative operator vf; ). 
By applying the operator (6.22) on ¢(x), given in the rela
tivistic instantaneous approximation by formula (4.13), we 
get 

aLo "'( ) _ {I .~(._ + )[()( ) -i(b,-alxL+(}( ) i(b,+OlXL] 
-- 'I' X - - Y P 7] P2 m z XL e - XL e 
ap2 4b] 

1 ~ ( _ 
+ 4b

2 
7]'p Y-PI 

_ (y.p] - m I )( rrp2 + m 2) [_1_ [ (a + c _ bI)e i(b, -a)xL(}(x
L

) + (a + c + b] )ei(b, + a)XL()( - XL) ] 

(a2 +c2 -!(bi +b~») 4b] 

+ _1_[ (a _ c + b1)e-i(bda)XL(}(xL ) + (a - c - b
2

)ei(b,-a)XL()( - XL)] ]}t/J(xT) . (6.23) 
4b2 

We have preferred to eliminate temporarily from the above expression the potential V(XT,X'T) by means of the equations 
of motion (4.6). This will be more convenient for the later operation of integration in (6.3) with respect to XL' Notice that 
since the dependence of the quantum mechanical wave function t/J on the variable XL is given by formula (2.8), we can 
immediately replace in Eqs. (4.6) the operatorsPI andp2 by PI and P2' (4.15), respectively. 

The expression of"¢;a can be obtained from (4.13). It is 

~(XT) {_1_[ (a + c + b
l 
)/(b, - alXL()( _ XL) + (a + c _ bl)e - !(b, + alXL(}(XL ) ] 

2b l 

+ _1_[ (a _ c - b2)ej (b2 + alXL()( Xd + (a c + b2)e !(b,-alXL()(XL )]} 
2b2 

J,( T) [( - ) ~ ( - + ) ~] { 1 [!(b, Q)XL()( _ XL) + e - !(b, + a)XL(} (XL ) ] 
- 'I' X y-p] - m l Y-P - 7]'P2 m 2 7]'p 2b

l 
e 

__ 1_[e!(b2 +Q)XL (}( X )+e-!(b,-a)XL(}(X )]}_J'(XT) (Y-PI-m l )(7]'PZ+m2 ) .A( .~) 
2b L L 'I' (22 l(b2 b 2 »)YP7]P 

2 a+c- Z 1+ 2 

X{_l_[(a+c_b l )/(b,-a)XL()( XL) + (a+c+bl)e !(b,+a)XL(}(XL >] 
2b] 

+ _1_[ (a _ c + b
2
)i(b2 +a)xL()( XL) + (a _ c - b

2
)e !(b,-a)XL(}(XL)]} ' 

2b2 

(6.24) 

where the derivative operators act on the left, and again we have temporarily eliminated the potential V(XT,X'T) by means of 
the equations of motion (4.6). Here ~ is defined as 
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( 6.25) 

With the aid offormulas (6.23) and (6.24), we can now calculate the first term of the normalization condition (6.3). 
After integrating over the variable XL and using identities on the type (6.8), we can transform the four-dimensional integral 
into a three-dimensional one over the variables x T

. The second term of the normalization condition (6.3) comes from the 
contribution of the term ~Q (JK I Jpz) *tjJ. In the relativistic instantaneous approximation, the integral of this term has the same 
expression (up to a minus sign) as in relation (6.11), where the function tjJ (XL = O,xT) now has to be replaced by its 
expression (4.14) in terms oftf;(xT). One finally gets 

. J {- ( JL JK) } (tf;,tf;) = -/ d 4x Tr tjJQ(x) Jp~ + Jpz* tjJ(x) 

= J d 3XT Tr ¢(XT) _l_{(a + c + a - C)Y-P( rrjl)tf;(xT) 
4a 2b l 2bz 

+ _1_ J d 3XT d 3x 'T Tr ¢(XT) (_1_ - _1_) [rrp(rrpz - mz) - Y'P(Y-PI + m l )] V(XT,XIT)tf;(X'T) 
4a 2b l 2bz 

+ 4~ f d3xTd3x'TTr ¢(XT)V(XT,X'T) [(7J'P; -mz)7J'p- (Y-P; +m l )Y"P](2;; - 2; Jtf;(X
IT

) 

+ ~f d 3x T d 3x ,T Tr ¢(XT) [(_1_ - _l_)V(XT'XIT) + V(XT,X'T) (_1 __ _ l_)]tf;(XIT) 
4a 2b l 2bz 2b; 2b; 

_ -1-fd 3XT d 3x 'T d 3x" TTr ¢(XIT)V(X'T,XT)Y"fJ(7J"fJ)(a + C + ~)V(XT'XIIT)tf;(XIIT) 
4a 2b l 2bz 

J - JK 
- i d 3XT d 3X'T Tr tjJQ(XL = O,xT) Jpz (XT,X'T)tjJ(X~ = O,x'T) = 1 , (6.26) 

the trace bearing on the spinor indices, and 
V(XT,X'T) = Yo7JoV+(XT,X'T)Yo7Jo and tjJ(xL = O,xT) , 
~ (XL = O,xT

) are to be replaced in terms of tf; and ¢ from Eq. 
( 4.14 ). The relation between K and V is given by Eq. (4.16) 
and the reality condition of the norm requires from K to 
satisfy the relation 

- + T 'T - IT T Yo 7JoK (x ,x )Yo 7Jo = - K(x ,x ) , (6.27) 

In the ladder approximation (3,1), (3.17), and (3.18), 
the operator (aK IJp2) (XT,X'T) is replaeed by 
(JD IJp2)(XT)tP(XT - X'T), and D satisfies an analogous 
relation to (6.27): 

(6.28) 

Here the relationships between D and V are simpler [see 
relations (4.17)-(4.22)] and the operator JD IJpz may be 
expressed more easily in terms of V, as was done in the spin-O 
case (Sec. VI A). We shall, however, present the result in the 
simplest case, which corresponds to the local approximation 
of V, where the integral operators b 1- 1 and b 2- 1 are replaced 
by mean values (3.23). After some algebra and the use of the 
equations of motion, one gets the final result (in the c.m. 
frame) 

2635 

1 (a + c a - c) 
(tf;,tf;) =4; (2b

l
) + (2b

z
) 

X J d 3x TTr{¢(XT)Y-P(7J"fJ)tf;(XT) 

- ¢(XT) V(xT,pZ)Y-P ( 7J'p) V(xT,pZ)tf;(xT) 

+ 4pZ¢(XT) av (XT,pZ)tf;(XT)} = 1. (6.29) 
Jpz 
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~I ----------------------------------
In this approximation, V must satisfy the Hermiticity 

relation 

(6.30) 

The presence of the potential V in the kernel of the 
norm, even if V is independent of p2 in the c.m. frame, makes 
it clear that V must satisfy some inequality conditions to 
guarantee the positivity of the norm. This question was ex
amined in more detail in Ref. 10, Sec. VII A. 

The remarks made at the end of Sec. VI A for the spin-O 
case in the local approximation hold also here for the spin-~ 
case. One of the advantages of formula (6.29) is its expliciit 
independence from field theoretical quantities, although it is 
derived from a relation with an underlying field theory. No
tice also the appearance once again, in (6.29), of the overall 
factor (a + c)/(2b l ) + (a - c)/(2bz»)' 

C. Spin-!-spin-O particle systems 

The differential form of the BS equation is 

L *<1> = (Lo - K *)<1> = 0, (6.31 ) 

with 

Lo = (Y-PI - ml)(p~ - m~) , (6.32 ) 

and the normalization condition is given, in the c.m. frame, 
by (6.3), where 

~Q(x) = [tjJ+(x)Yo]Q, (6.33) 

the index a representing the antichronological product, ob
tained in the expression of tjJ by the replacements 
()( ±xL) ...... ()(=XL )· 

The expression of the operationK *tjJ is stilI given by Eq. 
(6.4), with K also having dependences on the Dirac matri
ces. The expression of aLai JpZ is 
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(6.34 ) 

By applying this operator on the wave function </J (x), given in the relativistic instantaneous approximation, by formula 
(5.12), we get 

aL~ </J(x) ={ _B(xL)e-i(b,-alxL(l/4bl)[(a+c_bl)(Y'PI_ml) -Y'p(p~ -mD] 
ap 

- B( - XL )e
itb

, +alXL(l/4b l ) [(a + c + bl)(Y-PI - ml) - Y-p(p~ - m~)] 

- B(xL )e-i(b,+alXL~(r'Pl - ml) + B( - XL )ei(b2-a)XL~(Y-Pl - ml)}¢,(xT) , (6.35) 

wherepi andpz are defined in (4.15) (they no longer contain the longitudinal derivative operator v;) and we havetemporar
ily eliminated the potential V(XT,X'T) through the equations of motion (5.5), as we did in Sec. VI B. 

The expression of ¢a is obtained from (5.12): 

¢a(x) = ¢(xT){O/2bl ) [(a + c + bl)ei(b,-a)xLB( -XL) + (a + c bl)e--i(b, +alxLB(xL )] 

+ (l/2bz) [(a - c - b2)i(b,+a)XLB( -XL) + (a - c + b
2
)e- i(b,-a)XLB(xL )]} 

¢(XT) {( l/2b l ) [ei(b, a)XLB( _ XL ) + e - i(b, + a)xLB(xL ) ] 

(l/2b2 ) [ei(b, +a)XLB( - XL) + e i(b,-a)XLB(xd] }(Y'PI - ml)y'p, (6.36) 

where the derivative operators act on the left, and again we have temporarily eliminated the potential V(XT,X,T) through the 
equations of motion (5.5). ¢ is defined as 

¢(XT) = ¢'+ (xT)yo . (6.37) 

The calculation of the norm (6.3) follows now similar lines as in Secs. VI A and VI B. The result is, in the relativistic 
instantaneous approximation and in the c.m. frame, 

where</J(xL = O,xT) and¢(xL = O,xT) are to be replaced in 
terms of ¢' and ¢ from their expressions (5.13) and 
V(xT ,x'T) = YoV + (XT,X' T) Yo' The relation between K and 
Vis given by Eq. (5.14) and the reality condition of the norm 
requires from K to satisfy the relation 

yo'K + (XT,X'T)yo = - K(X'T ,xT) . (6.39) 

In the ladder approximation (3.1), (3.17), and (3.18), 
the operator (aK lap2)(xT ,x'T) is replaced by 
(aD lap2) (xT)63 (XT - X,T), and the operator D satisfies an 
analogous relation to (6.39): 

roD + (xT)yo = - D(XT) . (6.40) 

The relationships between D and Vare given by Eqs. (5.15)
(5.17) and the operator aD I ap2 can be eliminated in terms 
ofaV /ap2and V. Weshall,however, present the result in the 
simplest case, which corresponds to the local approximation 
of V, where the integral operators b 1- 1 and b 2 I are replaced 
by mean values (3.23). After some algebra and the use of the 
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(6.38) 

I 
equations of motion, the expression of the norm becomes (in 
the c.m. frame) 

_ 4p2 ;; (XT,p2) ]¢,(XT) = 1 . (6.41) 

In this approximation, V must satisfy the Hermicity 
condition 

(6.42) 

The final remark made at the end of Sec. VI A about the 
positivity of the norm also applies here. 

VII. CONCLUSION 

The main achievement of this paper is the derivation of 
the connection of the wave equations of two-particle relativ
istic quantum mechanics, based on the manifestly covariant 
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Hamiltonian formalism with constraints, with the Bethe
Salpeter equation. This connection establishes the link 
between the quantum mechanical wave function and inter
action potential on the one hand, and the BS wave function 
and BS kernel on the other. In the quantum mechanical 
framework, the time components of coordinate four-vectors 
are treated as parameters and do not play any dynamical 
role, and therefore the dynamics of the system is essentially 
three dimensional, besides the spin degrees of freedom. 

As far as the sector of normal solutions of the BS equa
tion is concerned, i.e., the solutions having nonrelativistic 
limits, the above formal connection can be evaluated, in 
principle, in perturbation theory. 

The question arises here of whether the formal connec
tion found between the BS equation and Hamiltonian quan
tum mechanics also holds for the sectors of abnormal solu
tions of the BS equation, i.e., those not having nonrelativistic 
limits. We did not study this question in this paper, but we 
would like to mention the following two alternatives: (i) the 
connection does hold also for the abnormal solutions (in this 
case each abnormal sector would receive a corresponding 
Hamiltonian description, but with a specific interaction po
tential, not having a usual Galilei limie4

); (ii) the connec
tion fails (this would simply mean that the formal relations 
obtained so far are divergent for the abnormal sectors). 
Clearly this question merits a detailed investigation in the 
future, with the main goal of understanding whether or not 
the abnormal solutions may have physical existence. 3,36 

In order to simplify the relations between the quantum 
mechanical and field theoretical quantities, we devised, 
throughout this paper, an approximation, which we called 
the relativistic instantaneous approximation. It is a general
ization of the old instantaneous approximation and it auto
matically selects the sector of normal solutions of the BS 
equation. Besides the simplifications it brings, it has the 
main advantage of allowing an approximate summation of 
the iteration series appearing in the exact relations between 
the quantum mechanical and field theoretical quantities. It 
could thus serve as a zeroth-order approximation for an ex
pansion of the exact relations around the solution it pro
vides. This approximation is also close in spirit to the ap
proximations utilized in the framework of the quasipotential 
approach to reduce the BS equation to a three-dimensional 
equation and to simplify its kernel in a kind of a zeroth-order 
approximation of an iteration series. 13-15.18 

We showed that, in order to have, in two-particle rela
tivistic quantum mechanics, local functions for the interac
tion potentials (Le., not integral operators) three kinds of 
successive approximations are needed: (i) the ladder ap
proximation of the BS kernel, (ii) the relativistic instanta
neous approximation, and (iii) local or mean value approxi
mations of some kinematic integral operators. 

The connection established between the BS equation 
and relativistic quantum mechanics also permits one to ob
tain (mostly in the relativistic instantaneous approxima
tion) the normalization condition, as a three-dimensional 
integral, ofthe quantum mechanical internal wave function. 
This result allows the calculation, in the quantum mechani
cal framework, of physical quantities such as decay coupling 

2637 J. Math. Phys., Vol. 28, No. 11, November 1987 

constants, related to the bound states under consideration. 
Finally, the question we would like to raise concerns the 

domain of validity of the connection established so far 
between the BS equation and two-particle quantum mechan
ics. Strictly speaking, it covers perturbation theory and non
confining interactions (this is the domain of validity of the 
BS equation itself). However, the structure of the wave 
equations of two-particle relativistic quantum mechanics is 
valid irrespective of the kinds of interaction potential Vap
pearing in them, that is, whether they are confining or not. 
This feature strongly suggests that the relations established 
between field theoretic and quantum mechanical quantities, 
and mostly in the relativistic instantaneous approximation, 
where iteration series have been partly summed up, could 
then be continued to the domains of nonperturbative and 
confining interactions. In particular, the normalization con
dition of the quantum mechanical wave function might also 
be used in such cases.35 Furthermore, the form and the struc
ture of the quantum mechanical effective potential V used in 
nonperturbative interactions might also then provide some 
information about the structure and properties of the under
lying effective field theory. 

Quantum mechanics provides a suitable framework for 
the study of the dynamics of those problems where a finite 
number of degrees of freedom seems to be a good approxima
tion. The connection established now with the Bethe-Sal
peter equation brings, in this respect, additional qualitative 
and quantitative informations for the evaluation of the relat
ed physical quantities. 
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It is well known that the n-fermion algebra is a complex Clifford algebra of dimension 22n with 
the orthogonal group O(2n,C) as group of automorphisms. The n-boson algebra viewed 
similarly as a complex "symplectic Clifford" algebra is investigated. It is of infinite dimension 
and has the symplectic group Sp(2n,C) as a group of automorphisms. Special attention is 
given to the case n = I and various bases. In particular, the matrix elements of the bases 
between harmonic oscillator states and their relation with special functions are investigated. 

I. INTRODUCTION 

The origin of the present work is a paper I of Biedenharn 
and Louck 1-3 written a few years ago where the authors in
vestigated the action of the symplectic group on the symme
trized products of a, a+, the basis elements of the one-boson 
algebra. Our purpose is therefore (i) to generalize the inves
tigation of the symplectic group to the case of an n-boson 
algebra, (ii) in the case n = 1, to analyze the Biedenharn
Louck basis elements (symplectons) in the harmonic oscil
lator representation, and (iii) to study the same problem 
when the more general bases of Cahill and Glauber4 are in
troduced. It is a remarkable fact that in this last connection, 
the three parameters of the hypergeometric function receive 
a physical interpretation while its argument is associated 
with the choice of basis. 

A resume of this work has been presented at the XIIlth 
International Colloquium on Group Theoretical Methods in 
Physics. 5 

II. THE SYMPLECTIC CLIFFORD ALGEBRA 

The boson and fermion algebras can be defined in simi
lar ways as follows. 

Consider a complex vector space V of dimension v = 2n 
endowed with a nonsingular bilinear form which is either 
symplectic (boson case) or symmetric (fermion case). To be 
more specific, let us take a "canonical" basis made of iso
tropic vectors, say {a l ,a2 , ... ,an , at ,at , ... ,an+} and define 
the bilinear form, with the aid of those basis vectors, as fol
lows: 

(aj,aj ) (a/ ,at ) = 0, (aoa/ ) !Dij' (2.1) 

The complex boson algebra Bn may be defined as the univer
sal algebra generated by the a / s, the a i+ 's, and a unit element 
1 satisfying the following boson relations: 

(2.2B) 
aia/ a/a =Dijl. 

In other words, Bn can be considered as the set of all 

a)Permanent address: Universite d'Aix Marseille II, Faculte des Sciences 
de Luminy. 

b ) Permanent address: Institut Voor Theoretische Fysica, University of Nij· 
megen, Netherlands. 

"polynomials" in ai and a/ , where the variables ai and a/ 
are not independent but related by (2.2B). 

Similarly the complex Fermion algebra Fn may be de
fined as the universal algebra generated by the a j 's, the a i+ 's, 
and the unit element 1 obeying the relations 

aiaj + ajai = ai+ a/ + a/ a/ = 0, 
(2.2F) 

aja/ +a/ai =Dijl. 

In fact, in neither case is the use of a basis necessary to 
define the algebra. We could better say that V is a complex 
vector space of dimension 2n endowed with a nonsingular 
symplectic (resp. symmetric) bilinear form denoted (x,y), 
where X,YEV and that Bn (resp. Fn) is generated by V ED C 
with 

XY - yx = 2(x,y), 

respectively, 

xy + yx = 2(x, y). 

(2:3B) 

(2.3F) 

One recognizes, in the fermion case, the definition of a 
Clifford algebra (for an even dimensional space).6 Today, 
where Lie algebras are considered as special cases of super 
Lie algebras, it would be natural to consider Fn as an orthog
onal Clifford algebra and Bn as a symplectic Clifford algebra. 

One problem which is relevant for physics is to build a 
basis of Bn from a given basis of V. To our knowledge, the 
first "group theoretical basis" construction was the one giv
en by Biedenharn and Louck 1 for B I' The basis elements of 
B 1 were given the name of characteristic polynomials by 
these authors. Although the space V is symplectic, these 
characteristic polynomials were made orthonormal in the 
Hilbert sense. We will discuss the point later on. 

In order to make clear how we can find a basis for B n 

from a basis of V, we will examine the case of Fn or, more 
precisely, the case of the Dirac algebra (Fz). Usually, one 
takes a Lorentz basis for V, namely Yo, YI' Yz, Y3' The Dirac 
algebra is 16 dimensional and the usual basis of it is given by 
1, Yj.t' O"j.tv = U/2)( Yj.t Yv - Yv Yj.t)' YSYj.t' Ys' These basis ele
ments span subspaces of respective dimension I (scalars), 4 
( Vitself), 6, 4 and 1; each subspace is invariant and irreduci
ble under the Lorentz group. This can be seen from the com
mutators with the generators of the Lorentz group ~ O"j.tv (ad
joint action, i.e., the "bracket" action) 

2639 J. Math. Phys. 28 (11), November 1987 0022-2488/87/112639-11 $02.50 @ 1987 American Institute of Physics 2639 



                                                                                                                                    

[~O" JLV' 1] = ° (scalar representation), 

[~O"JLV'Yp ] 
=i(gvpYJL -gJLPYJL) (vector representation 0), 

[~O"JLv,l/20"pA ] 

= (i/2)(g vpO" JLA - gVA O"JLP - gJLpO" VA + gJLA 0" vp) ( III ), 

[!O"JLV'YsYp ] = iYs(gvp YJL - gJLP Yv) (all), 

[!O"JLV'Ys] = ° (=). (2.4) 

Once the reduction into irreducible invariant subspaces 
has been made, the basis vectors of F2 are obtained by taking 
antisymmetrized products of the basis vectors of V. 

Before doing something analogous for B n' let us make 
some important remarks. 

Remark 1: The invariant subspaces of Eqs. (2.4) are 
invariant under the action of the two Casimir operators of 
the Lorentz group. The two Casimir operators are 

(2.5) 

C2 = !EJLvpaM JLvM pa, (2.6) 

where M{tv denotes "the bracket by !O"{tv'" namely 

M{tv = HO"{tv' ], (2.7) 

therefore 

CI = i[O"{tv' [O"{tv. ]], (2.8) 

C2 = !EJLvpa[O"{tv,[O"pa, ]]. (2.9) 

It is easy to check, for instance, that 

C l 1=C2 1=0, 

Clyp = 3yp ' C2Yp = 0, 

(2.10) 

(2.11 ) 

relations that mean that the Lorentz scalars are character
ized by the eigenvalues (0,0) and C I and C2 and the Lorentz 
vectors 7 by the eigenvalues (3,0). 

Remark 2: Rather than the Lorentz basis for V, we 
could choose the already mentioned isotropic basis a l± 

= ~(YI ± iY2), al = !(Yo ± Y3)' The reason for that is a 
group theoretical one: these vectors are eigenvectors of the 
two operators M12 and M03 (the Cart an subalgebra of the 
Lorentz Lie algebra). In fact, 

[!O'wal±] = ±al±, [!0"03,a l±] =0, 
UO"\2' a2± ] = 0, [~0"03' a2± ] = ± al· 

(2.12) 

Then, by taking all antisymmetric products of the vec
tors al± and al, we get a basis of F2 which is made of eigen
vectors of M\2 and M03 ("canonical basis"). Up to a norma
lization factor, they are 0"\2, 0"03' 0"01 ± iO"02 + 0"31 + i0"23' 
0"01 ± iO'02 - 0"31 ± i0"23' etc. 

Remark 3: It is perhaps important to emphasize the fact 
that in this part of the paper we are interested in algebras per 
se and not in their representations. For instance, the y's are 
not matrices. 

Remark 4: The above decomposition of F2 into irreduci
ble invariant subspaces remains valid for the complex exten
sion O( 4,C) of the Lorentz group. Here O( 4,C) is the group 
of automorphisms of F2 • 

Let us now do something similar for Bn. For the choice 
of a basis for V, the things are simpler because V is symplec
tic and it is usual to take the canonical basis defined by (2,1). 
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The generators of the symplectic group are the elements of 
order 2. A suitable basis for it is given by the following 
n(n + 1 )/2 generators ofSp(2n,C): 

J ij- = !(a;aj + aja;), 

J ij+ = !(a;+a/ + a/a/), (2.13) 

Jij = !Ca;a/ + a/ a;). 

By taking symmetric tensor products of V (representa
tion 0 ) we obtain irreducible spaces of the group Sp(2n,C) 
associated with representation m, DOD ,etc. of dimension 
czn/ I), czn/2), etc., respectively. Moreover, the basis vec
tors ail a;+ of Vare eigenelements of the n operators 

M;; = U(a;a;+ + a/a;), ]. (2.14 ) 

Since 

(2.15 ) 

In the special case of B I , the generators ofSp(2,C) can 
be written 

J+= _!a+ 2, J_=!a2, J3=!(a+a+aa+) (2.16) 

as already given by Biedenharn and Louck. I The symmetric 
tensor products of a and a+ were denoted by these authors as 
97; they satisfy the following commutation relations: 

[J3,971 = m97, (2.17) 

[J3, [J3,9j"]] + UJ +, [J -,97]] + UJ _, [J +,9j"]] 
=j(j+1)9j", (2.18) 

where the notation is familiar to every physicist [Sp(2,C) is 
isomorphic to SL(2,C)]. Equation (2.17) is the counterpart 
of Eqs. (2.4) of F2 • Equation (2.18) is the counterpart of 
Eqs. (2.10) and (2.11). It was shown by Biedenharn and 
Louck that the 97 form a natural basis for B I' We intend to 
generalize that result to Bn in the next section. 

III. SYMMETRIC BASIS OF Bn INDUCED BY A BASIS 
OF V 

Let el,e2, ... ,ev (v = 2n) be an arbitrary basis of V. Since 
V is symplectic, every vector is isotropic but we are not nec
essarily taking a canonical basis. We define a basis 
{E \.k, .... k) for B n' where k and k; are non-negative inte
gers satisfying 

kl+k2+"'+kv=k, (3.1) 

with the aid of the formula 

(± t;e;)k = I ~ [t][ kJE 7k J' 
;~ 1 [kJ [k]! 

Here we use a "multiple index" notation, i.e., 
k 

I means I with (3.1), 
[k J k, ~O 

[k]! means k l !k2!" 'k), 

[t] [k J means t/,t/'" .tv k" 

Ek[k J means E\,k,,"k
v

' 

( 3.2) 

It is clear that the E k[k J for a given k span an irreducible 
representation spaceBn (k) for the group Sp(2n,C). It is the 
representation associated with the Young diagram !:II!!:'3 

H. Bacry and M. Boon 2640 



                                                                                                                                    

made of k boxes, a representation of dimension 
(v + k - 1)!I(k - v)!. We have 

00 

Bn = s Bn (k), (3.3) 
k=O 

whereBn(O) =CandBn(l) = V. 
Graduation: From what is well known for the symplec

tic group (also orthogonal groups), it is easy to see that we 
have a natural graduation in Bn. In fact, let us define 

00 

B n+ = S Bn (2k), 
k=O 

00 

Bn- = S Bn(2k+ 1). 
k=O 

We get 

Bn=Bn+sBn-

and the following graduations: 

Bn+Bn- =Bn-Bn+ =Bn-· 

(3.4 ) 

(3.5 ) 

(3.6) 

Scalar component: According to (3.3), each element of 
B n can be considered in a unique way as the sums of elements 
belonging to the B n (k). The component in the B n (0) space 
will be called the scalar component. Clearly it is just a num
ber [invariant under the group Sp(2n,C)]. 

Conjugation: There exists a "conjugation" in Bn which 
is an antilinear automorphism C such that C 4 = 1. To show 
this, take a canonical basis and define the antilinear mapping 
C(A) 

(3.7a) 

Clearly it preserves the symplectic product. We have 

C(A)4ai = (A *..1 -1)2au (3.7b) 
C(A)4a/ = (..1..1 *-1)2ai+. 

TheconditionC(A)4 = 1 imposes A = ±p, ± ipwithp>O. 
Clearly, C can be extended to the whole space Bn. 

Scalar product in Bn: Let X, Y be two elements of Bn 
belonging to the subspaces Bn (k) andBn (k '), respectively, 
i.e., corresponding to irreducible representations""", , ... 
(k squares) and """"", (k' squares), respectively. When 
we multiply these two representations, the product contains 
the scalar representation if and only if k = k '. Therefore the 
products XY and YX have a zero scalar component unless 
k = k '. This scalar component will be denoted by (X, y) : 

(X, Y) = scalar component of XY. (3.8) 

It is a symmetric scalar product in B n+ and an antisymme
tric one in B n- . In other words, B n+ (resp. B n- ) is a carrier 
space for a symplectic (resp. orthogonal) representation of 
Sp(2n,C). 
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Hermitian product in Bn: It is well known that the irre
ducible representations ofSp(2n,C) are irreducible with re
spect to its maximal compact subgroup USp(2n). Since all 
representations of this group are unitary, we must be able to 
endow each B n (k) with an invariant Hilbert space structure. 
This is obtained by defining the Hermitian products for the 
canonical basis elements, 

or, more generally, by making use of the conjugation C: 

(xly) = (Cx,y) for X,YEV, (3.10) 

(xly) = (Cx,y) for x,yEBn. (3.11) 

Structure constants of the algebra Bn: They are defined 
by 

k k' "k'kK K E [k ]E [k'] = L D [k'][k][K]E [K]' (3.12) 
[K] 

To find the coefficients D (the structure constants) explicit
ly, it is simpler to start with the canonical basis au a/ of V. 
We will make use of (i) the Weyl identity for x, YEV 

(3.13 ) 

(the exponentials are not elements of Bn; they will be used as 
generating functions); (ii) the generalized Leibnitz formula 
(with global indices) 

a k [k] ([k]) apf ak-Pg 
a [xP k ] (fg) = [P~O [p] a [x][P] a [X][k- p]' 

(3.14a) 

where 

( [[pk]]) = [k ]! 
[P]![k - p]! 

(3.14b) 

is the generalized binomial coefficient; and (iii) the defini
tion of the E k[k /s 

k a
k 

I E [k] = a [X][k] (~) X=O' (3.15) 

where 

(3.16) 

with summation i = 1, ... ,n understood. It is convenient to 
introduce a more explicit notation for the basis (3.15): 

E k _ a k ( S'Oi + 'YJ,oi+ ) I (3 17) 
[k,][k,]- a [t][k'][1J][k,] e Si='YJi=O" 

The Weyl formula now reads 

(3.18 ) 

and the Leibnitz formula becomes 

(3.19) 
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wherek=k l +k2,p=Pl +P2,etc. 
Now we apply the operator 

ak+ k' 

a [s ]lkol a [7]][k,) a [s'] [kt] a [7]'] [k21 

to both sides of Eq. (3.18) and take the value at x = y = O. 
On the left-hand side, we get E7k,)[k

2
J EFiJ[ki)' On the 

right-hand side we have to use the Leibnitz formula for 

We get 

a k + k' - P - P'g I 
a[s][k,-p')a[7]]lk, P2)a[s,][k;-p;]a[7],][k i - p2] 0 

=Ek+k'-p-p' 
[k, +k; -p, -pi] [k, +ki -p, -pi)' 

Moreover, 

a [s ] (p,] a [7] 1 [p,) a [s ] [pi] a [7]] [p2] 

ap 

and the only terms in this derivative that do not vanish when 
x = y 0 are those corresponding to [PI] = [p;] and 
[P2] = [pi] for which we obtain ( - )P2( [pd![P2J!/2P). As 
a conclusion, we obtain the following structure constants 
formula: 

k k' 
E (k,][k,JE [ki][k2] 

Inf([k,J,[ki) Inf([k,],[k;]) (_ )P, 

= L L --p- [pd![P2]! 
(p,] 0 [p,) ~O 2 

X([k I J) ([k2 J) ([ki 1) ([k;]) 
[PI] [PzJ [pi] [p;] 

XE k + k '-2p (320) 
[k,+ki-pj[k,+ki-p]' ' 

where Inf( [k I J, [k 2 1) means a global index obtained by 
taking for each variable the smallest corresponding expo
nent appearing in [kd and [k n. 

Remark 1: The maximum value of k + k ' 2p is 
k + k '. The difference term 2p is due to the Z2 graduation of 
the algebra. 

Remark 2: If we reverse the order of the product and 
permute the dummy indices [PI] and [P2], we see that 
E[~;] [ki]E7k,](k, J will be given by Eq. (3.20) where ( - )P2 

is to be replaced by ( - )p'. 

Remark 3: We can easily check in Eq. (3.20) that to get 
a nonzero scalar component on the rhs, it is necessary to 
have [k i 1 = [k2 J and [k 2] = [kd. In such a case, we get, 
using (3.8), 

k k ( - )k, 
(E [k,][k, ),E [k,][k,)) = -2-k- [kd![k2]! (3.21 ) 

and one can easily verify that it is a symmetric or antisymme
tric scalar product depending on whether k is even or odd. In 
fact, from Remark 2, 
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which has the same sign as (3.21) iff kl + k2 is even and the 
opposite sign iff k I + k2 is odd. 

Remark 4: Let us define the conjugation C by taking 
A = 1 in (3.7): 

(3.22 ) 

we easily get from Eq. (3.2) 

[.± (Siai + 7]i a i+ )]n 
!~J 

= L 
[k, )[k,J 

(summation over i is made explicit here for more clarity). 
Therefore 

CE 7k'lIk, I = ( - ) k'E fk,][k, J' (3.23) 

and the Hermitian product for two basis elements of Bn is 
given by 

( k I k' ) kkk' 
E [k,)[k, J E [kiJ[k2] = ( - ) '(E [k,][k, IE [ki],[k2]) , 

(3.24) 

that is ( - )k, times the scalar component of the product 
k k' 

E!k,)!k,IE [k;][ki)' 
According to Remark 3, Eq. (3.24) is zero unless 

k2 k 2 and kJ = k i, Therefore 

(E[k,J[k, dE[ki] [k;]> 

= ([kd![k2]!!2k
, + k')D[k.J[k; ]D[k,][k2]' (3.25) 

a positive definite scalar product, as expected. 

IV. OTHER BASES FOR Bn 

For group theoretical considerations, it was natural to 
consider "symmetric polynomials" in ai and a/ as a basis 
for B n • Other bases can be introduced. Among them, there is 
one the physicist is familiar with, namely the one associated 
with normally ordered products. From a group theoretical 
point of view such a basis looks rather perverse. It would 
lead to basis elements which do not belong to irreducible 
representation spaces ofSp(2n,C). Let us examine this spe
cial basis. The "normal" basis elements can be derived from 
a new generating function as follows: 

E k (\) _ ak 

[k,][k, J - a [s ] [k,J a [7] ]lk21 

X (e - (1I2)S{T/
ii ai + .",<1/ ) I Si ~"'i ~ O· (4,1 ) 

[Compare (3.17) for the symmetric basis; the superscript 
( 1) is explained below. J In fact the change in the generating 
function is quite "small" since the phase factor is invariant 
under the group Sp(2n,C). Obviously, the interest of the 
phase factor appears when we represent ai> a i+ as annihila
tion and creation operators. In that case, the symmetry be-
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tween ai and a/ is lost. Changing the sign of the phase in 
e - (1/2)Si1/, transforms the normal product into an antinormal 
product which does not have the same properties even if 
from the B" algebraic point of view there is no fundamental 
difference. 

More generally, we can follow Cahill and Glauber4 to 
define an s basis E ~tj (k, I by the formula 

Ek(S) _ ak 

[k.J[k,] - a Ls ]lk,] a [7J 1 [k,l 

(e (SI2)Si1/ieS,a, + 1/,at ) I ' (4.2) 
S,=1/, 0 

where s takes values in the complex plane. For s = 0 we are 
back to the symmetric basis Eq. (3.17) and for s = 1 we 
obtain the normally ordered basis (4.1 ). 

We can calculate the structure constants with an s basis. 
We give only the result. We have only to replace the factor 
(- )P, in formula (3.20) by the factor (s+ l)P'(s-l)P,. 

Remark: The Leibnitz formula permits us to express the 
s-basis elements in terms of the symmetric basis elements. 
We get 

k(s) _ Inf([k,],[k,]) ([kI1) ([k21) , 
E [k,][k,] - I [] [p 1 [pd· 

[p.I 0 PI 2 

x( _ E k ,+k,-2p, s )P' 2 [k,-p,llk,-p,]' (4.3) 

It follows that the scalar component of E (Z;j'(k, I is zero ex
cept when [PI] in (4,3) can take simultaneously the values 
[kd and [k2], which is only possible if [kd [k2 1. There
fore 

scalar part of E ~k:i[k, I = ( - ~ r [kd !Ork, ][k, I' (4.4) 

V. HARMONIC ANALYSIS FOR 8 1 

The question arises for the physicist to know what a 
basis element E ft?[k, 1 looks like when ai and ai+ are repre
sented in a harmonic oscillator basis. Here we give the an
swer for B\ only, in two parts: (i) in the present section for 
s = 0 (symmetric "order"); (ii) in the next section, for a 
general value of s. 

If we adopt the Biedenharn-Louck notation, we define 

(5.1) 

where 

~ ( 2j ) s j- m7Jj+ mE2j . 
m £... _ j j + m 1 - m.l + m' 

(5.2) 

Here B t (resp. B 1-) corresponds to the integral (resp. 
half-integral) representations of Sp(2n,C). The structure 
constants were calculated by Biedenharn and Louck: 

J+/ 
aJmaJm' _ '" fiJ aJM 
;::r j ;::r I-£... D m'mM ;::r J , (5.3 ) 

J= [i-II 

where 
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D IjJ 
m'mM 

[ 
(J + j' + j + 1)! ] 

(2.1 + 1) (j + j' - J)!(J + j - j')!(J + j' - j)! 

XCJ2!mM (5.4) 

and Cl,!/mM are the Wigner coefficients. 
The normalization factor in (5.1) is the standard one. It 

permits us to write 

[J+,9j] = [(j+m)(j m + 1)1 1/2 9j+l, 

[J_,9j] = [(j-m)(j+m + 1)]1/2 9j-I, (5.5) 

[J3,9j] = m9j. 

In particular, 

9: =Y2E~,2 =Y2(a+)2 2V2.I+, 

97 = 2Ei.1 = a+a + aa+ 4J3 , 

9 1 1= Y2Eto = V2a 2 2&_. 

(5.6) 

A matrix element (N' IE Ji m.j + m IN) is zero except if 
the j + m creators and j m annihilators relate IN) to 
IN'),thatisifN'=N+j+m (j-m) =N-2m.Ifwe 
setj m = I (an integer) and Q 2m (an integer), we have 
to compute the matrix elements 

(N + Q IE7.~:::glN). (5.7) 

We define 

(N + Q IE;,;:::gIN) 

(1/21) [(N + Q)VN!1 1/2l!f..l,(Q,N). (5.8) 

This definition introduces integers It/(Q,N). We will sup
pose that Q is always positive. Whenever Q is negative, the 
corresponding matrix element is the complex conjugate of 
(N + IQ I IE i!,/JrJ I IN), where t' = I + Q = I-IQ I and 
N'=N+Q=N-IQI· 

In the following section, we shall state the main proper
ties of the numbers It/ (Q,N); the proofs of (5.10)-( 5.30) are 
found in the Appendix. First, we note that, in terms of the 
Biedenharn-Louck 9j, they read 

IJ(Q,N)=[ N!(l+Q)! )1I2(N+ QI 9 Q / 2 IN). 
rl 2QI'(N + Q)! l+QI2 

(5.9) 

The main properties are the following ones. 
( 1) They are real positive integers expressed by 

(5.10) 

where the Pia,{J)(x) are the Jacobi polynomials. In other 
words (Ref. 8, p. 170), 

/ Q, N -/ + 1, ~). 
(5.11 ) 

where F is the hypergeometric function. 
(2) They can be computed from binomial coefficients 

Inf(l,N) r (N\ (I + Q) 
ItI(Q,N) = r~o 2 r) r+Q ( 5.12) 

or 
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IlI(Q,N)=(_)1 ± (_2)m(N+Q+m)(I~Q). 
m=O m I m 

(5.13 ) 

(3) Contour integral 

(QN) =_I __ I_i (t-l)N(t+ 1)I+Q dt, 
Ill' 2N+ 2Q 21Ti~ (t-3)1+1 

where the path is around 3, leaving 1 outside. 
( 4) Integral 

I/. (QN) = (- )1 (00 e- uuN+ QLQ(2u)du 
r-I' (N+Q)!Jo I, 

where L ? are Laguerre polynomials. 
(5) Generating functions 

~ (Q,N)t l = (1 + t)N 
l::'olll (1 _ t)N+ Q+ 1 ' 

~ (Q N) (- t) I _ N! e'L Q (2t) 
l;'olll , (/+Q)! - (N+Q)! N , 

00 00 xQr' I I IlI(Q,N)--=eX + ZL I (-2z-x), 
Q=ON=O Q!N! 

00 00 00 xQ/r' 
I I I III (Q,N) '" Q=OI=ON=O Q.l.N. 

= eX+Y+Zlo(2~y(2z + x)), 
00 00 00 

I I I IlI(Q,N)xQ/r' 
Q=O 1=0 N=O 

l-y 

(1 - x - y) (1 - y - z - yz) 

(6) Recurrence relations: (a) Q fixed, 

IlI+I(Q,N+ 1) = III (Q,N+ 1) +IlI+I(Q,N) 

+IlI(Q,N); 
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(5.14 ) 

(5.15 ) 

(5.16 ) 

(5.17 ) 

(5.18 ) 

(5.19) 

(5.20) 

(5.21 ) 

(b) N fixed, 

IlI+ 1 (Q + I,N) =IlI(Q + I,N) - IlI+ 1 (Q,N); (5.22) 

(c) I fixed, 

21l1(Q+ I,N) =IlI(Q,N+ 1) + III (Q,N); (5.23) 

(d) also 

III (Q,N + 1) =IlI(Q+ I,N) +IlI-1 (Q+ I,N). (5.24) 

These relations are easily seen in Fig. 1. We note that 
III (Q,N) is the number of ways one can go from the origin of 
the diagram to the point (/,N,Q) by elementary steps in the 
directions (1,0,0), (0,1,0), (1,1,0), and (0,0,1) only. The 
numbers Il I (O,N) are known as Delannoy numbers. 9.10 They 
have the symmetric property 

(5.25 ) 

which is readily obtained from Eg. (5.20) with x = ° 
00 00 I 1 I I III (O,N)yZN = . (5.26 ) 

I=ON=O l-y-z-yz 

[Note that the only property of Delannoy numbers, in rela
tion with Jacobi polynomials, mentioned in Ref. 9 is 
Il N (O,N) = P N (3), where P N is the Legendre polynomial of 
degree N. This property follows from Eg. (5.10).] 

(7) Special values 

llo(Q,N) = 1, whatever Q and N, 

III (Q,N) = 2N + Q + 1, 

(5.27) 

(5.28 ) 

(
1+ Q) III (Q,O) = Q . (5.29) 

(8) Polynomial property: 

Il I (Q,N) is a polynomial of degree I in Q 

and a polynomial of degree I in N. (5.30) 

FIG. I. The numbers PI (Q,N) and 
their recurrence relations. Relation 
(5.18) gives, for instance, 19 = 4 
+ 9 + 6; relation (5.19), 19 = 6 
+ 13; relation (5.20), 2X 16 = 25 
+ 7; relation (5.21), 25 = 19 + 6. 

For Q = 0, we get the Delannoy 
numbers; for N = 0, we get the bi
nomial numbers. 

H. Bacry and M. Boon 2644 



                                                                                                                                    

VI. THE CAHILL-GLAUBER BASES FOR 8 1 

We saw that the most natural basis for the boson alge
bra, from the group theoretical point of view, was the sym
metric one defined in (3.17). Nevertheless it is not the one 
most often used in physics. Physicists prefer to use the nor
mal ordering. Let us return to the more general s-ordered 
basis of Cahill and Glauber4 defined in (4.2), considered for 
the case n = 1. We recall that s is any complex number. For 
s = 0, one is led to the symmetric basis and, for s = 1 (resp. 
- 1), to the normal (resp. antinormal) ordering. These 

bases are obtained from the generating functions 

e - (1I2)ss'1e Sa + '10+ = L t Prt E P + q(s) (6.1 ) 
p,q p!q! p,q 

as is easily seen from (4.2) (for n = 1). 
It is natural to define new Il (Q,N) in the manner of 

(5.8) which will depend on the variable s. They will be de
notedlliS) (Q,N) and defined by 

(N + Q IE 21 +Q(S)IN) = ~ ~ eN + Q)! I/(S)(QN) 1,I+Q 21 N! r-I , , 

(6.2) 

a formula which generalizes (5.8). 
The main properties of these functions are proved in the 

Appendix: 

lliS)(Q,N) = (1 +S)IPjN-l,Q)C ~;), (6.3) 

IllS1(Q,N) =2tJF( -I, I-Q,N-I+ 1, 1 ~s). 
(6.4) 

N,Q + 1, _2_), 
l-s 

(6.5) 

where in (6.3) P ja,{31(x) denotes a Jacobi polynomial of de
gree I. 

From (6.3), it is clear thatlljSl (Q,N) is a polynomial of 
degree I in s. 

Other properties are 

Inf(l,Nl (N'\ (I + Q) 
Il;S)(Q,N) = r~o 2'(1 s)l-r r) r+ Q (6.6) 

(they are integral numbers if s is an integer). From (6.6) we 
see that 

lliI1(Q,N) = 2tJ 
(independent of Q) . 

We have the recurrence relations 

(6.7) 

IljS! 1 (Q,N + 1) = (1 - S)IlIS1(Q,N + 1) + Ills:. dQ,N) 

+ (1 + S)IlY1(Q,N), (6.8) 

which is a consequence of (6.3) and our Jacobi recurrence 
relation (A24). For s = 0, we recover (5.21). 

We have the generating functions 

~ (S)(Q N) ( t)1 = N! e(S-11tL Q(2t), (6.9) 
If:'olll , (/+Q)! (N+Q)! n 
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(6.10) 

and the contour integral around the point (3 s) / (1 + s), 

I (l+S)N+Q+l+1 1 (S)(QN) - _ 
III , - 2N+2Q (1_S)N-l 21Ti 

X dt f (t-1)N(t+l)I+Q 

(3-s)/(1 ts) [t(1 +s) - (3 S)]1+1 
(6.11 ) 

(the point s = 1 is left outside the path). 

VII. SUMMARY AND CONCLUSIONS 

This paper presents some results in three main areas. 
( 1 ) The analysis of the structure of an abstract n-boson 

algebra viewed as a complex Clifford algebra of symplectic 
type, as compared with the usual (orthogonal) Clifford alge
bra for n fermions. 

(2) A more detailed study (in the above context) of the 
one-boson algebra, originally considered by Biedenharn and 
Louck, 1-3 whose basis elements are Weyl symmetrized prod
ucts of the creation and annihilation operators a+ and a, 
respectively. Among other things, the matrix elements of 
this basis between harmonic oscillator states are related to 
special functions, and shown to have many interesting prop
erties. 

(3) An extension of the analysis of the one-boson alge
bra to a consideration of the different bases defined by a 
continuum of possible orderings (labeled by a complex pa
rameter s) introduced by Cahill and Glauber.4 These include 
the Weyl symmetrized ordering and normal ordering 
(s = 0,1, respectively) as special cases. The matrix elements 
of the basis depend here on the ordering parameter s. One of 
the most interesting relations with special functions is ex
pressed in Eqs. (6.3) and (6.4). The matrix element between 
harmonic oscillator states IN) and IN + Q) ofthes-ordered 
basis element constructed from 1 annihilation operators and 
I + Q creation operators is seen to be essentially a hypergeo
metric function, or a Jacobi polynomial, wherein the three 
parameters and the argument are combinations of the four 
quantities I, Q, N, and s (the latter therefore exhaust the four 
"degrees offreedom" available). 

Cahill and Glauber4 are mainly interested in the proper
ties of quantum-mechanical operators of the boson system, 
functions of a and a +, and especially in density operators 
describing probability distributions on phase space. The ex
pansion of these operators in terms of the general s-ordered 
basis is examined by them in detail. Such expansions are 
generally infinite, and Cahill and Glauber define conver
gence for the expansions in terms of the convergence of ma
trix elements (between coherent states). To correspond with 
this, it would be a natural next step to extend the boson 
algebra, considered as a symplectic Clifford algebra as in this 
paper, to quantities defined in terms of infinite expansions 
such as exponentials and other "analytic" functions. The 
operators exp(ta + 1Ja+) used as generating functions [Eq. 
(6.1) ] are a case in point. Another obvious extension would 
be to include "rational" functions, for example the Green's 
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function l/(litua+a - E). We have introduced a scalar 
product intrinsic to the algebra and which provides a norm 
independent of any representation (harmonic oscillator or 
other). In this context it remains to examine in what ways 
one can extend the algebra using convergence criteria intrin
sic to the algebra, and how the class of operators obtained in 
such extensions correspond to the operators admitted by Ca
hill and Glauber and to those of interest in quantum me
chanics in general. 
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APPENDIX: PROOF OF PROPERTIES OF THE flAQ,N) 
AND p~.)(Q,N) NUMBERS 

We give proofs of formulas (5.10)-(5.30) and (6.3)
(6.11 ). 

1. Proof of formula (5.17) 

From the Weyl formula 

we get 

(AI) 

We supposed Q:>O. Therefore the matrix elements are zero 
except when q<.N andp = Q + q. Since 

aqlN) = [N!I(N - q)!]1/2IN - q), 

(a+ )QHIN) = [(N + Q)!I(N - q)!] 1/2 IN + q), 

we get ll 

(N + Q lesa+'1a+IN) 

= e(l/2)S'117QL ~ ( - 517) [N!I(N = Q)!] 1/2, 

where L ~ (t) is the Laguerre polynomial 

L Q (t) = ± (N + Q)! ( - t)q 
N q=O q!(Q + q)!(N _ q)! 

[normalization: L ~ (0) = (N ~ Q)]. 
Also 

(A3) 

(A4) 

(N+Qlesa +'1a+IN) = f ..!..(N+QI(5a +17a+) 2j IN) 
2j= 02]1 

'" j 5 j - m17 j + m 

= L L (. )'( . )' 2j=Om= -j }+m. }-m . 

x(N+QIEF_m,j+mIN). (A5) 

It is clear that to be nonzero the matrix element must 
obey the conditions 2/;;p Q and m = Q /2, Therefore it is natu
ral to set 

j=l+ Q/2, (A6) 

where I is an integer. Then 
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(N + Q lesa+'1a+IN) 

'" f:1 1+ Q 
_ ~ ~ 17 (N+QIE21+QIN) 
- I~O (/ + Q)!l! I,I+Q 

and, according to the definition (5.S) of the PI (Q,N): 

(N + Q lesa +'1a+IN) 

= f (517)I17
Q ..!.. ~ (N + Q)! f-l1(Q,N). 

1=0 (/ + Q)! 21 n! 
(A7) 

Formula (5.17) follows by setting 517 = - t and by 
comparing (A3) and (A7): 

~ (QN)( t)1 1 N! e- t /2LQ(t). 
I~of-ll' -"2 (/+Q)! = (N+Q)! N 

(5.17) 

In particular, for Q = 0 

f f-ll (O,N)( - !....)I ~ = e - tl2LN (t) 
1=0 2 l. 

(AS) 

(generating function of Delannoy numbers). 

2. Proof of (5.12) and (5.27H5.29) 

Equation (5.12) is readily obtained by identification of 
(5.12) and (A4): 

I~O f-ll (Q,N)( - ~ y (/; Q)! 

N! 00 ( t)' 1 = 2: -- -
(N+Q)!,=o 2 r! ± (N+Q)! (-t)q 

X q=O q!(Q + q)!(N _ q)! 

2
q (t )1 

q!(Q + q)!(N - q)!U- q)! -"2' 
'" InfU,N) 

=N!2: 2: 
1=0 q=O 

We get 

Inf(l,N) (N\ (I + Q) 
f-l1(Q,N)= 2: 2

q aJ +Q' q=O q q 
(5.12) 

which proves that they are positive integers. The proof of 
Eqs. (5.27 )-( 5.29), is a very simple exercise. 

3. Proof of (5.16) 

We have 

(1 + t)N 1 (1 2t)N 
(l-t)N+Q+1 = (l_t)Q+1 +t=( 

Thus 

( 5.16) 

[where we have taken m + q = I and used Eq. (5.12)]. 
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4. Proof of recurrence relations (5.21H5.23) 

We use three versions offormula (5.16): 

(1 + t)N 00 

---'---N-'-+-Q-+-l = L PI (Q,N) t I, 
(1-t) 1=0 

(1+t)N+l 00 

--'---'---'-N-+-Q-+-2 = L PI (Q,N + 1) t I, 
(1-t) 1=0 

(1 + t)N = ~ P (Q + 1,N)tl. 
(1- t)N+Q+2 I~O I 

From 

(A9) 

(A1O) 

(A11) 

(1 + t)N (1 + t)N + 1 (1 + t)N 
---'----'-:-:-'----=- + = 2 --'---'--'--::--
(1-t)N+Q+l (1-t)N+Q+2 (1_t)N+Q+2 

(A12) 

we get the recurrence relation for fixed I, 

PI (Q,N) + PI (Q,N + 1) = 2pI (Q + 1,N). (5.23) 

If we multiply (A9) by 1 + t and (A 10) by 1 - t, we obtain 
two expansions for (1 + t) N + 1/(1 _ t) N + Q + 1: 

I PI (Q,N)t l(1 +t) = I PI(Q+N+ l)t l(1-t) 
1=0 1=0 

from which we get the recurrence relation for fixed Q: 

PI+ 1 (Q,N + 1) 

=PI(Q,N + 1) +PI+t<Q,N) +PI(Q,N). (5.21) 

If we multiply (All) by (1 - t) and compare with 
(A9) we get the recurrence relation for fixed N 

PI+ 1 (Q + 1,N) = PI (Q + 1,N) + PI+ 1 (Q,N). (5.22) 

Finally, we obtain formula (5.24) by multiplying 
(All) by 1 + t and comparing with (A10). 

5. Proof of Eq. (5.19) and Eq. (5.18) 

Let us show that thepi (Q,N) defined by (5.19) are the 
ones given in Eq. (5.12). We have from the 10 series 

a Q aN a l 

PI (Q,N) = axQ az!' ayZ 

x [ex+ Y + z I ym(2z + x)m] 
m=O (ml)2 x=y=z=o 

or 

a Q aN 
PI (Q,N) = axQ az!' 

x[ex
+

z ktJ~) (2z:
I
X)kL=z=o 

= I:~:) 2{JIOf~~~ q) (;) G + q) 
= lOIN) 2{J C + Q), 

q=O q q+Q 

(A13) 

which proves Eq. (5.19). The proof of Eq. (5.18) is quite 
immediate. It is a consequence ofEq. (A13) and the proper
ty 

± (I) (2z+X)k =LI ( -2z-x). 
k=O k kl 

(A14) 
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Remark' If we make Z = 0 in Eq. (5.19), we get 
00 00 xQyZ 

eX+ Y10 (2{xy) = L L -PI(Q,O). (A15) 
Q=OI=O QUI 

This function is the generating function of binomial coeffi
cients since, from Eq. (5.12) we have 

(
/+Q) PI(Q,O) = Q (A16) 

(the symmetry between x and y reflects the symmetry 
between Q and I). 

6. Proof of generating functions (5.20) and (5.26) 

Let us define 
00 00 00 

F(x,y,z) = L L L PI (Q,N)xQyZz!'. (A17) 
Q=O 1=0 N=O 

Ifwe multiply the recurrence relation (5.21) by xQyZ + lz!' + 1 

and sum over Q, I, N, we obtain 

00 00 

F(x, y,z) - L L Po(Q,N)xQz!' 

or 

Q=ON=O 
00 00 00 

- L L PI (Q,O)xQyZ - L Po (Q,O)xQ 
Q=O 1=0 Q=O 

=y[F(X,y,z) - QtOltoPICQ,O)XQyZ] 

+Z[F(X,y,z) - QtoNtoPo(Q,N)XQz!'] 

+ yzF(x, y,z) 

F(x,y,z)[l - Y - Z - yz] 

1 ------+ ---

and 

(1-x)(1-z) 1-x-y I-x 

y Z 

1-x-y (1-x)(l-z) 

1-y 
F(x, y,z) = --------''-----

(1-x-y)(1-y-z-yz) 

Here we have used the following properties: 
00 00 1 L L Po(Q,N)xQz!' = , 

Q=ON=O (1-x)(1-z) 

I I,uI(Q,O)XQyZ= 1 
Q=OI=O 1-x-y' 

00 1 L PoCQ,O) = --. 
Q=O 1-x 

(5.20) 

(A18) 

(A19) 

(A20) 

Equation (5.26) follows directly from Eq. (5.20) by taking 
x=o. 

7. Proof of formulas (5.15), (5.13), and (5.24) and of 
property (5.30) 

We prove formula (5.15) by considering it as a defini
tion of,u I (Q,N) and showing the correctness of this assump
tion. We see that the recurrence relation of Laguerre polyno
mials8 
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L ?(2u) = L?+ 1(2u) - L ?_+11(2u) 

provides us with the recurrence formula 

f.ll (Q,N + 1) = f.ll (Q + I,N) + f.ll _ I (Q + I,N), 

which is our recurrence equation (5.24). Moreover, the "ini
tial conditions" are 

1 100 

f.l (QN) = e uuN+Qdu= 1, 
0' (N + Q)! 0 

(A21) 

(Q N) e U uN+ Q L Q1 (2u)du, 1 100 

f.ll , = - (N + Q)! 0 

and, since 

L¥(2u) =Q+ 1-2u, 

we get 

f.ll(Q,N) = Q+ 1 + 2N. (A22) 

Equations (A21 ) and (A22) are exactly the ones obeyed by 
our original f.l(Q,N) (see Eqs. (5.27) and (5.28)]. This 
proves Eq. (5.15) and incidentally Eq. (5.24). 

Now from (5.15) and8 

L ?(x) = ± (_ )m(1 + q ) ~, 
m~O 1 m m! 

it is a simple matter to obtain 

f.l1(Q,N) = ( _)1 mto (- 2)m(~ + Q + m) (7:~)' 
(5.13 ) 

As a consequence f.l I (Q,N) is of degree 1 both in N and in Q 
[Property (5.30)]. 

8. Relation with Jacobi polynomials: Proof of Eqs. 
(5.10), (5.11), and (5.14) and of (6.3)-(6.11) 

The relations of Sec. V that remain to be proved, Eqs. 
(5.10), (5.11), and (5.14) are special cases for s = OofEqs. 
(6.3), (6.4), and (6.11), respectively, so we shall concen
trate on demonstrating Eqs. (6.3 )-( 6.11). 

The definition off.lY) (Q,N) from Eqs. (6.1) and (6.2) is 
obtained from 

(N + Q Ie - (l/2)ss71e Sa + 71a
+ IN) 

[
(N+Q)!]1/2oo nl+Q{;1 (s) N 

N! f~O 21(/ + Q)!f.tl (Q, ), 

or, equivalently, using Eq. (A3) and setting 2t = - (;1], 
from 

e(s 1ltLQ(2t)=(N+Q)! ~ (_t)1 f.l(S)(QN). 
N N! /'::"0 (/ + Q)!! , 

( 6.9) 

This is Eq. (6.9). The expression (6.6) for f.ll')(Q,N) then 
follows by equating coefficients of t 1 and using Eq. (A 4). 

To prove the generating relation Eq. (6.10) we write 

[1 + (1 +S)U]N 
[1- (l-S)U]N+Q+I 

= [1- (1 ~S)U]Q+I [1 + [1- (~u_S)U] r, 
expand the rhs in powers of u, and use Eq. (6.6) for 
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f.l?) (Q,N). The procedure is the same as for the s = 0 case in 
Sec. III of this appendix. 

We now turn to the expressions (6.3)-(6.5) for 
f.l}S) (Q,N) in terms of special functions, which allow us to 
extend their definition to general complex values of the vari
ables I, Q, Nand s. They follow from the integral representa
tion of the Legendre polynomial [Ref. 11, 9.211 (1) and 
9.215]: 

L~(2t)= 1 II (l O')N+Q 
2Qr(N + 1)r( - N) -I 

X(1 +O')-N-le«7+I)'dO' (A23) 

valid for Re( Q + 1) > Re( - N) > 0. Setting this in Eq. 
( 6.10) (above) and rearranging one finds 

(S)(QN) = rU+Q+ 1) (- )'(1 +S)' 
f.l!, r(l + 1) r(N + Q + 1)r( - N) 

~)ldr. 
1 +s 

(A24) 

Thus [Ref. 11,9.111 and 9.131(1)] we have Eq. (6.5), 

f.liS) (Q,N) rU+Q+l) (1-S)1 
ru+ l)rCQ+ 1) 

XF( -I, - N,Q + 1,~). (6.5) 

Equation (6.4) follows directly from Eq. (6.5) using a rela
tion between hypergeometric functions [Ref. 8, p. 170, Eq. 
(16)]: 

2! r(N + 1) 
ru+ 1)r(N-I+ 1) 

( 
I-S) XF -I, -l-Q,N -1+ 1'-2- . 

(6.4) 

We can express the hypergeometric function in (6.5) in 
terms of Jacobi polynomials [Ref. 8, p. 170, Eq. (6)] to get 
Eq. (6.3): 

f.ljS) (Q,N) (1 +S)lp}N-',Q)(3 -s)/(1 +s»). (6.3) 

We remark that, although the integral representations 
(A23) and (A24) are valid in the restricted range of param
eters indicated under Eq. (A23), Eqs. (6.3 )-(6.5) are valid 
for all values of the parameters where the corresponding 
functions are well defined; they are valid in particular for 
non-negative integral values of I, N, and Q. In the latter case 
it is easy to check that the polynomials are finite and formu
las (6.3)-(6.5) agree with the expansion (6.6) for 
f.l}S) (Q,N). 

Finally, formula (6.11) is found from the contour for
mula for Jacobi polynomials8 

1 J. (t2 - 1)1 

21TiYo (t2_ U )'+1 

x(l-t)U(I+t)13 J... dt, 
1 + t 1 + u 2' 

(A25) 

where the contour is around 0 and leaves ± 1 outside. We 
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set u = 3 - s/1 + s, a = N - I, and {3 = Q in (A25) and 
substitute in Eq. (6.3). 

Remarks: (1) From Eqs. (6.3) and (6.5) for /-tiS) (Q,N), 
we see that for integral 1'>0 it is a polynomial of degree I in 
the variables Q and N separately. However if N is an integer 
;;;.0 and N = I, the polynomial cuts off at degree N [cf. Eq. 
(6.6) ]. 

(2) The/-tl') (Q,N) are integral when I, N,Q are integers 
;;;.0 and s is integral. 

(3) The recurrence relations (5.22) to (5.24) (for 
s = 0) could be obtained from well-known Jacobi polyno
mial recurrence relations, and could also be generalized to 
s:;60 by these means. Recurrence relations (5.21) (for 
s = 0) and its generalization Eq. (6.8) for s:;60 follows from 
the beautiful relations (not standard) 

[(1 - t)/2]P ia - 1,13) (t) - P i~ 1 1,/3) (t) 

(A26) 
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The factorization offour vector operators, D± (w) and D± ( - w), which occur in a 
representation-independent, spectrum-generating algebra for the three-dimensional, isotropic 
harmonic oscillator in an angular momentum basis, is considered (w is the angular frequency 
of the oscillator). The D± (w) are quantum-mechanical analogs of the classical vectors 
(1 + iLX )Fe (w), where Fe (w) = - MwrXL + pL is constant in a frame rotating with 
angular velocity w£. It is shown that these four vector operators can be factorized in two 
different ways to yield operators that, apart from their dependence on a constant of the motion 
(L2

), are linear in either p or r. In this way 20 abstract operators are obtained. The properties 
of these operators are discussed: (i) Twelve are ladder operators for the quantum numbers I, 
and I and m, in the eigenkets 11m) of L 2 and L z • In linearized, differential form six of these 
operators are ladder operators for the spherical harmonics in the coordinate representation, 
while the other six are the corresponding operators in the momentum representation. (ii) The 
remaining eight operators factorize linear combinations of the Hamiltonian and the dimension 
operator. In linearized, differential form four of these operators are ladder operators for energy 
and angular momentum in the radial part of the coordinate-space wave functions, while the 
other four are the corresponding operators in the momentum representation. 

I. INTRODUCTION 

Recently, de Lange and Raab l considered the factoriza
tion of two vector constants of the motion C ± , which occur 
in a representation-independent, invariance algebra for the 
Coulomb problem in an angular momentum basis. The C ± 
are quantum-mechanical analogs of the classical, conserved 
vectors 

(1) 

where Ae is the Laplace-Runge-Lenz vector2 and L = rXp 
is the orbital angular momentum vector. The vector opera
tors C ± can be factorized in two different ways to yield a rich 
"substructure" of 16 operators. Apart from their depend
ence on the constants of the motion, L 2 and H, these 16 
operators are linear in either p or r. They can be linearized by 
replacing constants of the motion with their eigenvalues. In 
differential form, these linear operators are related to those 
obtained by the factorization method for solving the Sturm
Liouville equation. I 

It is natural to inquire whether a similar analysis can be 
carried out for the three-dimensional, isotropic harmonic 
oscillator (hereafter referred to as the oscillator) in an angu
lar momentum basis. Because the classical Laplace-Runge
Lenz vector for the oscillator does not generalize to a quan
tum-mechanical operator,3 the treatment cannot be com
pletely analogous. However, Bracken and Leemon4 have re
cently derived vector operators as part of a 
representation-independent, spectrum-generating algebra 
for the oscillator in an angular momentum basis. In this pa
per we consider vector operators D ± closely related to those 
derived in Ref. 4. These operators are quantum-mechanical 
analogs of the classical, time-dependent vectors 

D! (w) = (1 + zLX )Fe (w) (2) 

and De± ( - w), where w is the angular frequency of the os
cillator and Fe (w) is constant in a frame rotating with angu

lar velocity wL. (See Sec. II.) Apart from their dependence 
on a constant of the motion (L2

), D± are quadratic func
tionsofrandp. [See Eqs. (4)-(7).] 

The purpose of this paper is twofold. First, we show that 
by suitable factorization of D ± we obtain operators that, 
aside from their dependence on L 2, are linear functions of 
either p or r. Second, we study the properties of the operators 
derived by factorization. The factorizations of the four vec
tor operators D ± (w) and D ± ( - w) are presented in Secs. 
III and IV; they yield a total of 20 operators. The properties 
of these abstract operators are discussed in Sec. V. Twelve of 
them are the same as those obtained in Ref. 1 by factorizing 
the operators C ± for the Coulomb problem: they are ladder 
operators for the quantum numbers I, and I and m, in the 
eigenkets 11m) of L 2 and L z [Eq. (32)]. After linearization 
(that is, replacing L 2 with its eigenvalues), six of them are 
linear in p, the other six are linear in r. 

Four of the remaining eight operators are linear in p, 
apart from their dependence on L 2 • They factorize operators 
that are linear combinations of the Hamiltonian and the di
mension operator [Eq. (36)]. Linearization yields opera
tors that factorize a radial Hamiltonian for the oscillator 
[Eqs. (40) and (41)] and that are ladder operators for the 
energy and angular momentum in the eigenkets of this radial 
Hamiltonian [Eqs. (43) and (45) ]. The corresponding dif
ferential forms are ladder operators for the radial part of the 
coordinate-space wave functions. 

Finally, there are four operators that, apart from their 
dependence on L 2, are linear in r. Their properties are similar 
to those of the four operators discussed in the previous para
graph. In linear, differential form they are ladder operators 
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for the radial part of the momentum-space wave functions 
[Eqs. (53) and (54)]. 

II. DERIVATION AND PROPERTIES OF THE 
OPERATORS D± 

We summarize the properties, and give a brief deriva
tion, of the operators D± considered in this paper. 

Bracken and Leemon4 have presented an algebraic, rep
resentation-independent solution for the oscillator in an an
gular momentum basis. In this basis the set of commuting 
observables is 

(3) 

L 2 and L z , and the normalized, common eigenvectors are 
denoted by I Elm ). The solution given in Ref. 4 is based on 
the vector operators 

D± (w) = F± (w) ± iG± (w), 

where 

and 

F±(w) = -MwrXL+Ilp(S±P, 

G± (w) = PXL + Mfzwr(S ± !), 

(4) 

(5) 

(6) 

(7) 

Here S is equal to one-half the dimension operator5
; it is a 

Hermitian, integral operator that satisfies the eigenvalue 
equation 

S IElm) = (l + P IElm) . (8) 

The operators D ± differ from those in Ref. 4 by a factor that 
depends on the constants of the motion Hand L 2; for our 
purposes, this difference is unimportant. 6 In what follows we 
suppose that w > O. 

The four vector operators D ± (w) and D ± ( - w) yield 
the 12 shift operations? 

D k± (w) IElm) = aif (w) IE ± hW,1 ± I,m + k) (9) 

and 

D if ( - w) IElm) = aif ( - w) IE + hW,1 ± I,m + k ), 
( 10) 

wherek= ± 1,0andD±1 =Dx ±iDy , Do=Dz • The co
efficients a k± in Eqs. (9) and ( 10) are functions of M, w, and 
the eigenvalues E, I, and m. [See Eq. (55).] Bracken and 
Leemon4 based their derivation of shift operators on proper
ties of the boson annihilation and creation operators, and the 
dimension operator. In the classical limit these shift opera
tors reduce to vectors which are (i) orthogonal to L, and (ii) 
constant in a frame rotating with angular velocity WL.4 In 
the following we start with the appropriate classical vectors 
and derive the operators D± (w) and D± ( - w) as quan
tum-mechanical analogs that yield the shift operations (9) 
and (10). This is the same method of derivation that has 
been used for the Coulomb problem in an angular momen
tum basis.8,9 

For the classical oscillator it is straightforward to write 
down two orthogonal vectors with the properties (i) and (ii) 
above: 
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and 

Gc(w) =Fc(w)XL 

= PXL + MwrL. 

One can readily verify that 
Xc ( ± w) = ± Cl) X Xc ( ± w) 

and 

X~( ± w) = 2M(H ± wL)L2, 

where X = For G, and Cl) = wL. 

(11 ) 

(12) 

From the vectors (11) and (12) we construct the opera
tors 

F(w) = - MwrXL + pK, (13) 

G(w) = PXL + MwrK, (14) 

where K is a scalar constant of the motion 
([L;,K] = [H,K] = 0) such that 

(15) 

as 11-0. [Because L does not commute with rand p, Eqs. 
( 13) and (14) are not unique quantum-mechanical analogs 
of Eqs. (11) and (12). However, Eqs. (13) and (14) are 
sufficient for our purposes.] From Eqs. (3), (13), and ( 14), 
and the canonical commutation relations for rand p, 

[H,F(w)] = ifzwG(w) 

and 

[H,G(w)] = - ifzwF(w). 

Thus 

[H,F(w) ± iG(w)] = ± fzw{F(w) ± iG(w)}, (16) 

so that F ± iG are energy shift operators. Similarly, 

[Lj'j (w) ± iGj (w)] = ifz£ijk {Fk (w) ± iGk (w)} (17) 

and 

[L2,F(w) ± iG(w)] 

= ± 2Il{F(w) ± iG(w)}K 

-2ill(Mwr+ip)(K2+fiK-L2). (18) 

Clearly, if F(w) ± iG(w) are to be shift operators for the 
quantum number I, it is necessary that the second term on 
the right-hand side of Eq. (18) be zero. That is, 

K2+fiK-L2=0. (19) 

The four roots ofEq. (19) are II( ± S + !) and II( + S - !), 
where S is given by Eq. (7). The two roots that have the 
c1assicallimit (15) are 

(20) 

Substituting Eq. (20) in Eqs. (13) and (14), we obtain Eqs. 
(5) and (6). Equations (16)-( 18), (20), and (8), yield the 
shift operations (9) and (10), where the D ± are given by 
Eqs. (4)-(7). The c1assicallimit ofEq. (4) is Eq. (2). 

III. FACTORIZATIONS YIELDING OPERATORS LINEAR 
INp 

The four vector operators D ± (w) and D ± ( - w) de
fined by Eqs. (4)-(7) can be factored into the product ofa 
vector operator and a scalar. This can be done in two differ-
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ent ways. We state the first of these two factorizations and 
then outline the proof. We have 

D± (w) = U±R± (w) (21) 

and 

D±( -w) =U±R±( -w), 

where 

U± = ± ir-IrXL + fzr-Ir(S ± p, 
R ±(w) = r-Ir'p ±ili(S +pr- I ±iMwr, 

r = (r2) 1/2, and S is given by Eq. (7). 

To prove Eq. (21) we first write Eq. (23) as 

U± = ±ir-Ir(r'p) +irp+lir-lr(S±!). 

(22) 

(23) 

(24) 

Here Sis a function ofL2 and therefore it commutes with all 
the operators in R ± (w) in Eq. (24). Multiplying out the 
product U ± R ± (w ), then using the commutators 
[r'p,r- I] =ifzr- I, [r'p,r] = -ilir, [p,r- I] =ilir- 3r, and 
[p,r] = - ilir-Ir and the identity 

(25) 

we find 
U± R ± (w) = { - Mwr(r·p) + Mwr2p + Iip(S ± !)} 

± i[rp2 - p(r'p) + ilip + M~r(S ± P]. 
(26) 

Comparison with Eq. (5) shows that the term in curly 
brackets in Eq. (26) is equal to F± (w), while comparison 
with Eq. (6) shows that the term in square brackets in Eq. 
(26) is equal to G ± (w ). This proves Eq. (21); similarly for 
Eq. (22). 

Apart from their dependence on L2, the ten operators 
U ± ,R ± (w ), and R ± ( - w) are linear in p. 

IV. FACTORIZATIONS YIELDING OPERATORS LINEAR 
IN r 

Again we state the results and then outline the proof. 
We have 

D± (w) = ± N±P± (w) (27) . 

and 

D± ( - w) = ± N±P± ( - w), 

where 

(28) 

V± = ± ip-IPXL + Iip-Ip(S ± !), (29) 

P± (w) = Mwp-I(r'p) + iM~(S ± ~)p-I + ip, (30) 

p= (p2) 1/2 andSis given by Eq. (7). 
To prove Eq. (27) we first write Eq. (29) as 

V± = +ip-Ip(r·p) ±ipr+Iip-Ip(S +~). 

Here S commutes with all the operators in P ± (w) in Eq. 
(30). Multiplying out the product ± IV ± P ± (w), then us
ing the commutators [r'p,p-I] = - ilip- 1, [r'p,p] = ilip, 
[r,p-I] = - ilip-3p, and [r,p] = ilip-Ip and the identity 
Eq. (25), we find 

± IV ± P ± (w) = - Mwr(r·p) + Mwrp + Iip(S +~) 

± i[p2r - p(r'p) + M~r(S ± P]. (31) 

Hence we obtain Eq. (27); similarly for Eq. (28). 
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Apart from their dependence on L2, the ten operators 
V ± , P ± (w ), and P ± ( - w) are linear in r. 

V. DISCUSSION AND INTERPRETATION 

A. The operators U± and V± 

The 12 operators W ± (W = U or V) defined in Eqs. 
(23) and (29) are also factors of the vector operators C ± for 
the Coulomb problem in an angular momentum basis. I They 
are ladder operators for the quantum numbers I, and I and m, 
in the eigenkets 11m) ofL2 and L z . Specifically, I 

W it 11m) = fI/3 k± II ± I,m + k), (32) 

where k = ± 1,0 and 

IfJ ~112=(l±m+!±!)(l±m+!±~)al±' (33) 

IfJ '!:. 112 = (l + m + ! ± !)(I + m + ! ± ~)al±' (34) 

IfJlI 2 =(l-m+!±!>U+m+!±!)al±, (35) 

a l± = (21 + 1)(21 + 1 ± 2)-1. 

If we replace S by its eigenvalues I ± ! in Eq. (23), we 
obtain operators linear in p. The corresponding wave-me
chanical operators are ladder operators for the quantum 
numbers I and m of spherical harmonics in the coordinate 
representation. 

Similarly, from Eq. (29) we can obtain operators linear 
in r, and hence wave-mechanical operators that are ladder 
operators for the spherical harmonics in the momentum rep
resentation. More details can be found in Ref. 1 and the 
references therein. 

B. The operators R± 

It can be shown that 
[R ±(w)]tR ±(w) =2MH+2M~(S± 1), (36) 

whereR ± (w) are given by Eq. (24), Hby Eq. (3), Sby Eq. 
(7), and t denotes the adjoint operator. Thus the R ± (w) 

factorize the operators on the right-hand side ofEq. (36). If 
we replace S with its eigenvalues I + ! in Eq. (24) we obtain 
operators linear in p, namely, 

R I± (w) = Pr ± iliU +! ± !)r- I ± iMwr. (37) 

Here 

Pr = r-Ir'p - ilir- 1 (38) 

is the canonical conjugate ofr. The adjoint ofEq. (37) gives 

[RI±(W)P=Ri~:I(w). (39) 

Replacing S with / +! in Eq. (36) and using Eq. (39) 
yields 

R I~ 1 (w)R I± (w) = 2MH/ + 2M~U +! ± 1). (40) 

Here 
HI = (2M) -l.{p; + 1i2/U + 1 )r- 2} + Mw2r2 (41) 

is the radial Hamiltonian obtained from Eq. (3) by using the 
identity L2 = r2p2 - r2p; to eliminate p2 in favor of p; and 
then replacing L 2 with its eigenvalues. The factorization 
[Eq. (40)] has been discussed previously. 10 If lEI) denotes 
an eigenket of HI' 

(42) 
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itfollows from Eqs. (40) and (42) that 

R/±(tV)IEl) =y±(tV)IE±w,l± 1), (43) 

where 
IY±(tV)12=2M{E+ (/+!± I)w}. (44) 

The operators R ± ( - tV), which appear in the factori
zation [Eq. (22)], are given by Eq. (24) with tV replaced by 
- tV. For these and the corresponding operators 

R /± ( - tV), results can be deduced which are similar to 
those given above for R ± (tV) and R /± ( - tV) namely, Eqs. 
(36), (37), (39), (40), and (43), with tV replaced by - tV. 
Thus the counterpart of Eq. (34) is 

ing 

R /± ( - tV) lEI) = y ± ( - tV) IE + w,1 ± I). (45) 
The wave-mechanical operators obtained by substitut-

'z,_-l 'Z J 
P = - lTv - In--

r Jr 

in Eq. (37) are the same as the differential operators derived 
using the factorization method for solving the Sturm-Liou
ville equationY The wave-mechanical form of Eq. (45) 
yields a pair of first-order differential equations whose solu
tions are the radial coordinate-space wave functions for the 
oscillator. 

C. The operators P± 

For the operators P ± (tV) defined by Eq. (30) a similar 
analysis to that given above for R ± (tV) can be carried out. 
Thus 

[P±(tV)pP±(tV) =2MH+2Mw(S± I). (46) 

Replacing S with I + ! in Eq. (30) yields the operators 

P /± (tV) = MtVrp + iMw(/ +! ± pp-l + ip, (47) 

where 

rp =p-lp'r + ifzp-l (48) 

is the canonical conjugate ofp. The adjoint ofEq. (47) gives 

[P/±(tV)P=Pi~:l(tV). (49) 

From Eq. (46), with S replaced by I +!, and Eq. (49) we 
have 

P /~ 1 (tV)P /± (tV) = 2MH; + 2Mw(/ +! ± I). (50) 

Here 

H;= (2M)-lp2+ !MtV2{,; +li2/(/+ l)p-2} (51) 

is the radial Hamiltonian obtained from Eq. (3) by using the 
identity L2 = p2r2 - p2,; to eliminate r2 in favor of'; and 
then replacing L2 with its eigenvalues. Let lEI) denote an 
eigenket of Hi, 

nilE!) = E IE!). (52) 

[For convenience we have not distinguished the eigenkets in 
Eqs. (42) and (52).] It follows from Eqs. (50) and (52) 
that 

p/±(tV)IE!) = +iy±(tV)IE±w,l± I), (53) 

where the magnitude of the coefficient y± (tV) is given by Eq. 
(44). [Thefactor + ihasbeen included in Eq. (53) because 
ofthefactor ±iinEq. (27).] 
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Finally, there are the operators P ± ( - tV) and 
P /± ( - tV) given by Eqs. (30) and (47) with tV replaced by 
- tV. They satisfy Eqs. (46), (47), (49), (50), and (53) 

with tV replaced by - tV. Thus in place of Eq. (53) one has 

p/±( -tV)IEI) = +iy±( -tV)IE +w,l± I). (54) 
The operators P /± are linear in r. Wave-mechanical op

erators are obtained by substituting 

r = ifzp-l + i~ 
p Jp 

in Eq. (47). The solutions to the wave-mechanical form of 
Eq. (54) are the radial momentum-space wave functions for 
the oscillator. 

The coefficients af (tV) in Eqs. (9) and (10) can be 
obtained from the above results: 

af (tV) = ft/3 !y± (liJ), (55) 

where the magnitudes of f3 k± and y ± (liJ) are given by Eqs. 
(33)-(35) and (44). 

It is interesting to compare the factorizations presented 
here for the oscillator with those given previously for the 
Coulomb problem. 1 In each case we find the same vector 
operators (U and V); it is the scalar operators obtained by 
factorization that are different. Thus for the Coulomb prob
lem the operators analogous to R ± (liJ) are l 

R ± = ±ir-lr'p-li(S +!)r- l +fza-l(S±!)-l, 
(56) 

where a = 41TEofz2/(Me2) is the Bohr radius. For these, 1 

(R ± )tR ± = 2MH + 4li2a-2(2S ± 1) -2, (57) 

where 

H= (2M)-lp2_li2(Ma)-lr-l. 

The factorization Eq. (57) may be compared to Eq. (36). 
Similarly, the operators analogous to P ± (liJ) are l 

P ± = +ili- lp- lr·p(p2 - 2MH) 

+ p-l(p2 + 2MH) (S ±!) 

+ 2p-l(p2 _ 2MH). 

For these,l 

(P ± )tp ± = 2MH(2S ± 1)2 + 4fz2a-2, 

which may be compared with Eq. (46). 
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7In Ref. 4, shift operations are derived for operators A and At. These, and 
the relations given above in 6, yield Eqs. (9) and (10). 
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The probability is estimated that at a given frequency m the action of an external, 
monochromatic radiation field acting on a hydrogen atom yields a fixed positive convergence 
radius of the Rayleigh-Schrodinger perturbation expansion for the quasienergy resonances. 

I. INTRODUCTION 

In this paper we consider the hydrogen atom under the 
action of an external, spatially homogeneous, monochro
matic radiation field of strength F and frequency m, de
scribed by the nonautonomous Schrodinger equation 

H(t)t/J==(-a+ VCr) +Fxcosmtlt/J(r,t) =iJ,t/J(r,t), 
(1.1 ) 

where r = (x,y,z) and VCr) = - Z Ilrl is the Coulomb po
tential. This system, often referred to as the AC-Stark effect, 
is currently under active investigation, I also for its relevance 
to the problem of "quantum chaos,,2 through the so-called 
"chaotic photoionization."3 

It is convenient to analyze ( 1.1 ) using time-independent 
methods: in this case, employing the quasienergy, or Floquet 
formalism, first mathematically implemented in this kind of 
problems by Yajima.4

,5 Yajima's results can be extended to 
the case (1.1) by using the radiation gauge for the external 
field, which amounts to performing the unitary transforma
tion t/J(r,t) = exp[iFx sin mt 1m ]¢(r,t). This yields 

H'(t)¢(r,t) == [( - iV - m-IFsin mt)2 + V(r)]¢(r,t) 

=iJ,¢(r,t). (1.2) 

Since the perturbation is 2rrlm periodic, according to 
Floquet theory we look for solutions of ( 1.2) in the form of a 
quasiperiodic function of t, ¢(r,t) = e-iA'j(r,t), where 
j(r,t) is an L 2-valued 2rrlm-periodic function oft. The Flo
quet exponent A is given by the solution of the spectral prob
lem 

Kj==(H'(t) - i J,lj(r,t) = Aj(r,t) (1.3 ) 

considered in the extended Hilbert space % = L 2 (R3) 
®L 2(T",) of the 2rrlm time-periodic space-time L 2 func
tions. Here T", = R\ (2rrlm) is the circle. If indeedjis an 
eigenvector of K corresponding to the eigenvalue A then 
(1.2) admits the solution t/J(r,t) = e- iA'j(r,t) and converse
ly. The operator K is known also as the quasienergy opera
tor, and its spectrum as the quasienergy spectrum. 

For small values ofthe field strength F the spectral prob
lem (1.1) can be analyzed by perturbation theory. The free 
quasienergy, or Floquet, operator is, of course, 

Ko:= -a+ VCr) -iJ, (1.4) 

and the perturbation is given by 

W(F) =FWI +F2W2, WI = 2im- 1 sinmtJx , 
(1.5 ) 

Deferring to Sec. II the description of the above differ
ential expressions as operators in the Hilbert space %, we 
remark here that the free quasienergy spectrum, i.e., the 
spectrum u(Ko) of Ko, is the w~ole of R and contains t~; 
doubly infinite sequence of eIgenvalues An,k = - n 
+ km = An + km, n = 1,2, ... , k = 0, ± 1, ± 2, ... , embedded 

in the continuum. Here we have set Z = Ji to normalize the 
hydrogen bound states at - n - 2. In this respect the proble~ 
looks very much like the autoionization one in atoms, In 

which the embedded eigenvalues tum into resonances,6 de
fined through dilation analyticity.7 In fact, the analogous 
result has been proved for the present system.8 Namely, the 
dilation analyticity technique can be implemented on the 
Floquet operator ( 1.4) to prove that all eigenvalues existing 
at F = 0 tum into resonances for F> 0 small. 

Unlike the static field case m = 0, however (see, e.g., 
Ref. 9), the (Rayleigh-Schrodinger) perturbation expan
sion near any (simple) unperturbed quasienergy level con
verges to the nearby resonance.8 Furthermore, another im
portant difference from the static case is that the imaginary 
part of the resonance, which is proportional to the ionization 
rate, is not an exponentially small quantity in the field 
strength but has a power behavior. More precisely: if A is a 
hydrogenic bound state, the first non vanishing order in per
turbation theory for the nearby resonance is given by the 
smallest integer p such that A + mp> 0, i.e., by the number of 
photons it takes to ionize the bound state A. Moreover, the 
imaginary part is expressed by Fermi's "golden rule" com
puted at order p.8 

These results are, however, critically dependent on the 
arithmetical properties of the driving frequency m with re
spect to the difference between any two hydrogenic bound 
states. If indeed An.k = An + km denote the free quasienergy 
levels, and if m is such that An - Am = sm for some m =/=n and 
some s=/=O then A = A 0' i.e., there is multiplicity dou
bling. Th~ set {~m.n.s:: (An - Am )Is, (m,n) = 1,2, ... , 
s = ± 1, ± 2, ... } of such values of m has measure equal to 0; 
however on sequences {m} converging to mm.n.s the isolation 
distance of An•s ' i.e., its distance from any other free quasien
ergy level, becomes arbitrarily small. Since the convergence 
radius of the perturbation expansion is, roughly speaking, 
inversely proportional to the isolation distance, it follows 
that the convergence statement is of purely academic inter
est unless a set of values of m can be determined for which the 
radius of convergence admits a lower bound independent of 
m. 
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The purpose of this paper is to provide a detailed analy
sis of this point. In the next section we will state and com
ment on the results, whose proof is described in Sec. III. 
Finally we work out in the Appendix some details on pertur
bation estimates in the present non-self-adjoint case that we 
were unable to locate in the literature. 

II. STATEMENT OF THE RESULTS 

To formulate the results to be discussed and proved be
low, we first have to quote the relevant results of Ref. 8 on 
the resonances of the quasienergy operator. 

Lemma: Il.I: Let 0 <OJ < 1, F> 0, and B be complex, 
0< 1m B < 1T/4. Define on the Hilbert space % = L 2(R3

) 

® L 2 Cf w) a two-parameter operator family K (F,B) as the 
action of the differential expression 

K(F,B) = (-ie- 9V-OJ- IFsinOJt)2+ V(B) -i.!... at 
on the domain liJ =L2(Tcu) ®H 2 (R3 )nH I (Tw ) 

®L 2(R3
). We abbreviateK(O,B) by K(B), K(O) by K, and 

T(O) by T. Here V(B) = - Ze - 9/lrl, and H 3
(.) denotes 

the usual Sobolev space of order s. Then the following state
ments hold. 

(1) If BER, K(F,B) is essentially self-adjoint. 
(2) If 1m B>O, K(F,B) is closed and is a type-A holo

morphicfamily of operators (in the sense of Ref. 10, § VII.2) 
with respect to (F,B) for FEe, 0 < 1mB < 1T/4. 

(3) The resolvent R(F,B,z) = [K(F,B) -Z]-I of 
K(F,B) is strongly continuous as 1m BW, 1m z > O. 

Remarks: (a) For BER, F>O we have a(K) = R, with 
embedded eigenvalues An,k = - n-2 + kOJ, nEN, kEZ. For 
1m B>O, a[K(B)] = {An,k}U{e-2~+ + SOJ, sEZ}, i.e., all 
embedded eigenvalues become isolated for 1m B> 0, as usual 
within the dilation analyticity formalism. 7 

(b) The above assertions imply that the free quasien
ergy levels, for F> 0 small, turn into resonances in the stan
dard sense of dilation analyticity. In fact, by (2) the isolated 
eigenvalues A n,k of K (B) are stable and, for F> 0 small turn 
into isolated eigenvalues An,k (F) of K (F,B). The eigenvalue 
An,k (F) do not depend on B by standard arguments of dila
tion analyticity, and by the holomorphy near F = 0 are given 
by (branches of) holomorphic functions near F = O. Again 
by the standard arguments of dilation analyticity and (1) 

ImAn,k (F) <0 [actually in this case of the Coulomb poten
tial 1m An,k (F) < 0 by the validity of Fermi's "golden rule"] 
and by (3) the complex eigenvalues An,k (F) are second sheet 
poles of the scalar products of the resolvent R (F,B,z) taken 
between dilation analytic vectors. Conversely any pole of 
such analytic continuation of the resolvent must coincide 
with one of the eigenvalues An,k (F). 

(c) The above results holds true also in the N-body case 

as well as in one dimension,8 i.e., for the time-dependent 
Schrodinger equation on R+ ( - d 2/ dx2 

- Ix I-I 
+ Fx cos OJt)¢ = i at ¢ with the Dirichlet boundary condi
tion at O. This simplified model has recently become interest
ing for the chaotic photoionization problem. II 

(d) IrAn is a simple eigenvalue ofT (which is always the 
case in one dimension) and there is no k #0 such that 
An - Am = kOJ for n # m (which is true almost everywhere 
inOJ) then by (2) An,k (F) is holomorphic near F= o and the 
Rayleigh-Schrodinger perturbation expansion near An,k is 
therefore convergent. 

The problem to be taken on here is the discussion of this 
last statement as a function of OJ, i.e., the dependence of the 
radius of convergence on OJ. The results are as follows. 

Proposition I: Let O<OJ<I, and let OJ(m,n,k) 
= k -1(n- 2 - m- 2

), kEZ (n,m)EN be the sequence of the 
resonance values of OJ, i.e., those values of OJ such that 
n-2 - m 2 = kOJ for some m #n, k #0. Let Am,o be a simple 
eigenvalue of K(B), 0 < 1m B < 1T/4, and set 

B (m) = ]0,1 [,\ U{OJ(m,n,k)}. (2.1) 
n,k 

Furthermore, let ro(m,OJ) denote the radius of convergence 
of the perturbation expansion near A m,O • 

Then we have the following. 
(1) O<OJ(m,n,k) < 1, for all m,n,k. 
(2) If ro(m,OJ) >A>O, for some A independent of 

OJEB (m), then A = O. 
(3) Let Eo be arbitrarily fixed, and let B (m)(Eo) 

= {OJEB(m): dist(Am,o,[a(K(BhAm,o]) > Eo}· Then 
B (m) (Eo) #0 and there is a(Eo) > 0 independent of 
OJEB (m)(Eo) such that ro(m,OJ) >a(Eo)' 

Remark: A different wording of statement (2) is that 
there is no positive lower bound for ro(m,OJ) independent of 
OJEB (m). This motivates the search for the subset B (m)(Eo) 
for which a positive, uniform lower estimate can be obtained. 
A description of B (m) (Eo) is given in Proposition II. We will 
see that there is no simple expression for the isolation dis
tance as a function of OJEB (m). Therefore it is useful, and 
possibly simpler, to look at the probability for a given point OJ 
to have an isolation distance greater than Eo, and this will be 
the content of Corollary III. 

Proposition Il.' LetB (m) (Eo) be defined as in Proposition 
I (3), and let J-l ( • ) denote the Lebesgue measure on R. Then 
we have the following. 

(1) J-l [B (m) (Eo)] --->J-l [B (m)] as Eo---> O. 
(2) Let T(m)(Eo) = ]0,1 ['\B (m)(Eo), and set 

OJo(Eo,m) = (Eo- 2/3 - m 2) -I, Eo < m- 3
• (2.2) 

Then ]O,OJo(Eo,m) [c T(m)(Eo)' 

(3) Consider the following sequences of pairwise dis
joint intervals: 

II(O)=[P+§[, p=-I; II(p+l)=[3.4- p
-

I/8,3.4- P/8L p>O (m=I), (2.3 ) 

1m (0) = [m- 2(m + 1) -2(2m + 1 )/2,1 - m-2 + m- 2 (m + 1) -2(2m + 1 )/2[ (m>2), (2.4 ) 
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the sequence {r(m)} m being such that r(m) = O(m3) as m .... 00. Then it is possible to construct a sequence {g(m)} m W as 
m .... 00, with g( 1) = i, such that the interval family {I m (p + I)} p represents a partition of J (m 1 = ] 0, 1 + g( m ) [ . 

(4) Let 

fjJ m (p + 1) =,u[ T(m)(co) nlm (p + 1) ]/,u[ 1m (p + 1)] 
(2.6) 

be the probability that a randomly chosenwE]O,1 +g(m)[ belongs to T(ml(co)n/m (p + 1), and letA(co) = 3~/3 - 2co. 
Then fjJ m (p + 1 ) <Pm (p + 1), where 

P I (-1)=A(co)(1+1n4); P I (p+l)=8A(co)(4+2.4P+ l In4)/9, P;;.O, (2.7) 

Pm ( - 1) =A(co)m2[ 1 + In rem) ](m 2 - 1) -I, 

Pm (p + 1) = 2A (co)m2 (m + 1)2[r(m) + 2r(m)(P+ I) In rem) ](2m + 1) I [rem) - 1] -I, p;;,O. 

(2.8) 

(2.9) 

Remarks: (a) The probability fjJ m (p + 1) is set to 1 by 
definition if Pm (p + 1);;. 1. Furthermore, since 
{I m (p + 1)} p is a partition, fjJ m (p + 1) and Pm (p + 1) ex
tend to well-defined measures w .... fjJ m (w) and w .... Pm (w ) 
on ]0,1 + gem) [. 

(b) Since Pm (p + 1) is increasing withp, the closer w is 
to ° the larger is the probability of belonging to the "bad" set, 
i.e., for which the isolation distance is smaller than co' It can 
be shown that the "tail" of Pm (p + 1) behaves as w -I as 
w .... O. 

(c) The construction of the pairwise disjoint intervals 
1m (p + 1) is dictated by the following criterion: let 
Lm,k C ] 0, 1 [ be the smallest interval containing the resonant 
family {w(m,n,k)} n¥m.keZ' m fixed. One has 

L1,k = [~k, 11k [; 

Lm,k = [(2m + 1)m -2(m + 1) -2k I,k -I (1 - m -2)[, 

m = 2,... . (2.10) 

It is easily seen that for any fixed m the intervals Lm,k are not 
pairwise disjoint, while this property might hold for a subse
quence {Lm,kP} peN' It will be seen in the proof that the family 
{I m (p + I)} is essentially a particular subsequence {Lm,kp}' 
the sequence {kp } being, among all those making the family 
{Lm,k} pairwise disjoint, that particular one for which the 
ratio kp + l/kp is the smallest integer depending only on m. 

( d) It will be also seen that the pairwise disjoint family 
{I m (p + 1)} is the finest possible decomposition. This 
means that each interval Lm,k has a nonempty intersection 
with at most two intervals in {I m (p + I)}. Since the family 
{Lm,k} is not pairwise disjoint, this implies that the partition 
{I m (p + I)} yields the best probabilistic estimates. 

Corollary L' ( 1) For any fixed value {3 of the probability 
fjJ(m)(w) there is a step function CO-We (co,{3,m) such that 

p(m)<{3 ifw;;,we andp<m»{3 ifw<wc' 
(2) The step function cO ..... we admits the following 

monotone continuous majorizations: 

we (co,{3,m) <3(16 In 4)~/3/8(3{3 - 32~/3), m = 1, 
(2.11 ) 

Wc (co,{3,m) <~/3(2m + 1) [61n r(m)] 

X ([{3(r(m) - 1)(2m + 1)] 

_ 6r(m)m2(m + 1)2~/3}-1, m> 1. 
(2.12) 

Remark' The estimates (2.11) and (2.12) can be invert-
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ed to yield Co as a function of w, namely to yield the probabili
ty of the maximum isolation distance for any given w: 

Cc ({3,w,l) = (3w{3)3/2( 4ln 4 + 4w )3/2, m = 1, 

Ce ({3,w,m) = {f3w[r(m) - I] 

X (2m + 1)}3/2{6(2m + 1)ln rem) 

+ 6r(m)m2(m + 1) 2w}-3/2, m> 1. 

III. PROOF OF THE RESULTS 

(2.13) 

(2.14) 

Proof of Proposition L' Assertion (1) of Proposition I is 
an elementary computation. To see assertion (2), let us as
sumewEB(m) = ]O,l[\w(m,n,k), Then 

inflAmO -Ank(w)1 
n,k' , 

<IAm,o -An"k, (w)1 = In-2 + klw - m- 2 1, (3.1) 

for some fixed (nl,kl ). If{wj } isa sequence of points ofB (m) 

such that Wj tends to w(m,n1,k l ) as j .... 00, then 
IAm,o - An1,k I (wj I ..... Oasj .... 00. Therefore there is no strictly 
positive lower bound for the isolation distance valid for all 
wEB (m>, and by Lemma 1 in Appendix (2) is proved. To 
prove assertion (3), given Co > 0, it is enough to choose 
B (m)(co) in the following way: 

B<m)(co) = {wEB (m): <5(w)=infIAm,o An,k(W)I;;.co}' 
n,k 

(3.2) 

This concludes the proof of Proposition I. 
Let us now turn to the proof of Proposition II. Consider 

the open interval Em,n,k (co) of width 2colk centered around 
each resonant point w(m,n,k): 

Em,n,k (co) = ]w(m,n,k) - colk,w(m,n,k) + colk [. (3.3) 

By definition of T(m)(co) we have 

UEmndco) = T(m)(co) (3.4) 
n,k .. 

and therefore B (m)(co) = B (ml\T(m)(co)' We thus see 
that the problem is to determine the "size" of the union 
(3.4). To this end it is useful to define the concept of reso
nant family of order k. Given the sequence 
w(m,n,k) = k l(n- 2 - m-2), keN, n = 2,3, ... (if k <0, it 
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is enough to consider the sequence - w ), the resonant fam
ily of order k is the sequence of semiopen intervals 

Lm,k=[k Iq(m),k-Iv(m)[, m>l; 

Ll,k = [3/4k,l/k [, (3.5) 

q(m) = (2m + 1 )m- 2 (m + 1) -2; 

v(m) = 1- m-2, v(1) = 1. (3.6) 

It is immediately seen that Lm,k is the smallest right-open 
interval containing, for each fixed k, the whole sequence of 
resonant points {w(m,n,k)} n' n =/=m. lfthe resonant families 
were pairwise disjoint, i.e., L m.k nLm.h = 0 for h =fk, m 
fixed, then the estimate of ,u [ T (m) (Eo)] would be trivial. 
However, it is easy to see that Lm,k nLm,h = 0 if and only if 
m = 1 and (h,k)E{1,2,3,4}, i.e., the resonant families are 
interactingfork>4 (m = 1) andforallk (m> 1). We have 
thus to take into account the intersections, and this makes 
the problem of estimating the measure of T(rn)(Eo) a not 
immediately obvious one. 

Proof of Proposition II [Assertions (1) and (2)]: (a) To 
enlighten the main points of the argument, consider first 
the noninteracting resonant family LI,I = U,1.4[, 
and the corresponding sequence of resonant points 
w(1,n,I)={I-n-2t>I' We have d l (n)=lw(1,n,l) 
-w(1,n+ 1,1)1 =q(n)_2n-3 as n->oo. Therefore if 
2<n<N(Eo) = Eo- 1/3 the distance between two consecutive 
resonant points exceeds 2Eo, and hence for these values of n 
the intervals El,n,l (E) are pairwise disjoint, while this is not 
true for n > N(Eo). Therefore if WE]1 N -2, 1 [ there is 
w( l,n l ,l) such that Iw - w( l,n l,l) 1< 2Eoand consequently 
1,1,1,0 - Anl,l (w) I <Eo, so that] 1 - N -2,1 [ is contained in 
T(I)(Eo)' Hence the contribution of LI,I to T(I)(Eo) is 

T(I)(Eo) nLI,1 

N(Eo) 

= U Elnl(Eo)U]l-N2,I[U]I,1+Eo[' 
n=2 ., 

(3.7) 

The interval [1,1 + Eo[ has been included to overestimate 
the resonant points accumulating at w = 1. Therefore we 
have 

IJ.[T(I)(E )nL ] r- 0 1,1 

= 1- (I-N-2) +2Eo+ (N-2)2Eo 

= 3~/3 - 2Eo=A(Eo). (3.8) 

Of course we can immediately obtain an upper bound to 
p [T(I)(Eo)] considering each resonant family LI,k as nonin
teracting; however this yields p [T(I)(Eo) nLI k J 
= k IA (Eo), and the sum over k is divergent. Hence a better 

estimate is required for the contribution to T (m) (Eo) of the 
infinite number of resonant families Lm,k' 

(b) To this end, first remark that the distance between 
two consecutive points of the resonant family Lm,k is 

dk (n) = Iw(m,n,k) - w(m,n + 1,k) I 
= k Iq(n) -2k -In -3 as n- 00. (3.9) 

Requiring dk (n)<2k -lEo we get n>N(Eo) = Eo -1/3 for all 
families L m.k. We can now define the interval .xi'm,k 
= [k -1m2 - N-2,k -lm -2[ to be the "accumulation in

terval" of the family Lm,k' because it is formed by all those 
values of w such that the isolation distance of A m,O is less than 
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EO' Remark furthermore that only the intervals Em,n,k (Eo) 
centered in the resonant points w(m,n,k) for 
n = 2, ... ,N(Eo) - 1 are pairwise disjoint. These resonant 
points will be referred to as resonant isolated points, or briefly 
isolated points. 

Consider now the accumulation intervals .xi'm,k and 
.xi'm,k + I of two consecutive (adjacent) resonant families 
Lm,k and Lm,k + l' We have 

.xi'm,k = [k Im -2 - k -IN-2,k -lm -2[, 

.xi'm,k+1 = [(k+ 1)-lm -2_ (k+ 1)-W-2, 

(k + 1)-lm -2[. (3.10) 

Look at those .xi'm,k which have nonempty intersection. This 
happens if (k + I)-lm -2>k -lm- 2 - k -IN- 2, i.e., 

k>Km (Eo) =m- 2(N(Eo)2 - m 2
). (3.11) 

By the superposition of the accumulation intervals of the 
adjacent families the whole interval [O,K -I [ is clearly con
tained in T(m)(Eo)' We have 

(3.12) 

To complete the estimate of the measure of the union over 
k>Km (Eo) of .sf m,k we must take into account also all point 
greater thanK ;;; Im- 2

• Tothisend,determineHm byrequir
ing 

H m 1(1- m- 2 ) K m tm -2:::::}Hm =Km (m2 1). 
(3.13 ) 

Hence the measure of this last set is not greater than 
Hm 

L Eok -l(m 1) < 2Eo(m - 1) [K;;; 1 + In(m2 - 1)]. 
k Km 

(3.14) 

Denoting now by f!lJ m the union over k>Km (Eo) of .sf m,k' 
we have 

,u(f!lJ m )<m- 2K m t + 2Eo(m - 1) [K;;; 1 + In(m2 - 1)] 
(3.15 ) 

and since the families .xi'rn.k are disjoint for k<Km - 1, 
Km- 1 

p[T(m)(Eo)] < L A(Eo)k -I + [m2Krn]-1 
k=l 

+ 2Eo[K;;; t + In(m 2 
- 1)] <Fm (Eo), 

(3.16) 

where, by (3.11) and recalling that N(Eo) = Eo 

Fm (Eo) =A(Eo) [l + In(Eo 2/3 - m 2
)] 

1/3. 

+ m- 2 (Eo- 2/3 m 2
)-1 + 2Eo(m - 1) 

X [m- 2Eo-
2I3 

- 1 + In(m 2 
- 1)], m> 1, 

(3.17) 

FI(EO) =A(€o) [I + In(Eo-
2/3 - 2)] 

+ (Eo- 213 - 1), m = 1. (3.18) 

SinceFrn (Eo) vanishes as Eo-O, we have,u [T(rn) (Eo)] -Oas 
EO"'" 0 and therefore,u[B (m)(Eo)] -p(B (m» as Eo-O. This 
proves assertion (1). Assertion (2) is proved if we take 
wo(Eo,m) =Km(EO)-I. 
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Remark: A lower bound for p [T (m) (to)] is of course 

Gm(to) =N(to)-Z In[Km (to)] 

(3.19 ) 

Note that the ratio Gm (to)/Fm (to) has a constant limit as 
Eo-O. 

Proof of Proposition II [Assertions (3) and (4)]' Consider 
again the families Lm,k given by (3.9) and define the en
larged resonant families 

Lm,k (Eo) = [(q(m) - Eo)/k,(v(m) + Eo)/k [, m> 1; 

LI,k (Eo) = [(~ - to)/k,(l + Eo)/k [. (3.20) 

Let us determine a sequence of positive integers {kp}p;;.o 
such that Lm,kp (to) nLm,kp+ I (Eo) = 0. This condition re
quires kp+ l/kp>4(1 + Eo)/(3 - 4Eo), to<~, for m = 1, 
and kp+ )/kp> [v(m) + Eo]l[q(m) + Eo], Eo<,q(m), for 
m > 1. Then we can choose {kp } as a geometric progression 
of ratio not less than [4(1 + Eo)/(3 4Eo)] (m = 1), 
[v(m) + Eo]l[q(m) + Eo] (m> 1). Note that the restric
tion Eo < q(m) is equivalent to the requirement 
Eo< IAm,o -Am + 1,0 I. Taking Eo<,q(m)/2 one has 

kp+ I/kp>s(m), sCm) = 2[v(m) + q(m)/2]1q(m) 
(3.21) 

and thus we can take kp = r(m)p, where 

rem) = [s(m)], [x] = integer part of x. (3.22) 

Remark that rem) = O(m3) asm- 00. It is now easy to see 
that in the limiting case kp + l/kp = s(m) the interval family 
{1m (p + I)} p;;. _ I> defined as 

1m (0) = [q(m)/2,1 + q(m)12[; (3.23 ) 

is a partition of ] 0, 1 + q (m ) [. Furthermore, all families 
Lm,dEo) (and thus a fortiori all families Lm,k) have non
empty intersection with at most two elements of the parti
tion. If the ratio is larger than the limiting one the family 
{fm (p + l)}p> _I is still a partition of ]0,1 + q(m) [ but it 
might happen that for some k and P 

L m,k(EO)Clm (p+ 1). (3.24) 

This is actually the general situation because the ratio 
kp + l/kp is not in general an integer. Then we can distin
guish two subcases (A) L m •k (Eo) Clm (p + 1), Eo <q(m), 
for some k and P; and (B) L m •k (Eo) nlm (p + 1) #0 for 
some (k,p), but there are no (p,k) such that 
1m (p + 1) ~Lm,k (Eo). Note that g(m) - 00 as m --+ 00, and 
that p [1m (p + 1)] --0 as p-- 00 for any fixed m. Our prob
lem is now the following: given any intervall m (p + 1) of the 
partition determine those families L m•k (Eo) having non
empty intersection with it. In case (A), we must simulta
neously have 

q(m) q(m) - to v(m) + Eo q(m) 
---< ; k < 2kp , 
2kp+ 1 k 

i.e., (3.25 ) 

2[v(m) + Eo] k k 2[q(m) - Eo] k 
q(m) p< < q(m) p+I' 

In case (B) we must have 
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2[q(m) - Eo)] k ";:k.,;:2[q(m) - tol k 
q(m) p~ ~ q(m) p+ 1> 

or (3.26) 

2[v(m) + Eo] k <'k<,2[v(m) + Eo] k . 
q(m) p q(m) p+ 1 

Combining this with (3.26) we get that Lm,k nlm (p + 1) 
#0if 

2[q(m) - Eo] k <'k<,2[v(m) + Eo] k . 
q(m) p q(m) p+ 1 

(3.27) 

Consider now the probability that wElm (p + 1) belongs to 
T(m)(Eo): 

9 m (p+ 1) =p[lm (p+ 1)nT(m)(Eo)]/p[lm(p+ 1)]. 
(3.28 ) 

To get an upper bound on 9 m (p + 1) consider firstp>O so 
that 

P[Im (p + 1)] = q(m)[r(m) - l]12r(m)P+ I. (3.29) 

Now the contribution of any single Lm,k (Eo) to 
p [T(m) (eo)] is majorized by A (Eo)/k. Hence by (3.27), 

2[v(m) + eoJkp+ ,/q(m) r(m)kp +' 

<,A(to) I k -1<,A(Eo) I k- I 

2[q(m) - Eo)kpl'q(m) k ~ kp 

<,A(EO) [l/kp +2Inr(m)]. ( 3.30) 

Therefore 

9 m (p + 1) <,P m (p + 1) 

= A(Eo) [rem) -p + 21n rem) ]r(m)p+ ImZ(m + 1)2 

x{[(r(m) -1)(2m + 1)]}-1. (3.31) 

If P = - 1 the families Lm,k have nonempty intersection 
with 1m (0) if l<,k<,r(m), and P[Im (0)] = 1 - m- 2

• 

Hence 

9 m (0) <,P m (0) 

A(EO)[1+lnr(m)]m2 (m 2 -1) I, m>l, 

P1(p+ 1)<'~(Eo)[4+2.4.P+lln4], p>O; 

P1(-I)<,A(Eo)(1+ln4), p= -1 (m=l). 

This concludes the proof of Proposition II. 

(3.32) 

Let us now turn to the proof of Corollary I. For 
w8m (p + I), we define 9 m (w) = 9 m (p + 1). Next re
mark that Pm (p + 1) is monotonically increasing in p; if the 
estimates have to make sense from a probabilistic point of 
view, this function cannot exceed 1, which is not true for all 
values of p (Eo fixed). We assume therefore 9 m (w) = 1 if 
Pm (p + 1) > 1. This means that the above estimates cannot 
exclude the occurrence of an interval [O,!lo(Eo,m) [ 
~ [O,wo(Eo,m)[ for which 9 m (w) = 1. Therefore a more 
sophisticated analysis is required, aimed at determining 
those values of Eo for which Pm (p + I) does not exceed a 
given quantity. 

Proof of Corrollary 1: Consider first Pm (0), and require 
Pm (0) < 1. By (3.32) we get Eo < Eo(m, 1), with 
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EO(m, - I) = {3[ 1 + In rem) ]m-2(m + I) -2p12, 

m>l; (3.33) 

Eo(l, - I) = [3(41n 4) ]3/2. 

Hence we first have to take Eo < Eo(m, - I) to avoid 
&'m(lU) = Ion [0,1 +g(m)[. With such an Eo consider 
Pm (p + 1) for p>O and require Pm (p + 1) < 1. By (3.31) 
we have Eo < Eo(m,p), with 

Eo(m,p) = {(2m + 1)(r(m) - 1)[6[r(m) 

+ 2r(m)P+ lIn rem) ]m2(m + 1)2] -lp12, 

m> 1, 

Eo( l,p) = [4 + 2.4P+ I In 4] -3/4. 

(3.34) 

(3.35) 

We can now determine flo(Eo,m). By definition, if 
E=Eo(m,p), Pm(p+l)=I, Pm(p)<I, Pm(p+2»1. 
Therefore flo(Eo,m) is the right end point ofIm (p + 1). If Eo 
decreases then flo(Eo,m) = flo(Eo(m,p),m) for all 
Eo> Eo(m,p + I). Therefore Eo ..... flo(Eo,m) is the step func
tion defined in the following way: 

flo(Eo,m) = q(m)r(m) -P/2, 

EO(m,p + 1) < Eo<,Eo(m,p). 
(3.36) 

By the same argument we now prove assertion (1). Fix 
b,O </3 < 1, and require Pm (p + 1) </3. For p = - 1 we im

I 

mediately find the condition 

Eo<f33/2[3(1 + Inr(m»)m2(m2 - I)-I] -3/2=Eo(m, - 1,/3). 
(3.37) 

Then if Eo>Eo(m,-I,/3) we have Pm (0) >/3, and thus 
&' m (lU) < /3 if lU is greater than the right end point of 1m (0). 
Hence lUe (/3,Eo,m) = 1 + q(m) if Eo> Eo(m, - 1,/3) and 
this proves (l). For p>O we require now Pm (p + I) </3. By 
(3.31) this implies the condition 

Eo<,Eo(m,p,/3) =/3 3/2[ (2m + I)(r(m) _ 1)]3/2 

x{6[r(m) + 2r(m)P+ lIn rem) ]m2(m + 1)2}-3/2. 
(3.38) 

We can again state that if EO > Eo(m,p + 1,/3) then 
Pm (p + 1) >/3, whileifEo(m,p + 1,/3) < EO <,EO (m,p,/3) then 
Pm (p + 1) </3 and Pm (p + 2) >/3. Therefore if Eo is so 
small that there is p>O such that Eo(m,p, + 1,/3) 
<'Eo<'Eo(m,p,/3) then Pm (p + I) <,/3 and Pm (p + 2) >/3. We 
can thus conclude that lU e is the left end point of 1m (p + 1). 
Hence the step function EO ..... lUe (Eo,/3,m) is given by 

lUe = q(m)r(m)P+ 1/2, 
(3.39) 

Eo(m,p + 1,/3) <Eo<Eo(m,p + 2,/3). 

Finally to prove the monotone continuous majorization 
(useful to visualize the behavior in the various parameters) 
solve for r(m)P + I from definition (3.38) of Eo (m,p,/3) : 

r(m)P+ 1= /3 [(2m + 1 )(r(m) - 1)] - 6r(m)m2(m + 1)2Eo (m,p,/3)2/3 

12Eo(m,p,/3)r(m)p+ Im2(m + 1)2 In rem) 

Therefore 

( 3.40) 

( ( ,/3),/3) 
- 6(2m + I)ln r(m)Eo(m,p,/3)2/3 

lUe Eo m,p ,m - 2 2/3 
/3 [(2m + 1 )(r(m) - 1)] - 6r(m)m2(m + 1) Eo(m,p,/3) 

(3.41 ) 

Ifwe replace the sequence {Eo(m,p,/3)}p by the continuous variable Eo we get 

6(2m + 1 )In r(m)~/3 
EO ..... lUe (/3,Eo,m) = -------------'----,-------

/3 [(2m + l)(r(m) - 1)] - 6r(m)m2(m + 1)2~/3 
(3.42) 

This proves (2). To see the remark, which yields the maximum value of Eo statistically allowed for a givenlU, it is enough to in
vert (3.42) with respect to lUe • Solving for lUe we get 

lU3/2/33/2[(r(m) -1)(2m + 1)]3/2 
lU ..... Eo(lU,/3,m) = (3.43) 

[6(r(m) - l)m2(m + 1 )2lU + 6(2m + 1 )In rem) p12 

This concludes the proof of Corollary I. 
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APPENDIX: SOME PERTURBATION ESTIMATES 

Let us work out in some detail a statement (trivial in the 
self-adjoint case) essentially contained in Ref. 10, VII § 1 
and § 2. 

Lemma I: Let A (lU) be an isolated simple eigenvalue of 
K(O), 0 < 1m 0 < 1T/4, and let A (lU,F) be the corresponding 
resonance, i.e., the nearby eigenvalue of K(F,fJ) existing for 
Fsuitably small. Then the Rayleigh-Schrodinger expansion 
of initial point A (lU) has a positive radius of convergence 
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ro(,1) if and only if the isolation distance d = d(,1) is posi
tive. 

Proof" Since forO < 1m 0 < 1T/4,K(F,O) is a typeA-holo
morphic family with respect to F(S), by Refs. 10, VII § 2.3 we 
have 

ro>min[aIIR (z,fJ) II + b IIK(fJ)R (z,O) 11]-1 
ZEr 

={max[aIIR(z,fJ) II + b IIK(O)R(z,O)IIJ}-I, (AI) 
zer 

whereR (z,O) = [K(O) - z] -I is the free resolvent, r is any 
closed regular complex curve entirely contained in the resol
vent setp(K(fJ») of K(O) and separating,1(lU) from any oth
er point of u(K( 0»), and (a,b) are the relative boundedness 
constants of Was estimated in Ref. 8. Since all eigenvalues of 
K(O) are semisimple, by Ref. 10, III § 6.5 we have 

Caliceti, Goldoni, and Graffi 2660 



                                                                                                                                    

(A2) 

where P" (0) is the projection on the eigenvector corre
sponding to A and R ' (z,(), the reduced resolvent, is holo
morphic at z = A. Setting r = 1..1 - zl (A2) yields, for 
ZEr = {z: 1..1 - z\ r}, 

r-11IP,<i1-IIR '(z,()II<IIR(z,()II<r-11IP"II + IIR '(z,O)II· 
(A3) 

It follows by general arguments on holomorphic functions 
that Q(d) = IIR ' (..1,0) II- 00 only if d - O. A simple applica
tion of the second resolvent formula now yields, for 
r<Q(d), d fixed, 

IIR '(z'()zErll<IIR '(..1,0)[1- rR '(..1,0)]-111 

<Q(d)[ 1 + Q(d)] 1 (A4) 

If we choose r = red) = [3Q(d) 1 I, i.e., r = {ZEC: 
1..1 -zl red)}, (A4) yields 

/lR , (Z'()ZEr II <3Q(d)/2. (A5) 

Since P" is a one-dimensional projection, we can always as
sume liP" \I = 1. By the second of (A3) and (A5) we then 
have IIR(z,O)ZEr 1I<3Q(d) + 3Q(d)/2 = 9Q(d)/2, and 
since K«()R(z,() = 1 +zR(z,(), Izi = 1..1 -A +zl<r(d) 
+ 1..1 I, we can write 

IIK(O)R(z'()ZEr 1\<1 + 3[1 + 31..1 1 Q(d) ]/2, (A6) 
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whence, by (AI), 

ro>2{9aQ(d) + b [5 + 91..1 IQ(d) J}-I. 

Conversely, let there exist WoE]O, 1 [ such that d(A,w HO as 
W - Woo It is well known that under these circumstances the 
limit as w -Wo of the Rayleigh-Schrodinger perturbation se
ries does not exist. This proves Lemma I. 
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A simple treatment to the problem of finding exact invariants and related auxiliary equations 
for time-dependent oscillators with friction is presented. The treatment is based on the use of a 
time-dependent canonical transformation and an auxiliary transformation. 

I. INTRODUCTION 

In recent years the study of the problem of finding exact 
invariants for the time-dependent harmonic oscillator (the 
so-called Ermakov problem) has attracted considerable in
terest in the literature, both in classical 1-12 and quantum 13-18 
mechanics. Apart from its intrinsic mathematical interest, 
the invariants have invoked much attention because of their 
use in discussing several physical problems. For example, 
exact invariants have been applied to the description of the 
motion of a charged particle in a time-dependent electro
magnetic field,13 to construct coherent states for certain 
time-dependent systems with several possible physical appli
cations, 19 and to construct exact time-dependent solutions of 
the Vlasov-Poisson equations. 20 

Essentially, the Ermakov problem consists of demon
strating that, for the time-dependent Hamiltonian, 

H = p2/2m + [mlU2 (t) 12 ] q2 , ( 1.1 ) 

whereq andp are canonically conjugate andlU(t) is the time
dependent harmonic oscillator frequency, there exists a 
time-dependent invariant (the Ermakov-Lewis invariant) 

I=! [(qa - aq)2 + (qla)2] , (1.2) 

where q(t) satisfies the harmonic oscillator equation 

q+llJ2(t)q=0, (1.3) 

which is obtained from (1.1) via Hamilton's equations and 
a(t) is any solution of the auxiliary equation 

a + lU2(t)a = lIa3
, (1.4) 

where overdots indicate differentiation with respect to time. 
The pair of equations ( 1.3) and ( 1.4) is called an Ermakov 
system. 

The solution of the Ermakov problem and their general
izations have been found by various methods. The usual 
methods are (1) Ermakov's method/·21 (2) Kruskal's 
method of exact adiabatic invariants, 13.22 (3) Leach's meth
od of time-dependent canonical transformations,23.24 (4) 
Noether's theorem,2.25 (5) the Lie theory of extended 
groups,26,27 and (6) Nelson's stochastic mechanics.28 These 
methods have also been applied in search of invariants for 
dissipative systems (Ermakov systems with friction) using 
different approaches. 2,12, 17,28,29 

The main purpose of the present paper is to exhibit, in a 
very simple way, an alternative treatment to the problem of 
finding exact invariants and related auxiliary equations for 
dissipative systems. The treatment is based on the use of a 
time-dependent canonical transformation, which reduces 
the time-dependent oscillator with friction to one without 
friction with a modified frequency, and an auxiliary time-

dependent transformation. Then, employing these two 
transformations, the Ermakov system with friction and its 
corresponding invariant are derived directly from the trans
formed Ermakov problem about which there exists extensive 
literature. 

A brief outline of the present paper is as follows. In Sec. 
II, we outline our treatment by considering an appropriated 
time-dependent Hamiltonian. In Sec. II, we apply the treat
ment for a more general time-dependent Hamiltonian. Fin
ally, some concluding remarks are added in Sec. IV. 

II. THE TREATMENT 

We start with the time-dependent harmonic-oscillator 
Hamiltonian 

H = j(t)( p2/2m) + j-I (t) [mlU2(t)/2]q2, (2.1) 

wherej(t) is an arbitrary real function of time t. The Hamil
ton equations are 

q =j(t)plm, 

jJ = - j-I(t)mlU2(t)q. 

The equation of motion obtained is 

q + y(t)q + lU2(t)q = 0, 

where 

d 
y(t) = - - [lnj(t)] 

dt 

(2.2) 

(2.3 ) 

(2.4 ) 

(2.5 ) 

is the time-dependent coefficient friction. Note that the well
known Kanai-Caldirola Hamiltonian30 is recovered when 
j(t) = exp( - yt) with constant y. 

To find an Ermakov-Lewis-type invariant for the Ham
iltonian (2.1) we proceed as follows. Consider the time-de
pendent canonical transformation given by the generating 
function 

F(q,P,t) =qPj-I/2(t) - [my(t)/4]q2j-I(t). (2.6) 

The transformation equations are Q = JF IJP, p = JF IJq, 
from which we obtain the new canonical variables 

Q = qj-I/2(t), 

P=pjl/2(t) + [my(t)/2]qj-1I2(t). 

(2.7) 

(2.8) 

This is a generalization of the canonical transformation pro
posed by Gzy1.31 Then, under this transformation the Ham
iltonian (2.1) is transformed into a new Hamiltonian 
HI = H + JF IJtwhich, in terms of the new variables, is ex
pressed as 

HI =p 2/2m + [mD,2(t)/2]Q2, 

where 

(2.9) 
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(2.10) 

is the modified frequency. Here we observe that the Hamil
tonian (2.9) is of the form (1.1). Hence an exact invariant 
for (2.9) is given by 

I=! [(QP_pQ)2+ (Q/p)2] , (2.11) 

where Q(t) satisfies the equation of motion 

Q + 02(t)Q = 0, 

and p (t) satisfies the auxiliary equation 

p + 02(t)p = l/p3. 

We now introduce the transformation 

p(t) = a(t)f- 1/2 (t), 

(2.12) 

(2.13 ) 

(2.14 ) 

where a(t) is an function of time t to be determined. Then, 
using (2.7), (2.10), and (2.14) the equation of motion 
(2.12) is converted into Eq. (2.4) and the auxiliary equation 
(2.13) into the equation 

a + y(t)a + liJ2(t)a =f2(t)/a3. (2.15) 

The Ermakov-Lewis invariant (2.11) is converted into the 
form 

(2.16 ) 

Thus the pair of equations (2.4) and (2.15) constitute an 
Ermakov system for the Hamiltonian (2.1) with an invar
iant of the form (2.16). Forj(t) = 1 we recover the invar
iant ( 1.2). Note that in this case the function (2.6) generates 
the identity transformation. We also see that an invariant for 
the Kanai-Caldirola Hamiltonian is just a special case of 
(2.16) withf(t) = exp( - yt) with constant y. 

At this point, we remark that in the Ermakov problem 
one must know both the equation of motion and the auxil
iary equation before one can derive the Ermakov-Lewis in
variant. But for a general equation of motion there may be an 
infinite number of different auxiliary equations. Hence a giv
en time-dependent Hamiltonian can possess many different 
invariants. For example, if we considerinstead ofEq. (2.13) 
the auxiliary equation 

p + 02(t)p = 0, (2.17) 

the invariant for (2.9) takes the form25 

I=! [(QP_pQ)2]. (2.18 ) 

Now by using (2.7), (2.10), and (2.14) we convert (2.17) 
into the equation 

a + y(t)a + liJ2(t)a = ° (2.19) 

and the invariant (2.18) to the form 

1 =! {f-2(t) [(qa - aq)2]). (2.20) 

So, (2.4) and (2.19) constitute other Ermakov systems for 
(2.1) with an invariant given by (2.20). Note that the pair of 
equations (2.4) and (2.19) are equivalent to two uncoupled 
time-dependent harmonic oscillators with friction. 

As a further example consider the auxiliary equation3
•
5 

p + 02(t)p = (l/Qp2) W(Q /p), (2.21) 

where Q(t) is a solution ofEq. (2.12) and W(Q/p) is an 
arbitrary function of Q /p. For this case the invariant is ex
pressed as3,5 
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1 [ . IQ1P 

] 1='2 (QP_pQ)2+2 W(u)du. (2.22) 

We again use (2.7), (2.10), and (2.14) to transform Eq. 
(2.21) into the equation 

a + y(t)a + liJ2(t)a = (p(t)/qa2)W(q/a) (2.23) 

and the invariant (2.22) to the form 

1 { fq1a

} 1 = '2 f-2(t) [(qa - aq)2] + 2 W(u)du . 

(2.24) 

We thus see that the pair of equations (2.4) and (2.23) rep
resent another Ermakov system described by the Hamilto
nian (2.1). The corresponding invariant is given by expres
sion (2.24). Notice that for W=q/a expression (2.24) 
becomes the invariant (2.16). We also note that for W = ° 
the invariant (2.24) reduces to the invariant (2.20). 

III. APPLICATION TO NONHARMONIC SYSTEMS 

We now consider the time-dependent nonharmonic 
Hamiltonian 

H = f(t) L + f- I (t) mliJ
2
(t) q2 + mf(t) g(!!...), 

2m 2 a 2 q 
(3.1) 

wherea(t) isan function of time t to be determined later and 
g(a/q) is an arbitrary function of a/q. The equation ofmo
tion for q follows from (3.1) and is expressed as 

q + y(t)q + liJ2(t)q = [F (t)/aq2]G(a/q), (3.2) 

whereq and y(t) are given, respectively, by (2.2) and (2.5) 
and G = dg/d(a/q). 

To obtain an exact invariant for (3.1), we proceed as in 
Sec. II. We transform the Hamiltonian (3.1) to the new 
Hamiltonian 

H = ~ + m02(t) Q2 + m (f!...) (3.3) 
2 2m 2 p2 g Q ' 

where O(t) is given by (2.10). Note that to arrive at the 
form (3.3) we have also employed the auxiliary transforma
tion (2.14). Now, it is well known that an invariant for (3.5) 
has the form 3-5 

I=! [(QP_pQ)2+ (Q/p)2+2g(p/Q)] , (3.4) 

where Q(t) andp(t) satisfy, respectively, 

Q+02(t)Q= (l/pQ2)G(p/Q) (3.5) 

and 

(3.6) 

Now, following the same steps as those of Sec. II, we convert 
the invariant (3.4) into the form 

1 =! {f-2(t) [(qa - aq)2] + (q/a)2 + 2g(a/q)} . 
(3.7) 

Equations (3.5) and (3.6) are converted into the equations 

q + y(t)q + liJ2(t)q = [p(t)/al]G(a/q) (3.8) 

and 

a + y(t)a + liJ2(t)a =f2(t)/a3, (3.9) 
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which are precisely the pair of equations (3.2) and (2.15). 
We recognize (3.8) and (3.9) as an Ermakov system de
scribed by (3.1) with the Ermakov-Lewis invariant (3.7). 
Note that for g = 0 the invariant (3.7) reduces to the invar
iant (2.16). 

A simple generalization of this result is obtained if we 
consider instead of Eq. (3.6) the auxiliary equation (2.21), 

P + D,2(t)p = (l/Qp2) WCQ /p). C3.1O) 

For this case, the invariant is given by3-5 

1= ~ [CQO-PQ)2+ 2 JQIP 

WCU)dU+2g(~)], 
(3.11 ) 

which can be transformed to the form 

I = ~ {I-2(t)[ (qa - wi)2] 

+ 2 ria W(u)du + 2g(:)}, C 3.12) 

where q(t) satisfies Eq. C3.8) and aCt) satisfies Eq. (2.23), 

ii + r(t)a + u/(t)a = (f2(t)/qa2)W(q/a). (3.13) 

Note that for W=q/a the invariant (3.12) becomes the 
invariant (3.7). We also notice that the results (3.7) and 
(3.12) represent a generalization of the so-called Ray-Reid 
invariants that have been obtained in other ways by some 
authors.4,5,8,15 

IV. CONCLUDING REMARKS 

In this paper we have outlined an alternative treatment 
to find exact invariants and related auxiliary equations for 
harmonic and nonharmonic dissipative systems. We have 
seen that this treatment provides, contrary to those em
ployed by some authors,4.5.8.15 a direct and unsophisticated 
generalization of the Ray-Reid invariants. Furthermore, it 
allows a straightforward transition from classical to quan
tum physics since the transformation determined by (2.6) 
corresponds to a unitary transformation.31 Also, it would be 
interesting to compare the above treatment with those devel
oped by Leach23.29 and Reid and Ray.5 

In conclusion, we mention that quantum solutions of 
Ermakov systems described by the Hamiltonians C 1.1 ) and 
(3.1) with I( t) = 1 are well known in the literature.32,33 
Then, in principle, our treatment could be applied to obtain 
quantum solutions for Ermakov systems described by the 
Hamiltonians (2.1) and (3.1). Here we note that quantum 
solutions for Ermakov systems with friction have been rarely 
explored in the literature, to the best of the author's knowl
edge. We also observe that Hartley and Ray19 have used the 
invariant C 1.2) to construct coherent states for the time
dependent Hamiltonian (1.1). Thus it seems that there 
would not be any problems constructing coherent states for 
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the Hamiltonian (2.1) using the same technique as present
ed in Ref. 19. We hope to report on these two possibilities in 
the future. 

Note added in proof In the discussion about different 
auxiliary equations Csee Sec. II), we have mentioned that a 
given time-dependent Hamiltonian can possess many differ
ent invariants. However, for a one-dimensional problem 
they will be related via some transformation. In other words, 
the many different forms of the invariant are equivalent. By 
way of example, if one considers the auxiliary equations 
(2.13) and (2.17) and takes pet) to be the solution of 
(2.13), then the solution of C 2.17) is 

Ap sin T + Bp cos T, 

where A and B are constants and 
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Evaporation of nonzero rest mass particles from a black hole 
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Analytic expressions for the transmission coefficient and the emission and the absorption rates 
for scalar particles with mass and a chargeless, nonrotating black hole are calculated by using 
Jacobian elliptic functions and integrals in the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) 
approximation. 

I. INTRODUCTION 

In a paper fundamental for the relation of quantum me
chanics to general relativity, Hawkingl showed that a black 
hole will emit particles like a black body with temperature T 
inversely proportional to mass M. Many authors, using dif
ferent arguments, have confirmed this prediction for the 
Schwarzschild, Kerr, Kerr-Newman, and Vaidya,Z-5 met
rics. For an uncharged, nonrotating black hole, the expected 
number of particles of a given kind, with energy w is, in 
Planck units, I 

(1) 

Here the minus sign is for bosons and the plus sign is for 
fermions, and r is the transmission coefficient of the hole for 
a particle of rest mass {to 

The transmission coefficient is important for determin
ing black-hole mechanics and thermodynamics: total emit
ted power and torque, rate of entropy production, etc. How
ever, the calculation is difficult. Most authors take the 
approximation r = 0 or r = 1 when the particle has an en
ergy either above or below the potential barrier. Thus 
Dewitt2 calculated the hole mass evaporation ratio, and 
Zurek6 compared the decrease of the black-hole entropy 
with the increase of the entropy of its surroundings for mass
less particles. Page,7 using black-hole perturbation methods 
of Teukolsky and Press,8 has calculated the transmission co
efficient for massless particles: neutrinos, photons, and gra
vitons (and possibly ultrarelativistic electrons and positrons 
for a small enough hole). Analytic expressions were given 
for the limiting cases Mw ~ 1 and Mw ~ 1. Massless particles 
will dominate the emission when M~ 1017 g. If 5 X 1014 

g < M < 9.4 X 1016 g, electrons and positrons are emitted, 
and a hole with M<,5 X 1014 g, would emit muons and hea
vier particles at a significant rate. The properties of a 
Schwarzschild black hole as an elastic scatterer of waves 
were studied in detail by Sanchez.9

-
12 

For a Schwarzschild black hole the emission and ab
sorption spectra are related byl 

H(w) = a(w)[exp(817Mw) ± 1] -I, (2) 

where H(w) and a(w) stand for the emission and the ab
sorption rates, respectively. 

We have calculated the transmission coefficient and 
H (w) and a( w) of an uncharged, nonrotating black hole for 
scalar particles of rest mass {t in a mode of energy w, and 
angular momentum I, using the JWKB approximation. In 
the adiabatic semiclassical approximation, the black hole is 

assumed to have a classical Schwarzschild metric with 
M~ 1 ~2X 10-5 g. We use Jacobian elliptic functions and 
integrals to obtain an analytic expression for the barrier pen
etration. These functions have been successfully applied to 
the resolution of other barrier penetration problems of non
linear symmetrical and asymmetrical potentials. 13 

II. TRANSMISSION COEFFICIENT 

To simplify the notation, the energy is denoted as a re
duced energy E = wl{t. The effective potential V (also in 
units of {t) created by a black hole, in the Schwarzschild 
geometry, has a barrier of finite thickness that depends on 
the hole's mass and angular momentum. A particle created 
by a hole can escape by passing over, or by tunneling 
through, the barrier. The reduced energy must be greater 
than or equal to unity. If E < I and the particle has managed 
to cross the barrier, then it will stay orbiting around the hole. 
In this paper we calculate the absorption in the region 
VM#E> 1 or VM#w>{t. IfE> VM we take r=l. 

Taking into account the quantization of angular mo
mentum, the gravitational potential energy in the Schwarzs
child metric is 14 

VCr) = (1 - 2M Ir) 112 [{tZ + l(l + 1 )/~] 112, (3) 

where I is an eigenvalue of the angular momentum. The co
ordinate system r, t/J, and e is chosen so that the radial projec
tion of the orbit coincides with the equator, e = 1T/2. 

The transmission coefficient, in first-order JWKB ap
proximation, is 

r= [1 +exp(2<1»]-I, 

where 

<I> = r' (V z _WZ) 112 dr 
J, 

and the ri are the roots of the equation 

W
Z 

_ V Z = o. 
In Eq. (5) we assume r l <,rZ<,r3• 

The energy conservation equation is l5 

{ [l(l +)] 112 ~; r + V2(r,!) = wz. 

(4) 

(5) 

(6) 

(7) 

Substituting u = M Ir, an analytic solution of Eq. (7) is 
achieved using the Jacobian elliptic funtions. In the region 
U3<,U<,UZ, the solution ofEq. (7) iS l6 

(8) 
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where sn is the elliptic function senam with a parameter m. 17 

The parameters R, h *, and m depend on the roots rj (u j ): 

R UZ-Ul> (9) 

m (uz - U 3)/(U1 - u3 ), 

h *2 = - h 2 (U I - u3 )/2. 

Then Eq. (5) takes the form 

$ i[l(l + 1)] 112 i~' :z [~; ]dU, 

X du, l
K(m) snz U cn2 u dnz u 

o (l-a2 sn2 u)2 

(10) 

(11 ) 

(12) 

( 13) 

wherea2 = - R /u 3 andK(m) is the complete elliptic inte
gral of the first kind. The only difficult calculation in Eq. 
( 13) is the integral 

l
K(m) sn2 u cn2 u dn2 U 

[I(a,m)Jb= (1 Z 2 )Z du 
o a sn U 

II x2y 
= dx, 

o (1 - a Zx 2 )z 
(14) 

where x = sn u andy2 = (1 x 2
) (1 k 2X

2
). We have used 

two methods to carry out this calculation: first by using the 
Byrd and Friedman tables 18; second, more generally and ele
gantly, using the reduction formulas given by Rodriguez 
Sanjuan. 19 The calculations corresponding to our case are to 
be found in the Appendix and give, with m = k 2, the com
plete integral 

[I(a,m) ]6 
(3/2a4 )E(m) 

+ (1!2a6 )[3m + (1- 2m)a2 ]K(m) 

(1/2a6
) [a 4 

- 2(1 + m)a2 + 3m]II(az,m), 
(15) 

where E (m), K (m ), and II (a 2 ,m) are the complete elliptic 
integrals of second, first, and third kind. 

One finding is that r depends on the product Mil. The 
casesMIl = 0.0019 and Mil 0.043 are important. The first 
would correspond to a black hole of mass 
M = 4.587 X 1019 1015 g that would emit particles of mass 
1l=4.19XlO-25 9.1XlO- 2

& g (electron and positron 
mass). The second would correspond to a hole of mass 
M = 4.2X 101

& = 8.5 X 1013 g that would emit particles of 
mass Il 1.1 X 10-20 = 2.4 X 10-25 g (pion mass). 

The dependence of $ on the angular momentum is 
shown in Fig. 1 for several values of the reduced energy. 
There is a rapid increase of $ with I. Therefore the transmis
sion coefficient is important for only one value of I if 
V M > E > 1, because of the exponential re~tionship between 
rand $. Thus with Mil = 0.0019 and E = 200, r = 1 for 
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MfJ.:0.0019 
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.. E: 200 
x E: 300 

6 8 

.. 

FIG. I. The coefficient <t> as a function of the angular momentum eigenval
ues is given for the reduced energy values E = 100, 200, and 300 when the 
mass product of the black hole and the particles is Mil 0.0019. 

1 = 1 (E> V M ), r = 6.8 X 10-6 for I = 2, and $ = 362 and 
r=Ofor/=3. 

The value of r increases nearly exponentially with the 
reduced energy E, for fixed values of I and Mil. Whe~ 
E = V M then r =! (Fig. 2). One can obtain the r vs E 
curves for 1 = 3,5, ... by the translation of the I = 1 curve. 

Several values of the transmission coefficient as a func
tion of the reduced energy and the mass product Mil are 
given in Table I. The angular momentum and barrier maxi
mum are also indicated. There is the same value of r for 
particles of small mass emitted by a hole of big mass as for 
heavy particles emitted by a hole of small mass. However, r 
grows as the inverse of the product Mil. Therefore Mil has a 
lower bound due to the quantization of the angular momen
tum. For example, if E = 1.046 then Mil = 1 is the mini
mum value possible, and if E = 19.3 then it is Mil = 0.01. 

r 
0.5 

0.4 

0.3 

td 
0.2 

0.1 

0.0 L-2,Oc8=-6-2,0.L9-0-2,J..0-94-2-.0'--9-S --i !--S,...l.SS-6-S.
J
89-0-s...l,a-g4-s-.S'-g-s--::E: 

FIG. 2, Transmission coefficient r as a function of the reduced energy E 
when the mass product Mil is 0.01 and the angular momentum values are 
1= 1 and 1= 3. 
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TABLE I. The t~.ansmission coefficient r is given for several values of the 
reduced energy E = wi ft, the angular momentum, and the mass product 
Mft of the black hole and the particle. 

E Mft r 

0.1 2 5.3X 10- 3 

3.970 1 20 8.9X 10-20 

10 200 -0 

0.1 2 0.068 
3.980 1 20 L7X 10- 10 

10 200 3.7X 10-96 

0.1 3 0.013 
5.895 1 30 2.1XIO- 17 

10 300 -0 

0.1 3 0.33 
5.896 1 30 6.1 X 10-5 

10 300 3.1 X 10-42 

om 1 0.1 
0.1 10 5.3X 10-8 

19.300 I 100 1.7X 10-70 

10 103 -0 

III. ABSORPTION CROSS SECTION 

The absorption cross section for particles with mass in 
the Schwarzschild geometry is 

- !./ (21 + 1)r 
o-(E) = 2 2 • (16) 

P, (E - 1) 

We have calculated 0-(iJ:) for a wide range of values of 
the reduced energy, with the values of r obtained from Eq. 
( 4) (Fig. 3), and it is seen to oscillate around its geometrical 
optics value 271TM2 as in the case of an elastic scatterer of 
waves. II These oscillations have a period equal to the value 
of the position of the potential maximum. The difference 
between maximum and minimum gets smaller as the re
duced energy increases. In the limit 0-( 00 ) -+ 271TM 2. 

When the reduced energy is sufficiently small (for ex
ample, ESA.3 for the caseM 1014 g andp, = 1.9x 10-25 

g) the total absorption cross section tends to zero. This is 
because the width of the potential barrier is big for all values 
ofthe angular momentum, and therefore r =0. 

6 

H(E) 

M: 10'4 g 

1037 -25 
It: 1.9 10 9 

1036 

1035 

1034 -

FIG. 4. Emission rates H as a function of the reduced energy for a black hole 
of 1014 g that evaporates particles of the muon mass. 

IV. HAWKING EMISSION 

In the context of classical field theory, black holes ab
sorb particles but they cannot emit them. However, if quan
tum effects are considered, the absorption and emission 
spectrum are related by Eq. (2). 

In Fig. 4 we plot n(E) as a function of the reduced 
energy. We see that it does not show any of the oscillations 
characteristic of the total absorption cross section (Fig. 3). 
This is due to the rapid decrease of the Planck factor for 
M(iJ = MpE ~ 1. Hawking emission is only significant in the 
energy range l";;ES; liMp. These results are similar to the 
results of Sanchez for waves. 12 

M: 10'49 

5 

4 

2 

4 7 10 13 
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16 

-25 P : 1.910 9 

19 22 

FIG. 3. Absorption cross section gas a func
tion of the reduced energy for a black hole of 
10'4 g that absorbs particles of the muon 
mass. 
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v. CONCLUSIONS 

When we calculate the transmission coefficient rand 
the absorption cross section u of a black hole in the 
Schwarzschild metric for scalar particles with mass, we find 
that r depends on the mass product of the particle and the 
hole: the smaller MJi, the bigger r. Thus there is a lower 
limit to MJi due to the quantization of the angular momen
tum. 

The absorption cross section as a function of the red uced 
energy l!: oscillates, with a period equal to the value of the 
position of the potential maximum. The difference between 
maximum and minimum gets smaller as the reduced energy 
increase and u( 00) ..... 271rM2. 

The emission spectrum does not show any of the oscilla
tions characteristic of the absorption cross section. This is 
related to the rapid decrease of the Planck factor for l!: ~ 11 
MJi. Hawking emission is only important in the energy range 
I<l!:S lIMJi or Ji<w SliM. 

ACKNOWLEDGMENT 

The authors wish to thank A. Rodriguez Sanjuan for 
giving us formulas (AI) and (A4), and also for the details of 
the calculation. 

APPENDIX: RODRIGUEZ SANJUAN INTEGRATION 
METHOD 

For the calculation ofintegrall from Eq. ( 14) we follow 
a method of Rodriguez Sanjuan 19 for an extensive group of 
elliptic integrals. In our case this calculation is also quite 
simple. With the ansatz 

1 Axy f Bx
2 + C d f D d = + x+ x, 

I_a2x 2 y (l_a2x 2)y 

derivation of both sides gives 

x 2y 
(1 - a 2x 2)2 

[ 
1 + a 2x 2 x 2 1 + k 2 - 2k 2X2 ] 

= A y - - ---....,---
(I - a 2x 2) 2 y I _ a 2x 2 

(AI) 

Bx2 + C D + + . (A2) 
y (1 - a2x2 )y 

To determine A and D, set x 2 = lIa2 in CA2). Then 
A = 1I2a2 and 

x 2 _ A (1 + a 2x 2) = - (I - a 2x 2 )/2a2 

from which follows 
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( 1I2a2) (1 - x 2) (1 - k 2X2 ) 

i.e., 

= (x2/2a2) (1 + k 2 - 2k 2X2) - D 

- (Bx2 + C)(1- a 2x 2). 

D = (1I2a6 )[a4 
- 2(1 + k 2)a2 + 3k 2]. 

Setting x 2 = 0 in (A3), then 

C= (1/2a6 )[3k 2 -2(1 +k2)a2
]. 

(A3) 

The coefficient of X4 gives B = 3k 2/2a4
, and consequently 

--dx= -- dx f BX2 3 f (1 - k 2X2) - 1 

y 2a4 y 

3 
- 2a4 (E -F), 

where E and F are the incomplete elliptic integrals of the 
second and first kinds. Then finally we have 

1 xy 3 2 
1=-2 2 2 --4 E (x,k ) 

2a I-ax 2a 

+~ [(1-2k2)a2 +3k2]F(x,k2) 
2a 

_ ~ [a4 _ 2( 1 + k 2)a2 + 3k 2] ll(x,a2,k 2). 
2a 
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The ~artition function, ~-point scalar, and four-point vector nonorientable one-loop 
amph~udes for ~he bosonic open string in the critical dimension are obtained using a first 
quantized path mtegral treatment of Polyakov's string that assumes scale independence. 

I. INTRODUCTION 

Numerous efforts are now concentrated on the con
struction of a second quantized, field theory of strings. I Such 
a formalism will hopefully enable one to understand, 
amongst other issues, the origin of general covariance and 
the nontriviality of the vacuum structure, and its importance 
cannot be overestimated. At this stage, however, this pro
gram is still incomplete. 

Another approach to string theories is to consider them 
as two-dimensional models whose basic variables are the 
string coordinates xI-" ft = 1,2, ... ,d, u = (ul,cr). Hsue, Sa
kita, and Virasor02 were the first to use this first quantized 
approach to obtain tree and one-loop N-point tachyon am
pli~udes in the old dual resonance model (bosonic open 
stnng). A closer look at their paper, however, shows that the 
partition function for the one-loop amplitudes was still com
puted with operator methods. 

Polyakov's path integral formulation of the bosonic 
string3 provided the major step in the understanding of the 
correct string functional integral measure and was the basis 
of much further work (see for instance Refs. 4 and 5). 

With the recent interest in string theories, Polyakov's 
string theory was used as a starting point in the first quan
tized evaluation of N-point covariant tree amplitudes for the 
bosonic string in the critical dimension.6 

However, one-loop amplitUdes had to wait for a fuller 
understanding of the functional integral measure, particu
larly in that the question of moduli and the nature of Teich
muller space are concerned. There has been considerable re
cent progress on these questions,7-9 and in particular a 
one-loop analysis of the closed bosonic string has been car
ried out. 7 The question of fermionic degrees of freedom has 
also been addressed. 1O One is then in position to obtain co
variant amplitudes, such as a string-string propagator, as 
results that a second quantized formalism must reproduce. 
This has already been achieved in Ref. 11. 

There are other aspects, however, for which the first 
quantized approach seems particularly suited, such as the 
possibility of using string theories to obtain the effective ac
tion of gauge fields. 12.13 For this, one needs to consider the 
open string, and in particular vector amplitudes, if one wants 
to go beyond the string level contribution. Moreover, it is 
likely that multiloop amplitudes will be first obtained using 
this approach, opening the way to discussions of higher-loop 
finiteness in the superstring case. 

I have recently presented a first quantized derivation of 

planar and nonplanar one-loop amplitudes 14 for the open 
bosonic string. The aim of this communication is to genera
lize the approach to the nonorientable case. To the best of my 
knowledge, a first quantized derivation of the nonorientable 
amplitude does not exist in the literature. 

The method used is that of Polchinski's,7 where scale 
invariance is assumed at every step. Moore and NelsonS have 
given it a sound theoretical foundation and I refer the reader 
to their paper, where the problem of scale invariance and 
moduli is clearly presented and solved. 

The question of boundaries in string theory has been 
considered by Alvarez,s and Neumann boundary conditions 
were considered in Ref. 14. In his work, Alvarez5 always 
dealt with orientable topologies. Although it is not my inten
tion to generalize the method to general nonorientable topo
logies (since its validity to the particular case considered in 
this paper is always obvious), it is important to find that it 
reproduces the scalar amplitudes obtained with operator 
methods. More importantly, the overall normalization is 
uniquely fixed. The relative normalization between the non
orientable and the planar amplitude is of course crucial, for 
the superstring, in the establishment of one-loop finiteness. IS 

Furthermore, vector amplitudes are derived. 
In the next section the partition function is obtained. In 

Sec. III, the N-point scalar amplitude is computed and com
pared to known one-loop results. This serves as a check of 
the result of Sec. II. The four-point vector amplitude will be 
presented in Sec. IV. 

II. PARTITION FUNCTION 

The starting point is Polyakov's path integraV 

w= exp - d 2u/i f dgab dxl-' (f 
VGcVW 

X [4~a gab JaXI-' JbXI-' + AR + ft2] + Sb)' (1) 

One integrates over all Euclidean metrics gab (u) on a 
surface of fixed topology and all embeddings xl-' (u) into R d. 

Here, R is the scalar curvature. The action is invariant under 
general coordinate invariance of the world sheet and classi
cally also under Weyl transformations: 

8gab (u) = A(U)gab (u). (2) 

Polyakov's analysis shows that this symmetry is broken 
at the quantum level but that if d = 26 thenft2 can be chosen 
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in such a way as to regain scale invariance at the full quan
tum level. Because of the presence of boundaries, further 
terms are required to maintain quantum Weyl invariance.5 

These are contained in Sb' which will be discussed later. 
The topology for the nonorientable one-loop open string 

is that of a Mobius strip described by the primitive cell 

0.;;; 1m (7.;;;1, O.;;;Re(7.;;;I, (3) 

with the points (I,o) and (I, 1) identified with (0,1) and 
(0,0), respectively, in the usual manner. 

Since it is a world sheet scalar, x!' «(7) satisfies the "twist
ed" boundary condition 

X!'«(71 + I,if) =X!'«(7I,l (72). 

W orId sheet vectors obey 

d(7l_d(71, al-al 
under «(71 + 1,if) _ «(71, 1 - if), 

dif- - dif, ar .. a2 

under «(71 + l,if) -> «(71,1 - if). 

(4a) 

(4b) 

This is a result of the fact that the direction of the normal 
changes in going from the if = 0 to the if = 1 boundary. It 
follows that the metric tensor satisfies 

gll«(71 + I,if) =gJl«(7I,I - if), 

g12«(71 + I,if) = -g12«(7I,l-if), 

g22«(71 + l,if) = g22«(7I, 1 - if). 

(4c) 

For the open string, Neumman's boundary conditions 
must be imposed for X!'«(7) , i.e., 

ax!' (if=O) = ax!' (if=l)=O. 
aif aif 

(Sa) 

It should be remembered that this is a sufficient condi
tion for the existence ofa classical extremum of the action.s 

The condition to be imposed on the metric is the follow
ing11.14

: If t a is the tangent vector to the boundary and nU an 
arbitrary normal vector to the boundary, it is required that 

(5b) 

This requirement is independent of the choice of n°, and 
therefore it does not provide any new geometric informa
tion. II However, it is important in that it provides a well
defined mode expansion for the metric and metric varia
tions.5 

By a general coordinate transformation, any metric can 
be transformed, while satisfying (4), to 

ds2 = gab dif d~ = e4>(u) [ (d(7I)2 + r(dif)2], (6) 

which corresponds to a metric proportional to the Euclidean 
metric on the rectangle of sides 1 and ir (a Mobius strip of 
width r). For convenience, and following Ref. 7, I keep the 
unit cell to the square O.;;;if.;;; 1, a = 1,2. 

2670 

The positive real number r is the modulus of the Mobius 
I 

Jt ~ .iff d" ~ ( ID. 

0 DCt 0 

8c 26.~ a 
1 eJ. 0 2X edDe 2 g gef,T 
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strip and it parametrizes the one-dimensional Teichmuller 
space of the topology. 

Any variation of the metric connected to unity can be 
decomposed as 

dgab «(7) = gab «(7)8l/J«(7) + 8;a;b «(7) + 8;b;a «(7) + gab,rdr. 
(7) 

The method of Ref. 7 consists in finding the Jacobian 
J(l/J,r) defined by 

dg= (dl/Jd;)' drJ(l/J,r), (8) 

where the prime denotes variations orthogonal to the zero 
translational mode (conformal Killing vector) 

8; 1«(7) = (EI, 8l/J«(7) = - (EI a l l/J«(7), (9) 

Metrics for small changes in the fields are defined in the 
usual way: 

118g11 2 = f d 2(7 Ji(~cghd + C~bgCd)8gab 8gcd ' 

118l/J112 = f d 2(7 Ii 8l/J2, 

118; 112 = f d 2(7Ji ~b 8;a 8;b' 

118x ll2 = f d 2(7 Ji 8x!' 8x!', 

(IO) 

where C is arbitrary. Following Ref. 7, the measure is de
fined implicitly by the following general expression: 

f d8r/!e - (1I2)lloif;II' = 1, (Ila) 

where 8r/! = 8g, 8l/J, 8;, or 8x. Also, 

f d8 r exp( 1 8r f d 2(7 Ji) = ( 21T )112 
2 S d 2(7Ji 

(lIb) 
A careful analysis of why this is a correct procedure has been 
given in Ref. 8. 

Separating the zero mode from the integrals involving 
8l/J and 8;, I obtain 

1 = -Jit-f (d8l/J d8;)'e- (112)(1104>11'+ 116;;-11') (12) 

where Q=Sd 2(7Jica l l/Ja l l/J+ 1). Then the integral in
volving d8g becomes 

1 = JCl/J,r) f (d8l/Jd8;)' d8re-(1/2)116gll ', (13) 

with 

With the hindsight of Ref. 7, the matrix.At can be writ
ten as 

-2~'X;W 
Db 

"" ) :2 g gef,r 

8~ o , (15) 

X x ef 
0 0 1 ef 
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where 6.~ = - 8~D Z - D dDe + DeD d and Xab = gab,r - ~ gab gedged,r' 
It then follows that 

J(¢J,7) = (det' %)I/Z (s d~~)1IZ (16) 

The x'" integration is carried out in the usual way by shifting from the constant configuration [recall that (5a) ensures 
that the action has a classical extremum], and once use is made of ( 11 a) one obtains 

(17) 

The system has been put in a hypercube of side L. 
The partition function of the Mobius strip then takes the form 

WMobius = f (::c
d
:;' L d(det' %)1IZ (f d Z()' ~rd+ I)/Z Q -I/Z(21T) - dlZ [det' ( - 2~a ~ Ja ~b ~ Jb)] - d/2. (18) 

It is well known3 that the bulk ¢J dependence in the above expression can be made to vanish in 26 dimensions by a suitable 
adjustment of /12. It was explicitly shown in Ref. 11 what further local, boundary-dependent terms Sb are required so that all 
scale dependence is renormalized away. One can then set ¢J = 0. 

The condition (5b) and the fact that the region must remain unchanged imply, for the metric variations (7), that 

J2;1(~=0) =J£I(~= 1) =0, (19a) 

(19b) 

It must be remembered that; I and;2 obey different "twisted" boundary conditions [Eq. (4b)]. Since S d z(}' ~ = 7, Q = 7, 

one obtains 

(det' %) 1/2 = [det(2 + 4C)] I/z({ih) [det'( - 28~ gab Ja Jb )] liZ 

= [det(2 + 4C)] I/Z( {ih) [det;. ( - 2~b Ja Jb )] I/Z [deto ( - 2gab Ja Jb )] liZ 

= [det(2 + 4C)] I/Z [detN (2)] 1/2 [deto (2)] I/Z( 1/7) [det;. ( _ 6.)] 1/2 [deto ( _ 6.)] 112, 

det' (- _1_~_1 Ja ~b ~ Jb ) = det;. ( __ 1_ 6.) = (21Ta)detN (_1_) det~ ( - 6.), 
21Ta 21Ta 21Ta 

where 6. is the scalar Laplacian and the subscripts D and N 
refer to Dirichelet (19b) and Neumann [(5a) and (19a)] 
boundary conditions, respectively. 

The fields satisfying Neumann boundary conditions 
also satisfy periodic "twisted" boundary conditions [Eqs. 
( 4a) and (4b) ]. A basis for such functions is the set 

deto ( - 6.) = II 
n l even 

n 2 >O even 

x II 
n.odd 

n2 >Oodd 

(20) 

(21) 

(24) 

eirrnlul cos(nz1T~), n"nz>O, both even, both odd. 
(22) 

The prime indicates that the term n 1 = nz = ° in the product 
must be removed. Then 

The vector ;Z, satisfying Dirichelet boundary condi
tions [Eq. (19b)], obeys antiperiodic "twisted" boundary 
conditions [Eq. (4b)]. A basis for such functions is the set 

eirrnlu' sin(n21T~), n"nz> 0, both even, both odd. 
(23) 

Therefore 

det;' ( - 6.) = 

x IT 
n.odd 

n,>O odd 
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deto ( - 6.)det;' ( - 6.) 

II ' [--2 2 ~n~] II [~ 2 ~n~ ] = 1In l +-- 1In, +-- , 
n. even r n. odd r 

(25) 

n2 even 

[ 
~n2 ]112 

X IT ~n/+ -22 
n. odd T 

(26) 

n2 0dd 
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The 'T-dependent products are evaluated in Appendix A with 
zeta function regularization and yield 

[ 
rrn2] 1/2 II ' rrn l2 + __ 2 

n 1 even r 
n 2 even 

= 'Te - 1TT16 [ IT (1 _ e - 21TnT)]2 , 
n=l 

(27) 

II [rrn / + rr~~] 1/2 
n10dd T 
nzodd 

= e1TT/12 [)JI (1 + e _1TnT)]2 

n odd 

(28) 

The 'T-independent product in (26) is exactly 1 if zeta func
tion regularization is used. 14 Collecting all factors together 
in Eq. (18), and neglecting all determinant factors 7 I obtain 

(29) 

A factor of 1 has been included in the above equation 
corresponding to the orientation preserving symmetry [re-
specting (4) and (5)] (71 ..... 1 - (71, ~ ..... 1 - ~ and the ori-
entation changing transformation (71 ..... (71, ~ ..... 1 - ~. 

Transforming variables to 

'T = - (1/217)ln q, (30) 

W Mobius becomes 

L d 1 (I 
W Mobius = g; (4rra) 13 Jo dq 

(31) 

Notice that, as it is the case for the one-loop sum over 
surfaces for the closed string, the term containing A in (1) 
does not contribute: the Euler characteristic is given by 
X = 2 - 2h - b - c, where h is the number of handles, b is 
the number of boundaries, and c is the number of cross caps 
yielding 0 in the present topology (h = 0, b = c = 1). 

III. SCALAR AMPLITUDES 

The N-point scalar (tachyon) amplitudes are well 
known to be generated by12.13 

(32) 

where aM is the boundary and ds is the invariant line ele
ment (in our case, ds = d(71 when ¢ = 0). Fourier trans
forming, 

(33) 

and for the one-point amplitude one needs to evaluate 

I dx exp( - 4:a I d 2(7 a aXIL a a xl' )exp(i ~ k fxl' (Si ) ) . 

(34) 

Because Neumann boundary conditions are imposed, 
some care must be taken. This was discussed in Ref. 14. The 
result is the "naive one": 

(217)26£5 (~kf )expC:a I d 2(7 XNI'( - aa aa )XN
N

) 

xI dX'l'exp( - 4:a I d 2
(7aaX 'l' aaX 'IL) , (35) 

where the normal component anx'l' vanishes at the bound
ary and x NI' is the solution of Poisson's equation. 

The Green's function for our problem 

(36) 

IS 

- a Inl1 - ei1T(u' - u"le -1TTlo" - u"1111 _ ei1T(u' - u"le -1TTlo" + u"'1 

00 

-aln II 11- (- )nei1T(u'-o"le-1TTI0"-u"+nII11_ (- )nei1T(U'-U"le-1TTlo"+u"+nll 
n= 1 

00 

-aln II 11- (- )nei1T(U'-o"le-1TT10"-u"-nII11_ (- )nei1T(U'-U"le--1TTlo"+u"-nll, for (7i=(7', (37a) 
n~1 

G( (7,(7 ) = -- - -- 120-12 + -- 12~ I ~ + - + a In - - a In (1 - e - 1T,,2cr) , al7'T al7'T -2 al7'T a ( eY ) " 

6 2 2 2t 217 

- a In IT (1 - ( - )ne - 1TTnf - a In IT (1 - ( _ )ne -1TT(ln + 20"11)(1 _ ( _ )ne -1TT(ln - 20"11), 
n=l n=l 

for (7 = (7' and 0 < ~ < 1, (37b) 

al7'T a ( eY ) 00 G((7,(7') =--+-+2aln - -2aln II (1- (- )ne - 1TTn f, 
6 t 217 n~l 

for (7 = (7' and ~ = 0,1. (37c) 

2672 J. Math. Phys" Vol. 28, No, 11, November 1987 Joao P. Rodrigues 2672 



                                                                                                                                    

The above propagator has been obtained using heat kernel regularization, since it is not defined for (T = (T'. Its derivation 
is described in Appendix B. In Eq. (37) the original period of2 in the imaginary direction must be used to make 1a2 + (T,212< 1 
(cf. Appendix B). 

Using Eqs. (32), (35), and (36) as well as the results of the previous section, I obtain for the N-point scalar amplitude 

(38) 

where 

G ij = G((T;.(Tj) - ~G((T;.(Ti) - ~G((Tj,(T). (39) 

In agreement with Ref. 14, the renormalized coupling constant g R is defined as 

gR = lim 2go(t)e - 112/ - r. (40) 
/-0 

Then, on mass shell (k 2 = a-I), 

where 

.TI _ • 1T (Ti - (Tj rr ______ ~~~---..::.~'V__=__CJ _ _=___ 2 
( 

( 1 ) ) 00 1 - 2 ( - ) n COS(1T( (T,l _ (TJI )) f:qn + qn 
't"p --sIn , 

1T 2 n~I (l_(_)nJqnf 
(41 ) 

for two points on the same and opposite boundaries, respectively. Of course one has only one boundary, and it is simple to see 
that IJI p ((TI - (T,I + 1) = IJI NP' Therefore extending the limits of integration from [0,1] to [0,2] one obtains contributions to 
both amplitudes. 

For a = !, these results are in perfect agreement with those of Ref. 16. 

IV. VECTOR AMPLITUDE 

The N-point vector amplitudes are generated byl2.13 

(42) 

For simplicity, I will consider the four-point planar amplitude. The generalization is straightforward and will be present
ed elsewhere. I? Fourier transforming and using the propagator ofthe previous section, I obtain 

A 1-'11-'2 ••••• I-'N(k k k) = ,,(~ k.) gR
N 

_1_ (Nrr-Ill O( 1 _ I)d 1) 
l' 2'"'' N U.£.. I 8 13 (Ti+ 1 (Ti (Ti 

i 1T (a) i~ 1 0 

I I [ 00 ] - 24 X dq q-3/2 .II (1 - ( - )nJqn) n (IJI P )2ak\'kf 
o ,~ 1 I>J 

(43a) 

where 
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In Eq. (43b), I have defined 

~ G ' (u; ,u;) = J.- lim ~ G ; (u; ,u; ). 
dui 2 (-0 du; 

Although another regularization was used, the above defini
tion is in agreement with that of Ref. 6, when tjJ = O. To the 
best of my knowledge, the above vector amplitude is a new 
result. 

Note added in proof: While this article was being typed, I 
received Ref. 18 where nonorientable topologies are also dis
cussed within a first quantized approach. I thank C. P. Bur
gess for sending me the manuscript. 

APPENDIX A: COMPUTATION OF DETERMINANTS 

One needs to compute 

II ' [rrnl2 + rrn~]1/2 
", even r 

(AI) 

n 2 even 

and 

[ 
rrn2] 112 II rrn l2 + ~ 2 

n, odd T-
(A2) 

n,odd 

The product in Eq. (AI) is readily written as 

[ 
(21T)2n2] 1/2 II' (21T)2n I2 + r 2 

This has been computed in Ref. 7. The result is 

= Te - ffT/6 [IT (1 _ e - 2ffn7_)]2 
n=1 

(A3) 

For the product in Eq. (A2) I use methods similar to those 
of Ref. 7. I consider 

1 d [ rrn2] -5 
= --lim- L rrn/ + __ 2 

2 5_0 ds n,.n, both odd r 

1 . d (1T2) - 5 
- - hm - L 2 L [n/ + ni 1'2] - 5. 

2 5-0 ds n, odd l' n, odd 

(A4) 
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whereC + (C -) is a contourjust above (below) the real axis 
from + 00 to - 00 ( - 00 to + (0). One obtains 

The second integral in the above equation (convergent only 
for s> !) is interpreted as 

l.- (2Tln 1>1-25 r(1-s)r(2s-1) 
2 I res) 

_i(II)I-2s r (1-s)res +!) -- Tn l , 
2 2s-1 [iT 

which now has a well-defined value at s = O. One then ob
tains 

L In[rn/ +nn 
n 2 odd 

= 2 In (1 + e - ffTln,l) + 1Trlim Inlll - 25, 
5-0 

from which it follows that 

In II [rrn 12 + rrn~] 1/2 
n,odd r 
n2 odd 

(A7) 
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In the above, I have used 
00 

Using the following straightforward application of Poisson 
summation formula, 2: n-S=;(s). 

n=1 

Equations (A3) and (A7) are Eqs. (27) and (28) in the 
main text. 

APPENDIX B: EVALUATION OF THE PROPAGATOR 

I will consider the Neumann problem 

-aaaaG(o-,u') 8(u-u') (BI) 

for the Mobius strip O<~< I, a = 1,2. The propagator is 
defined by means of heat kernel regularization, i.e., 

G(u,u') = lim 1 (00 dttzGt(u,u'), (B2) 
:-0 r(1 + z) Jo 

(B4a) 

one obtains for G" 

G,(u,u' ) ~ (2: + 2:) 
41Tt n,,", ""n, 

even odd 

where Xe-O/4t)(n,-(u'-0"»)'e-(r/41)(n, (0-' 0"»)' 

G, (u,u') = 2: ei1l"n,(u' - 0") cos(n21Tcr) 
n!.n1 even + 4:t (n~, + n~,) 

even odd 

+ 2: ei1l"",(u' -a")COS(n
2
1Tcr) 

X e - (/41)(n, - (a' - a")j'e - (r/4t)(n, - (0-' + o"})'. 

G(u,u') = lim 
:-0 

nl,nz odd 

(B3) 
I 

'i r(l-Z)(2: 2:) [(nl-(u
l 

41TZ r( I + Z) n"n, + n"n, 
even odd 

After integration, the propagator becomes 

+1im 
z_O 

'i r(l-z) (2: + 2:) [(nl-(u
l 

41TZ r( I + Z) n"n, n"n, 
even odd 

Using methods similar to those described in Appendix A, one can easily obtain the formulas 

[ 
(n - a)2 + b 2 ]Z . 2: = 2z Inll + e''trae -trb I + z1Tb + O(Z2), 

nodd 4 

The propagator then becomes 

G(u,u' ) = _~ 2: ln ll - (_ )nei1l"(u'-a")e-1I"TI,,-(o-'-o")llll (_ )"ei1l"(u'-a")e-1I"T1n-(o-'+o")11 
21T n 

(B5) 

(B6) 

(B7) 

(B8) 

- r 2: In - (cr - U '2)1_ r 2: In - (cr + U '2 )1. (B9) 
4 n 4 n 

In order to regularize the last two sums, I use 

I
n-xi . [(n_x)2]S+1I2, ,J41Tr(1+s) e'"27Tnx 2: -- =hm2: =hm 2: ' 

" 2 S_O 11 4 s-O r(-s-!) 11 [(21T)2n 2 ]1+s 
(BlO) 

where a prescription has to be given to the zero mode in the 
sum of the right.hand side. The above equality is easily de
rived by considering the right-hand side as an unregularized 
one-dimensional propagator. Then its kernel regularization 
with the use of Poisson's summation formula yields the left
hand side of (BlO). 

When x = 0, the above equation requires that 
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(Btl) 

Clearly, this means that the zero mode must be removed 
from the sum. It is easy to establish by contour integration 
that 
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e2rrnx -rr I -z = - - 2~lxl + 2~xZ. 
n#O n 3 

(B12) 

In the right-hand side of the above equation Ix 1< 1. This is 
always possible due to the original periodicity of the left
hand side. Once this result is substituted into Eq. (B9), Eq. 
(37a) in the main text follows. 

Suppose that in Eq. (B6) 0.1 - U'I = ~ - u'z = O. 
Then the term nz = 0 must be considered separately: 

7 r(1-z) [nIZ]Z 
lim -- I -
z-O 41TZ r( I + z) n, even 4 

= lim __ 7_ r (1 - Z) ; ( _ 2z) 
z-o 21TZ r( I + Z) 

=hm--+-In - . . 7 7 ( el') 
z-O 41TZ 21T 21T 

This is the regularization used in Eq. (37) of the main text. 
The following final remark is in order. The combined 

use of heat kernel regularization, Poisson summation for
mula and zeta function regularization amounts to the remo
val of the zero mode from the propagator, as it was already 
noticed in the discussion following Eq. (B 10). Indeed it can 
be shown that the propagator obtained above is equal to 

(I' + I) ei1Tn, (a' - a") cOzS(nz1T~;cOs(nz1TU'Z) . 

n,.n, n"n, ~nl + ~nz Ir 
even odd 

This is not the propagator in the sense that it does not satisfy 
- a ZG = {j but - a zG = {j - 1. This means, in particular, 

that the normal value at the boundary is not the one obtained 
from Gauss' law. However, since one is actually interested in 
solving - a Zx = j, and in our case f d Zu j = 0 (by momen-
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tum conservation), one is justified in using it. It may then be 
asked why one needs to use heat kernel regularization. The 
reason is that a regularized value of the propagator at coinci
dent points is required. 
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The resolvent kernel represented by a ratio of two Fredholm's series can be reformed into a 
sum of two ratios, only one of which contains Fredholm's determinant in its denominator. The 
general results presented are then used to apply Faddeev's residue prescription in the case of 
the rank N separable potential for determining those three-body scattering amplitudes in which 
a two-particle bound state is in the initial and/or final configuration. As a numerical example, 
the triton binding energy and the doublet scattering length for the Tabakin potential are 
calculated. 

I. INTRODUCTION 

Faddeevl established the scattering theory for the three
body system in the framework of the spectral theory. Practi
cal applications to various fields of the nuclear reaction2.3 

have followed. Although the nonlocal separable potential 
has played an important role, the multichannel scattering 
problem related to the general separable potential with infi
nite or finite rank is not solved. We say that the infinite4.5 or 
finite rank separable potential is not general in the case when 
its first form factor is determined from the bounded state 
wave function and the others are chosen to be orthogonal to 
the first.6 The Tabakin potential7 or Mongan potentialS are 
examples of the general separable potential. With only rank 
2 these potentials may well reproduce the realistic interac
tion, and yet the application of them to the practical calcula
tion for three-body scattering has not received much atten
tion. To consider the question, a more pertinent form of the 
resolvent kernel represented in Fredholm's series is desir
able: from such a form we can derive Faddeev's equation for 
the general finite (or infinite) separable potential. 

As was emphasized by Osborn9 and many other auth
ors,10--12 Faddeev developed his theory by using the residues 
instead of the three-body scattering amplitudes themselves, 
because the amplitudes contain the primary singularities, 
and he then could define the elastic, rearrangement, or 
breakup amplitude of the three-body reaction. These pri
mary singularities arise from the bound-state pole terms of 
the two-body T matrices when they are expressed in the 
spectral expansion. 

To proceed with the practical theory for the three-body 
scattering with the general separable potential, a pole de
composition of the resolvent kernel in the Fredholm's form 
is needed, by analogy with Faddeev's residue prescription. 
In this paper, the resolvent kernel represented by a ratio with 
the Fredholm's determinant for its denominator is trans
formed into two ratios: only one of them contains the Fred
holm's determinant in its denominator which causes the 
bound-state pole. 

In Sec. II, the bound-state pole decomposition of the 
resolvent kernel in Fredholm's series is derived, with proofs 
given in the Appendices. This decomposition of the two
body Tmatrix for the Tabakin potential is applied in Sec. III 

to derive the Faddeev equation for the three-nucleon system. 
A numerical example is given. 

II. POLE TERM DECOMPOSITION 

The first partial wave off-shell T matrix satisfies the off
shell Lippmann-Schwinger (LS) equation 

+ 41T 100 

V,(p,p") [z - ~:]-I 
X T, (p" ,p';Z)p,,2 dp". (1) 

For a fixed p' the LS equation can be studied as a Fredholm's 
integral equation of the second kind 

qJ(x) =j(x) +,1 L N(x,Y)qJ(y)dy. (2) 

Here we take the set n as a bounded interval instead of the 
interval [0,00 ) to avoid some considerations of the conver
gence, since the separable potential used in our study is 
proved to make the kernel N(x, y) a compact operator. 13 

Hereafter we proceed along Pogorzelski'sl4 argument, 
with his notation. Fredholm's first theorem is described as 
follows: Fredholm's equation (2) of the second kind, under 
the assumption that the functionj (x) and N(x, y) are inte
grable, has in the caseD(A) #0 a unique solution, which is of 
the form 

qJ(x) =j(x) +,1 L R(x, y,).,) j(y)dy, (3) 

where the resolvent kernel R is a meromorphic function of 
the parameter A, being the ratio of two entire functions of the 
parameter A, 

R(x,y,A) =D(;;A )[D(A)]-I, 

defined by Fredholm's series of the form 

D(A) = 1 + I (-A)P 
p=1 p! 

(4) 
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(5) 

(
X ) 00 (-A,)P 

D ;A =N(x,y) + I , 
y p-l ~ 

N(sl,sl) N(SI,S2) N(sl>sp) 

NC I,S2' ... 'Sp) = N(S2,SI) N(S2,S2) N(S2'Sp) 

Sl>S2'···'Sp 

N(sp,sl) N(Sp,S2) N(sp,sp) 

N(x,y) N(x,st) N(X,S2) 

N(sl'y) N(st,sl) N(SI,S2) 
Nt,SI,S2' ... 'Sp) = 

N(S2'y) N(S2,SI) N(S2,S2) 
,SI,S2'···'Sp 

N(sp'y) N(Sp,SI) N(Sp,S2) 

We state our result for the resolvent kernel R (x, y,A). 
Theorem 1: Under the condition 

D(A) #0, D C;A )#0 for S,lEn, 

we have the following relation: 

D(;;A) = D(;;A )D(:;A) + DC::;A) 
D(A)DC;A) D(;;A) D(A) (9) 

Proof See Appendix A. 
Before stating our Theorem 2, we must enunciate Fred

holm's second theorem: If ,10 is an eigenvalue of rank r, then 
the homogenous integral equation 

tp(x) =,10 1 N(x,y)tp(y)dy ( 10) 

possesses r independent solutions 

U= 1, ... ,r), 

(11 ) 

Simultaneously we may refer to the homogeneous asso
ciated equation 

¢(x) = ( N(y,x)¢( y)dy, Jo 

which has r characteristic solutions 
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(12) 

(6) 

These series converge for all values of A. The integrands in 
Eqs. (5) and (6) are defined as follows: 

(7) 

N(x,sp) 

N(SI'Sp) 

N(S2'Sp) (8) 

N(sp'sp) 

U = 1, ... ,r), 

(13) 

With regard to the first term of right-hand side of Eq. 
(9) in Theorem 1 we have the following result. 

Theorem 2: When ,10 is an eigenvalue of rank 1 and then 
the resolvent R (x, y,Ao) has a pole of order 1 at ,10' we desig
nate the residue of R at this pole - c(x,y). Then it has the 
form 

satisfying the relation 

where 

D(i)(A) = .!!.....D(A). 
dA 

Proof: See Appendix B. 

(14) 

-1, (15) 

When the eigenvalue ,10 equals 1, this theorem implies 
that the first term of the right-hand side of Eq. (9) corre
sponds to the pole term of the two-body Tmatrix in spectral 
representation. 
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To see the meaning of the final term ofEq. (9), we need 
Fredholm's third theorem: When A is an eigenvalue of rank 
r, a necessary and sufficient condition for the existence of a 
solution ofEq. (2) is the orthogonality of the given function 
I(x) to r characteristic solutions tPi of the associated homo
geneous equation (12) corresponding to A. Further, the 
theorem proceeds to state: If this condition is satisfied, then 
the general solution ofEq. (2) has the form 

fP(x) =I(x) +A L U(x,y,;l)/(Y)dy+jtl CjfPj(x), 

(16) 

where the cj are constants and the fPj (x) are the characteris
tic solutions (11) of the homogeneous equation (10) and 
U(x,y) has the form 

D (X,SI""'S, ;A) 
y,tl,· .. ,t, 

U(x, y,;l) = . 

D (SI""'S, ;A ) 
tl,· .. ,t, 

(17) 

From this theorem we see that the final term of our represen
tation (9) for the resolvent is equal to the extended 
U(x, y,;l) when A is not the eigenvalue. 

III. APPLICATION TO THE THREE-BODY PROBLEM 

In this section we study the utility of the pole term de
composition acquired in the previous section by applying it 
for the calculation of the three-body problem. 

In the LS equation (1) the general form of an s-wave 
spin-dependent potential is assumed to be expressed as a fi
nite series of nonlocal separable potentials, 

n 

Vv (p,p') = L Vvk (P)Vvk (p'), (18) 
k=1 

where the label v specifies an antisymmetric spin-isospin 
state of the two intermediately coupled nucleons of a three
nucleon system: it denotes that the pair has the spin-isospin, 
st = 10(01) for v = 0(1), respectively. As we consider thes
wave potential, the I index will be omitted in the LS equation. 

From the results of the previous section together with 
the Appendices, if we represent the total spin and isospin of 
three-nucleon system as a and r, the analytical solution of 
the LS equation is given by the equation 

I 

T( p, p';z) = L L larv)gvm (p;z) Ivm (p';z) (arvl, 
v=O m 

where 

gvl (p;z) =Dnt;l), 
Ivl (P;z) = Dn G;l) [dv1 (z)] -I, 

dVI (z) = Dn (1 )Dn C;1), 
gv2 (P;Z) = {vvl (p)vv2 (s) - Vv2 (p)vvl (s)} 
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(19) 

Vvl(p) vvl (s) -a13 -a1n 

Vv2 (p) vv2 (s) -a23 -a2n 

Iv2 (p;z) = Vv3 (p) vv3 (s) 1 - a33 -a3n 

Vvn (p) Vvn (s) -an3 1 - ann 

(20) 

and so on. The index m of the second sum ofEq. (19) runs 
on the combination such that we take two numbers of the set 
1,2, ... ,n. Here larv) is the unified spin-isospin function of 
the three-nucleon system. In the determinant ofEq. (20), aij 

is defined as follows: 

4 Sa
oo Vvi(P)VVj(p) 2d 

a· = 1T P p. 
lJ 0 z-p2/2m 

The first partial wave three-nucleon off-shell scattering 
amplitude satisfies the Faddeev equation 

err) (' .) _ uur;1 (' .) wv'm';vm p, p,Z - v'm';vm p, p,z 

Sa 
00 

ur.I '" + L u v'';'';v''m'' (p ,p ;z) 
v"m" 0 

ur./ (" )"2 d " X Wv";"";vm P ,P;Z P p' 

with the potential matrix 

u~,i!.';vm (p',p;z) 

= 2(2/{J)3 (arv'larv) 

where 

Xfl Iv'm'(PI,t')gvm(P2,t) PI (x)dx, 
_ 1 z - (1I2m)( p2 + p 12) 

(21) 

(22) 

PI2 = jp2 + j (p'2 + pp'x) , p/ = jp,2 + j (p2 + pp'x), 

t=z- p2/2m, t'=z-p,2/2m. 

Here wgi.~2);1 is related to the completely antisymmetrized 
off-shell ~mplitude wgL~2);1 of elastic n-d scattering with giv
en a by the following form: 

WU (1I2);I(p' p'z) - WU (1I2);I(p' p,z)/d (t') (23) 
01;01 ,,- 01;01 " 01 • 

It follows, as in Osborn,9 that the equation for the off
shell elastic amplitUde wgL~2);1 can be obtained by inserting 
relation (23) and the second equation ofEq. (20) into Eq. 
(21), 

wu( 1I2);1( p' p'z) 
01;01 " 

- fju(l!2);I( p' p'z) + Saoo fju(1I2);I( p' p"'z) 
- 01;01 " 01;01' , 

o 

Xd -101 (t" )wgL~2);I(p",p;z) p"2 dp" 

+ '" 1"" fju(l/2);I( p' p" ·z) 
~ 01;vm" 

o 
(vm#OI) 

X wu(1I2);I( p" p'Z)p"2 dn" 
vm;Ol " r , 

with the potential matrix 

fju( 1I2);1( p' p'Z) 
01;vm " 
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XJI gOI (PI,t ')gvm (P2,t ') PI (x)dx. 

- I Z - (112m) ( p2 + pi ) 
We obtain a closed set of equations once we add to Eq. (24) a 
linear equation giving W CT(l/2);1 (,urn #O,l) in terms W CT (1I2);1 

and WCT(1I2);I. The necessary equation is driven from Eq. 
(2l), 

W CT(1I2);/( pi P;z) 
vm;Ol , 

= U,,(I/2);/( pi p'z) + 100 

UCT(1I2);/( pi p";z) 
vm;Ol " vm;Ol' 

° 
X wgf;b';2);/( p", p;z) p,,2 dp" 

+ ~ 100 

u,,(1/~);i( pi P"'z) 
~ vm;vm" 
v'm' 0 

(v'm',",OI) 

(25) 

Now Eqs. (24) and (25) are Osborn's set of solvable cou
pled integral equations which are expressed by Fredholm's 
series. The breakup amplitude is constructed from these am
plitudes wand w. Forthwith we can embark on our numeri
cal analysis of this set of equations. 

Using the Tabakin potentiaV the triton binding energy 
and the doublet scattering length are calculated. The results 
are - 9.29 MeV and - 0.1132 F, respectively. Figure 1 
compares these with the experimental values and results of 
other calculations. In spite of omitting the tensor force, the 

I 

k, (x) k 2(x) 

1 -,1,a ll -,1,a 12 

-,1,a21 1 - ,1,a22 

-,1,an, -,1,an2 

and 

aij = L ki(x)lj(x)dx. 

Defining Li (Y) by 

Tabakin potential has an adequate agreement with the ex
perimental value. 

In conclusion, the application of our expression of the 
resolvent kernel to four-nucleon scattering can be anticipat
ed. 
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APPENDIX A: PROOF OF THEOREM 1 

In this appendix, the proof of Theorem 1 is shown. 
First we consider the case that the kernel of the Fred

holm integral equation (2) has a degenerate kernel: 
n 

N(x,y) = L k,(x)li(y)· (Al) 
i= 1 

The first and second Fredholm's series of Eq. (2) with the 
degenerate kernel are defined by the formula 

1 - ,1,a ll -,1,a 12 -4a'n 

Dn (4) = 
-4a21 1 -4a22 -4a2n (A2) 

-4an, -4an2 1 - 4ann 
and 

kn(x) 

-,1,a 'n 
-,1,a2n (A3) 

1 -,1,ann 

(i= 1,2,,,.,n), (A4) 

In (y) - ,1,an, ,,,., - 4an,i_ I' - ,1,an,i+ I , ... ,1 - ,1,ann 

Dn (;;A) can be expanded with Li (y) 

Dn(;;A) = itl ki(x)Li(y)· (AS) 

From this we have 

n n 

= L kk (x)Lk (y) L kl (s)L I (t) 
k= I 1=1 

2680 J. Math. Phys., Vol. 28, No. 11, November 1987 

n n 

L kdx)Lk (t) L kl (s)LI (y) 
k= I 1= I 

= L {kdx)kl (s) - kl (X)kk (s)} 
k<1 

(A6) 

Let hkl be (kl)-cofactor in the Fredholm's determinant 
Dn (4). Then we can get an analogous expression 

Lk(y)LI(t) -LI(y)Lk(t) 
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FIG. I. Theoretical and experimental 
results of the triton binding energy plot
ted versus doublet scattering length. 
Adapted from Fig. 27 of Ref. 15. 
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In general, Jacob's theorem related to the minor of the 
determinant 11 is described as follows: Let I1(U be an 
(n - 1) X (n - 1) minor obtained by omitting the ith row 
and k th column of 11 and 11(~~) be an (n - 2) X (n - 2) 
minor taken off the ith andjth rows and k th and I th columns 
of 11, to obtain the following relation: 

Using Dn (A.) instead of 11 in this theorem, we can proceed 
with the derivation 

(AS) 

where H(ij,) is equal to !1(ij,) multiplied by the factor 
(- )i+j+k+'in Jacob's theorem. 

Inserting Eqs. (A 7) and (AS) into (A6) and using La
place's expansion of the determinant, the last form of the 
left-hand side ofEq. (A6) can be expressed as follows: 

Therefore we can derive Eq. (9) of Theorem 1 in the case of 
the finite rank kernel. 

In the case of the general kernel, the proof ofEq. (9) is 
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2. 0 3. 0 

completed by using the theory of limiting process given in 
Ref. 14: Given a sequence of bounded continuous kernels 
{Nn (x, y)} converging uniformly to the function N(x, y), 

N n (x,y) .... N(x,y), 

for x and y lying in the domain n, then the sequences of 
Fredholm's series D n , etc., tend to D, etc., 

Dn (A.) .... D(A.), Dn(;;II. ) .... D (;;11. ). 

Dn(; ;;11. ) .... D (; ;;11.), 
under the assumption that A. is not an eigenvalue of any of the 
kernelsNn (x,y) andN(x,y). 

APPENDIX B: PROOF OF THEOREM 2 

In this appendix, the proof of Theorem 2 is given. As in 
Appendix A, we start with the degenerate kernel. 

As is clear from its expression given by Eq. (9), the 
singular part of the resolvent Rn (x, y.A.) is only the first 
term of the right-hand side of Eq. (9). If 11.0 is a zero of 
Dn (A.) with multiplicity 1, the residue of the resolvent is 
equal to 

(Bl) 

Therefore Eq. (14) of Theorem 2 is proved. 
Next consider the last part of the proof of Theorem 2. 

Let hij be a element of Dn (11.0) and hij' cofactor of hij' Then 
we have 
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(i =j), 

(i#j). 

These formulas, together with the assumption of the 
theorem thatAo is a zero of Dn (Ao) = 0 with multiplicity 1, 
give a unique solution (hi! ,hi2 , ... ,h;n ) T for any i = 1, ... ,n of 
the equation 

H"x=O, 

where Hn = (hij) and x is an unknown vector. Then we 
have the following relations: 

and 

hi! h,? h;n 

hjl = h;? ='" = hj" 

h!j h2; hll ; 

h
1j 

= h
2j 

='" = h
nj 

for any i,j = 1,2, ... ,n. 

(B2) 

Relation (B2) allows the following expansion of Fred
holm's minor 

and similarly 

Dn(;~o) 

D"e~o) 

" L k; (x)h!jL(t) 
;=1 

" L I; (y)h!jK(s), 
;=1 

" L k j (S)hliL(t), 
;=1 

where L(t) or K(s) are independent of index i. 

(B3) 

For the derivation of Eq. (15) of Theorem 2 it is suffi
cient to show that 

( Dn(;~o)D,,(:~o) dx= 

In D (s ~ ) 
n t 0 

(B4) 

Inserting expressions (B3) into each Fredholm's minor of 
the left-hand side of Eq. (B4), we can perform the integra
tion of (B4): 
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i D. (>,)0. ( :;1,) dx ~ i a,,i,,,. 
n D" e;Ao) ;,j= I 

(B5) 

Let us now consider the right-hand side ofEq. (B4) and use 
the well-known relation given by Fredholm 

dkDn(A) = (_)k { ... ( D (XH."'Xk~) 
dA k In In "XH""Xk 

(B6) 

between the k th derivative of Fredholm's determinant 
D" (A) and Fredholm's minor of order k. Apply this relation 
in the case of k = I to get 

-D(I)(Ao) = 1 Dn(:~o)dX= ;'~l aj;hj ;. (B7) 

By comparing (B7) with (B5) we can show (B4). 
We can also complete the proof in the general case along 

a procedure similar to that of Appendix A. 
Hence Theorem 2 shows that the general property of the 

residue of the resolvent is also fulfilled by the one concretely 
expressed by Fredholm's series. 
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A key ingredient of the singularity theorems of general relativity is that geodesics will focus 
under certain conditions. While the conditions that are generally imposed are fairly weak and 
can be expected to hold for most geodesics in any reasonable space-time, the question arises of 
what the consequences might be if these conditions happen to fail to hold for isolated 
geodesics. The standard singularity theorems in the literature do not cover such cases. A result 
is pre~ented here that demonstrates that a singularity will exist even in cases where geodesic 
focusmg does not occur for some geodesics. 

I. INTRODUCTION 

The aim of the singularity theorems of classical general 
relativity is to prove that the existence of some appropriate 
initial condition (e.g., a trapped surface,I-3 or a reconverg
ing system of geodesics, 3,4 or a compact slice3--{j) must neces
sarily lead to a singularity. In order to achieve this, two 
further classes of assumptions generally have to be made: (I) 

global conditions of varying reasonableness are often im
posed (e.g., global hyperbolicity, 1,2 or the absence of causal
ity violations3,4); and (II) some restrictions are placed on 
the curvature of space-time in order to guarantee that geode
sics will have a tendency to converge toward each other and 
focus. The restrictions on the curvature that are generally 
imposed are the timelike or null convergence conditions 
(which follow if Einstein's equation holds and if the geode
sics encounter matter with non-negative energy density and 
pressure) 7 and in some cases the generic condition (which 
requires that every geodesic feel a nonzero gravitational tidal 
force).3,7 

The question then arises of how crucially the existence 
of a singularity depends on these assumptions. Though the 
issue is not yet conclusively settled, there is some evidence 
that assumptions of class I are not cruciaI8

,9; this evidence is 
strengthened by the fact that there are closed universe singu
larity theorems4--{; that do not make any such assumptions. 
On the other hand, class II assumptions enter into the proofs 
of the singularity theorems in a nontrivial way, Indeed one 
would not expect singularities to exist, even given an appro
priate initial condition, if there are large violations of these 
conditions. For the singularity theorems are a reflection of 
the physical fact that gravitation is a universally attractive 
phenomenon. This physical fact finds its expression in the 
singularity theorems through the tendency of geodesics to 
converge and focus. If geodesics do not focus, we are unlike
ly to obtain a singularity. Thus, for example, de Sitter space
time is nonsingular despite having a compact slice: it does 
not obey the timelike convergence condition and, conse
quently, some classes of initially converging timelike geode
sics eventually reexpand without coming to a focus. Another 

aJ Present address: Department of Mathematics, Long Island University
Southampton Campus, Southampton. New York 11968. 

example is provided by compactifying spatial sections of 
Minkowski space-time (so that their topology is 
SIX SIX S I). In this case the convergence conditions do 
hold but the generic condition does not, and this space-time 
too avoids being singular. So, for class II assumptions the 
appropriate question appears to be not whether they can be 
eliminated altogether, but, instead, how much they can be 
weakened while still yielding a singularity. 

There are two types of situations that might need 
weaker class II assumptions than are usually made. The first 
type of situation is one where there are extended regions in 
which the convergence conditions do not hold and in which, 
as a consequence, geodesics will tend to defocus. This hap
pens in some types of cosmological models (e.g., inflationary 
models) that have been seriously discussed. 10,11 Many of the 
situations of this type are covered by work that replaces the 
standard pointwise convergence conditions in the theory of 
geodesic focusing by weaker integral conditions. 10,1 1 It fol
lows from this work that limited violations of the energy 
conditions, even over extended regions, will not affect the 
existence of singularities, The second type of situation is one 
where isolated geodesics escape focusing effects. This might 
happen in situations where most geodesics obey the integral 
convergence conditions mentioned above, but some isolated 
geodesics just fail to do so, or if some isolated geodesics do 
not feel gravitational tidal forces. This is, then, the principal 
question being considered in this paper: Can isolated failures 
of geodesic focusing lead to the avoidance of a singularity? 
The answer that will be obtained is that they cannot. (In the 
statement and discussion of this result that is presented be
low, the notation and conventions that will be used are those 
of Ref. 7.) 

The importance of the question being considered here is 
illustrated by examining the most comprehensive of the sin
gularity theorems, the Hawking-Penrose theorem.3,7 There, 
it is shown that space-time cannot be casual geodesically 
complete if (a) there is an achronal set S such that E - (S) 
[or E + (S)] is compact; (b) there are no closed timelike 
curves; and (c) every complete causal geodesic contains a 
pair of conjugate points. In this result condition (a) provides 
the appropriate initial condition. It will hold in a number of 
different situations. If S is a compact slice then E - (S) = S. 
And, in a geodesically complete space-time, if S is a past 
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trapped surface or a point p whose past null cone recon
verges and if an averaged convergence condition holds on 
the null generators of E - (S), then also E - (S) will be com
pact. lI In connection with reconverging null cones it should 
be noted that observations of the microwave background 
provide direct evidence that our own past null cone does in 
fact reconverge.3

,7 Condition (b) of the theorem is a reason
able causality assumption. (As was said earlier: there is some 
evidence-even though it is not conclusive-that such as
sumptions are not crucial to the existence of singularities.) 
Condition (c) roughly requires that every causal geodesic 
have a pair of points on it at which it is intersected by "infini
tesimally close" nearby geodesics. It will hold in a geodesi
cally complete space-time if the generic condition holds and 
if the convergence conditions (either the pointwise condi
tions 7 or the weaker integral conditions II) hold everywhere. 
Since the theorem establishes the existence, under these con
ditions, of only a single incomplete geodesic it becomes im
portant to know if the failure of condition (c) for some geo
desics will affect the existence of the singularity. The fact 
that it cannot, as long as the failure is confined to isolated 
geodesics, follows from the result in the next section. 

II. A SINGULARITY THEOREM 

Theorem: A space-time cannot be past causal geodesi
cally complete if (A) there is an achronal set S such that 
E - (S) is compact; (B) strong causality holds (i.e., there are 
no "almost closed" causal curves); and (C) for every pES 
the following is true: any set U of past-complete causal geo
desics whose initial (future) end points form an open neigh
borhood of p in E (s) contains a member with a pair of 
conjugate points to the past of E - (s). 

Note that the theorem can also be stated in a time-re
versed way so as to give a future singularity (as we want for 
gravitational collapse). It has been stated here in a way that 
stresses its similarity to the Hawking-Penrose (HP) 
theorem. Condition (A) here is the same as (a) in the 
Hawking-Penrose result and (B) is a slight strengthening of 
(b) there. Condition (C) is analogous to (c) of the HP 

theorem, but is both weaker than it as well as stronger than it 
in important respects. It is weaker in that geodesics need not 
have conjugate points as long as neighboring ones do. This 
achieves the purpose of this paper. But the requirement that 
the conjugate points lie to the past of E - (S) is stronger than 
requiring that a pair of conjugate points lie somewhere on a 
geodesic. Such conditions (i.e., that a pair of conjugate 
points lie on one side of a given point on a geodesic) have 
been discussed before/· ll most notably in a theorem of 
Hawking4

•
7 which assumes in effect that there exists a pointp 

such that, if space-time is past complete, then every past
directed causal geodesic fromp has a point on it conjugate to 
p in J - (p). In cosmological models of the Robertson-Walk
er type, such conditions have been explicitly shown to hold 
(pp. 356-358 of Ref. 7). And they are likely to hold in any 
situation where the matter density does not drop off too rap
idly in the direction of time that is of interest. This will hap
pen in expanding cosmologies (past direction) or gravita
tional collapse (future). (Despite these arguments about the 
reasonableness of condition (C), it would be interesting to 

2684 J. Math. Phys., Vol. 28, No. 11, November 1987 

try to further weaken it. One possible weakening would be a 
statement of the form "almost every (in some suitable sense) 
causal geodesic contains a pair of conjugate points." Such an 
assumption would be a true generalization of the HP generic 
condition in that it is not tied to the set S at all. Less weak 
than this statement [but still weaker than condition (C)] 
would be a condition of the form "if r is a past-complete 
geodesic with future end point p then every neighborhood of 
it contains a causal geodesic with a pair of conjugate 
points.") In return for this stronger requirement, though, we 
get two additional pieces of information: the singularity is 
localized to the past (as it is also in Hawking's theorem) and 
(as will be seen from the proof of the theorem) as long as 
(A) and (B) hold there will be an infinite number of past 
incomplete geodesics. The proof of the result follows the 
Hawking-Penrose proof closely. 

Proof: (A) and (B) implythatD-(E (S»)containsa 
past inextendible timelike curve r with future end point p on 
S.3.7 Let bi be a sequence of points on r such that (i) bi + I 

E I - (b i ) and (ii) no compact segment ofrcontains an infi
nite number of the bi' Let oeI + (b l ) nE - (S) and let qED. 
Between each bi and q there will be a timelike geodesic seg
ment of length greater than or equal to that of any causal 
curve between b i and q. 7 This sequence of maximal geodesic 
segments will have a limit geodesic through q denoted by r q' 

Let U = {rq ; qEO}. If the space-time were past complete, 
then by (C) there would exist a past-directed geodesic p in U 
with a pair of conjugate points to the past ofO. The existence 
of these conjugate points contradicts the fact thatp is a limit 
geodesic to a sequence of maximal geodesic segments, exact
ly as in the Hawking-Penrose theorem. 
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Conditions are given under which any asymptotically simple and empty space-time that has a 
partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown 
that this result suggests that the Cauchy horizons ofthe type occurring in Reissner-Nordstrom 
and Kerr space-times are unstable. This in turn gives support for the validity of the strong 
cosmic censorship hypothesis. 

I. INTRODUCTION 

. It has been conjuctured by Penrose) that singularities 
arising in gravitational collapse cannot be visible by observ
ers situated at infinity. This conjecture is known as the weak 
cosmic censorship hypothesis. Further reflection on this 
matter has led Penrose to conclude that it makes little differ
ence in terms of predictability whether the singularity is visi
ble from infinity or it can be seen by observers located some 
finite distance from it.2 Thus if cosmic censorship is true it 
should forbid the appearance of locally naked singularities, 
that is, singularities that lie to the future of some point on an 
observer's world line and to the past of another point on the 
same world line. The precise mathematical condition that 
excludes the locally naked singularities is the demand that 
space-time be globally hyperbolic.2 We shall say that strong 
cosmic censorship holds if space-time is globally hyperbolic. 

The present author has laid out conditions under which 
the weak cosmic censorship holds,3,4 the main consideration 
of which was the condition that all singularities arising in 
gravitational collapse should be of strong curvature type 
(for a definition see the next section). In the next section we 
shall give a set of conditions under which any weakly asymp
totically simple and empty space-time with a partial Cauchy 
surface with an asymptotically simple past is globally hyper
bolic. We shall show that this result indicates that Cauchy 
horizons of the type occurring in Reissner-Nordstrom and 
Kerr space-times are unstable. 

II. CONDITIONS FOR GLOBAL HYPERBOLICITY OF AN 
ASYMPTOTICALLY FLAT SPACE· TIME 

Before we shall state and prove our main theorem we 
shall explain the basic notions used in this theorem and we 
shall give some definitions. 

A commonly accepted precise definition of an asymp
totically flat space-time is contained in the notion of a weak-
1y asymptotically simple and empty space-time.5 The exis
tence of a partial Cauchy surface .Y with an asymptotically 
simple past in such a space-time ensures that singularities 

.) SERe Postdoctoral research assistant. 
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occurring in space-time arise from an initially regular state 
and that any Cauchy horizons arising to the future of.Y are 
not artifacts of a bad choice of the initial surface but rather 
are a result of the genuine breakdown of global hyperboli
city. For example, a partial Cauchy surface in an asymptoti
cally simple and empty space-time (a globally hyperbolic 
space) with an edge on past null infinity /- or future null 
infinity /+ would contain a Cauchy horizon. 

Definition 1: A future-endless nonspacelike geodesic A is 
said to terminate in a strong curvature singularity in the 
future, iffor every pointp onA the expansion e of the future
directed nonrotating congruence of geodesics from p con
taining A becomes negative somewhere on A. 

A suggestion that all singularities arising in physically 
realistic space-times are of strong curvature type has been 
put forward by this author6 and independently by Tipler et 
al.7 In our opinion the above definition is a precise geometri
cal description of the singularity arising as a result of reach
ing by the gravitational field the point of no return beyond 
which only its further, unbounded increase in strength is 
possible. All other singularities are in a certain sense artifi
cial originating from some special conditions imposed on 
space-time, e.g., symmetry, Petrov type, special initial con
ditions. 

The above definition is a modification of Tipler's origi
nalone. 8 

Definition 2: Tipler's condition is said to hold on a future 
Cauchy horizon H + if on every past-endless null geodesic 
generator A (u) of H + either 

(i) lim(inf RabkQkb) >0 
u-c 

or 

(ii) lim(inflkckdk(aCb]cd[ekfJi> >0, 
u-c 

where c is the past limit of the affine parameter u along A and 
k a is the tangent vector to A. 

The conditions in the above definition were introduced 
by Tipler.9 They express the idea that Cauchy horizons 
forming in a space-time result from a certain arrangement of 
a sufficient amount of matter or gravitational radiation and 
not, for example, from some identifications made in an oth
erwise regular space-time. 
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Definition 3: The simplicity condition is said to hold on a 
future Cauchy horizon H + (Y), Y is a partial Cauchy sur
face, if there exists a sequence (A;) of null geodesics past
endless in the domain of dependence D (Y) of Y each gen
erating an achronal set and such that the sequence (A;) has a 
past-endless null geodesic generator A of H + (Y) as its limit 
curve. 

The simplicity condition need not hold for an arbitrary 
Cauchy horizon. This is because a past-endless null geodesic 
may encounter caustics to the past of which it can no longer 
generate an achronal set. Nevertheless we shall show below 
that the simplicity condition holds for the type of Cauchy 
horizons occurring in the Reissner-Nordstrom or Kerr 
space-times. 

We can now state our theorem. 
Theorem 1: A weakly asymptotically simple and empty 

space-time (1, g) containing a partial Cauchy surface Y 
with an asymptotically simple past is globally hyperbolic if 
the following conditions are satisfied. 

(1) Rabk ak b> 0 for every null vector k a. 
(2) The strong causality condition holds. 
(3) If the future Cauchy horizon H + (Y) is not empty 

then both Tipler's condition and the simplicity condition 
hold. 

( 4) Each past-incomplete null geodesic terminates in a 
strong curvature singularity in the past. 

Proof: Suppose that space-time (1, g) is not globally 
hyperbolic. Then either H + (Y) or H - (Y) is not empty. 
Since space-time is assumed to have an asymptotically sim
plepastwehaveD - (Y) = J - (Y) by definition and there
fore H + (Y) #0. 

Let A be any past-endless null geodesic generator of 
H + (Y). By Tipler's conditions the generator A cannot be 
past complete. If it were complete by Lemma 9 and the proof 
of Proposition 5 in Ref. 9, A would contain an infinite num
ber of conjugate points. Thus by Ref. 5, Proposition 4.5.12, 
points of H + (Y) could be joined by timelike curves. This is 
impossible as the set H + ( Y) is achronal. 

Let (A;) be the sequence of past-endless null geodesics 
in intD(Y) given in Definition 3. Letp; be a sequence of 
points, each P;EA; such that (p;) has a limit point on the 
generator A of H + (Y). Each (A;) when followed into the 
past must eventually intersect Y and consequently it must 
have a past end point on /"- because Y has an asymptoti
cally simple past. Thus each (A;) is past complete. Conse
quently the expansion 8; on (A;) of the congruence of past
directed null geodesics from p; cannot become negative 
otherwise, by the Raychaudhuri equation and condition 
(1), there would be a point conjugate to p; on A;. This is 
impossible since each A; generates an achronal set. By con
tinuity, the expansion 8 on A of the past-directed con
gruence of null geodesics from p is also non-negative. How
ever, as A is a past-endless generator of H + (Y), by the first 
part of this proof it is past-incomplete. Therefore by condi
tion (4) it terminates in a strong curvature singularity in the 
past. Consequently, by Definition 1,8; must become nega
tive. This is a contradiction. Thus space-time must be global
ly hyperbolic. 0 
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In Figs. 1 and 2 we have shown two types of Cauchy 
horizons that can arise in an asymptotically flat space-time 
as a result of the occurrence of a space-time singularity to the 
future of a partial Cauchy surface Y. The Cauchy horizon 
depicted in Fig. 1 is of the type occurring in the Rissner
Nordstrom space-time for m 2 > e2 or Kerr space-time for 
m 2 > a2

, where m is the mass of the black hole, a its angular 
momentum, and e its charge. We can distinguish the two 
types of Cauchy horizons by the following criterion. For the 
Cauchy horizon in Fig. I there exists a point p on H + (Y) 
such that in the chronological past 1- (p,~) of p in ~ 
(where~ = 1U/"+ U/"-), there exists a future-endless 
null geodesic generator y of /" - entirely contained in 
1- (p, ~) whereas for the Cauchy horizon in Fig. 2, for any 
point p on the horizon all the generators of /" - leave 
1- (p, ~) when maximally extended to the future. 

In the following lemma we shall show that if the above 
criterion is satisfied then the simplicity condition holds. 

Lemma 1: Let Y be a partial Cauchy surface with an 
asymptotically simple past. Suppose that the future Cauchy 
horizonH + (Y) is not empty and suppose that there exists a 
point p on H + (Y) such that p is not a future end point of a 
generator of H + (Y) and such that I - (p, ~) contains a 
future-endless null geodesic generator y of /" - then simpli
city condition holds on H + (Y). 

Proof: Consider a sequence of points (p;) in int D(Y) 
converging to the point p such that for each i, p; + 1 El + (p; ). 
Consider the boundary i -(Pi>~)' where ~ 
= 1 U /" + U /" -. Since the surface Y has an asymptoti

cally simple past, by the time reverse of the argument con
tained in Lemma 6.9.3 of Ref. 5 each generator of /"- and 
therefore the generator y intersects i - (p;,~) exactly once. 
Let us denote the point of intersection by q; and the gener
ator of i-(pi>~) joining q; andp; by A;. Thus we have a 
sequence of null geodesics (A; ) such that each member of the 
sequence generates an achronal set (i - (p;,~») and such 
that p is a limit point of (A; ). Each A; is past endless in 1. 

. ;: 
o 

[0 

FIG. I. Cauchy horizon of the 
type occurring in the Reissner
Nordstrom space-time for 
m2 > e2 or Kerr space-time for 
m2 > a2

• A generator r of / - is 
contained in the past of a point p 
on the horizon . 
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FIG. 2. An example of a Cauchy 
horizon such that for any point p 

~ ....... -----h lOon the horizon all the generators 
of /- leave the past at p when 
extended into the future. 

Hence by time reverse of Lemma 6.2.1 there is a nonspace
like curve A which is past endless in JI and which is a limit 
curve of (Ai)' Since members of the sequence (A i) are null 
geodesics, A is a null geodesic as well. We shall show that A is 
a generator of H + (Y). This will complete the proof of the 
lemma. 

We first show that qi+lEJ+(qi)' If not then 
qi+lEJ-(qi) - {q;}. Since qiEJ-(P;.:4) and 
Pi + 1 El + (Pi) then Pi + 1 El + (qi + 1,:4). This is a contradic
tion since by construction q i + 1 EJ - (Pi + 1 ,:4) and there
fore points qi+ 1 and Pi+ 1 lie in the same achronal set 
j - (Pi + 1,:4), and thus cannot be joined by a timelike curve. 
Next we show that the sequence (qi) has no limit point. If 
(qi) had a limit point q then qEy since by construction for 
eachi, qiEy. SinceyeI - (p,:4) thenqEI - (p,:4). Thus we 
could find a point PI of the sequence (Pi) such that 
qEl- (PI,:4). Since for each i, qi+ 1 EJ + (qi)' all the 
members of the sequence (q i) are in J - (q). Hence 
qIEJ - (q) and therefore qIEl- (PI,:4). This is a contradic
tion as by construction qI~ - (PI,:4). Finally suppose that 
the limit curve A of the sequence (Ai) is not a past-endless 
null geodesic generator of H + (Y) but some other past-end
less null geodesic through p. Since A is not a generator of 
H + (Y) it must enter int D( Y) to the past of P, intersect 
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Y, and finally reach / - when maximally extended into the 
past since the partial Cauchy surface Y has an asymptoti
cally simple past. The point of intersection of A with /
would be the limit point of the sequence (qi)' This is a con
tradiction as we have shown that (qi) has no limit point. D 

Thus by the above lemma the second part of condition 
(3) of Theorem 1 is fulfilled for the case of Cauchy horizon 
occurring in Reissner-Nordstrom space-time for m 2 > e2 

and Kerr space-time for m 2 > a2
• Tipler's condition is not 

satisfied in the Reissner-Nordstrom or Kerr space-times. 
However, it was shown by Tipler lO that if there is an outgo
ing spherically symmetric radiation of arbitrary small den
sity in some neighborhood of the event horizon in Reissner
Nordstrom space-time then Tipler's condition holds. This 
gives us reason to believe that in perturbed Reissner-Nord
strom or Kerr space-time Tipler's condition will be fulfilled. 
Consequently, Theorem I above suggests that Cauchy hori
zons in Reissner-Nordstrom or Kerr space-times will not 
appear in generic space-times. This gives evidence for the 
validity of the strong cosmic censorship hypothesis. 
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In a space-time admitting cyclic and nonspacelike Killing symmetries the commutation 
properties of the Killing vectors are examined. It is shown that cyclic and null Killing vectors 
can be noncommuting only if a Killing vector of stationarity is also admitted. Two 
consequences of this commutativity are also discussed. 

I. INTRODUCTION 

Stationary, axisymmetric space-times have distin
guished importance in general relativity, e.g., the final state 
of black holes is thought of as stationary and axisymmetric. I 
It is usually assumed that the Killing vectors of stationarity 
and axisymmetry commute. In fact, Carter2 has shown that, 
without loss of any generality, this can always be assumed. 

Axisymmetric space-times with null Killing vectors 
may also have physical significance; e.g., certain pp waves3 

or the Luklics-Perjes-Sebestyen solution4 (which describes 
the gravitational field of a zero-mass, spinning charged par
ticle) have these symmetries. Recently Lessner5 has pro
posed certain axisymmetric vacuum solutions, admitting 
null Killing symmetry, of the five-dimensional Einstein 
equations as models of extended massless particles. The 
commutation of these Killing vectors is also assumed. Un
fortunately, this commutation property does not follow 
from Carter's theorem. 

In the present paper we generalize Carter's theorem. No 
fixed point is needed, so the axial symmetry is weakelled to 
cyclic symmetry; and the timelike Killing symmetry is re
placed by a nonspacelike one. We show that in a cyclically 
symmetric space-time, admitting a null Killing vector field, 
the two Killing vectors must commute, unless otherwise, in 
addition, the space-time has to admit a timelike Killing sym
metry, too. Finally, based on this commutation property, we 
give a sufficient condition on a cyclically and null Killing 
symmetric space-time to be in Kundt's class3 and it is shown 
that in space-times describing axial symmetric pp waves the 
null Killing vector must be orthogonal to the orbits of axial 
symmetry. 

By space-time we mean a smooth, paracompact four
dimensional manifold M endowed with a Lorentzian met
ric, I but we do not use any field equation. 

II. CYCLICALLY SYMMETRIC SPACE-TIME WITH 
NONSPACELIKE KILLING SYMMETRY 

Space-time (M,g) is said to be cyclically symmetric2 if 
there is a smooth map u: SO(2) XM ..... M: (ep,p)l---+U(ep,p) 
for which each of the following conditions holds: (1) 
VepESO(2) the map u(ep): M ..... M: ~u(ep,p) is an isometry 
of (M,g); (2) Vep ',epESO(2), u(ep)Ou(ep') = u(ep + ep '); 
(3) if u(ep) = IdM then ep = 0 [i.e., SO(2) acts on M effec
tively]; and (4) the vector Xp : = (J / Jep) u(rp,p) irp = 0 is space
like VpEM. 

One can define the orbit through p as 

O(p): = {u(ep,p) lepESO(2)}, andp is said to be a fixed point 
if O(p) = {P}. It is easy to show that p is a fixed point iff 
Xp = 0, and ifp is not a fixed point then there is a diffeomor
phism of SO (2) onto 0 (p) and so X, defined pointwise by 
~Xp , is a smooth vector field. Here X will be called a cyclic 
Killing vector field. 

Proposition 1: Let (M,g) be cyclically symmetric with 
SO (2) action u and cyclic Killing vector field X, and let K be 
a nowhere vanishing future directed smooth nonspacelike 
Killing vector field on M. Then the vector field K, defined 
pointwise by 

- 1 121T Kp: = - (u(ep).K)p dep, pEM, 
21T 0 

is a future directed nowhere vanishing smooth nonspacelike 
Killing vector field, which is invariant under the action u; 
i.e., [X,K] = O. 

Proof' Since VepESO(2), u(ep) is an isometry, thus 
u(ep).K is a nowhere zero smooth nonspacelike Killing vec
tor field. Here M is time oriented, therefore u( ep). K is also 
future directed. Consequently, K is a nowhere vanishing fu
ture directed nonspacelike smooth Killing vector field. 
VepESO(2) 

- 1 121T u(ep).K =- (u(ep + ep').K)dep' 
21T 0 

1 121T -=- (u(ep').K)dep'=K, 
21T 0 

i.e., K is invariant under the action u. However, because of 
Corollary 1.8 and 1.11 of Ref. 6, this is equivalent to 
[X,K] = o. D 

Recall that the space-time is said to be stationary if it 
admits a nowhere vanishing smooth timelike Killing vector 
field. 

Corollary: Let (M,g) be stationary and cyclically sym
metric with cyclic Killing vector field X. Then there is a 
future directed smooth timelike vector field V which com
mutes with X. 

This statement is a generalization of Carter's theorem2
: 

it guarantees the existence of a timelike Killing vector field 
commuting with that of the cyclic symmetry in every sta
tionary cyclically symmetric space-time, even in the pres
ence of wire singularity. The existence of fixed points of u is 
not needed; moreover, no restriction is required for the di
mension of the space-time: it can be used for higher-dimen
sional Lorentzian geometries (e.g., in Kaluza-Klein theor
ies) too. 
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If K is timelike then K must be timelike too. If, however, 
K is nonspacelike or null, then K may be timelike on an 
(open) set and null on its complement. In the rest of this 
section, where the space-time is assumed to be cyclically and 
nonspacelike Killing symmetric with SO(2) action CT and 
Killing fields X and K, respectively, the causal character of K 
will be considered in fixed points of u and along orbits diffeo
morphic with SO(2) as well. 

Proposition 2: If p is a fixed point of u, then K is null at p 
iff K is null at p and [X,K] vanishes at p. 

Proof: Herep is fixed, thus V<pESO(2), CTC<p,p) = P and 
u( <p). : Tp M -+ Tp M. Here K can be null at p only if K is null 
at p and there is a positive smooth function I (<p) such that 
u(q;).Kp =/(<p)Kp- This implies I(q; +<p') 

(<p)/(q; '), V<p,<p 'eSO(2). Its solution is ICq;) 
exp(f'(O)<p). But/(<p) =/C21T + <p) must hold, thus 

1'(0) o and CT(<p).Kp Kp;i.e., [X,K] vanishesatp. 
Conversely, if Kp is null at p and [X,K] vanishes at p 

thenu(<p).Kp =Kp forVq;ESO(2) andKp =Kp is null. 0 
Now suppose p is not a fixed point of u. Then V qeO(p) 

there is a unique element tjleSO(2) for which q u(t/J,p). 
The following statement gives necessary and sufficient con
ditions that guarantee K being null along the orbit 0 (p). 

Proposition 3: The vector field K is null along the orbit 
O(p) iff K is null along O(p) and there is a smooth positive 
function <1>( t/J) for which [X,K]q = - <1>( t/J)Kq, 
q = u(t/J,p). [For such a <I>(t/J) the integral f~1T<I>(t/J)dt/J is 
necessarily zero.] 

Proof: The vector fieldK can be null at qeO(p) only if K 
is null all along O(p) and there is a smooth positive function 
I (t/J,q;) for which 

(u(<p).K)q =/(t/J,<p)Kq . 

This implies 

I (t/J,<p + <p') =1 (t/J,<p ') I (t/J - <p ',<p) , (1) 

V<p,<p 'eSO(2) and qeOCp). Let FCt/J,<p): = lnl (t/J,<p) and, 
denoting the derivative of F with respect to its first and sec
ond argument by Fl and Fz, respectively, one obtains 

Fz(t/J,<p+<p') =F2 Ct/J,q;') -FICt/J-<p',<p), 

F2 (t/J,q; + <p') = Fz(t/J - <p ',<p) . 

The solution of Eq. (3) must have the form 

F2 Ct/J,<p) = <I>(t/J - <p) , 

(2) 

(3) 

(4) 

where <I> is a smooth function. Using this expression, Eq. (2) 
yields 

Fl C t/J,<p) = <I> C t/J) - <l> ( t/J q;). (5) 

The integrability conditions for the system of partial differ
ential equations (4) and (5) hold identically, and its solu
tion is 

FCt/J,<p) = f'P $(u)du + Fo ' 
J",-<I' 

(6) 

Substituting (6) into Eq. C 1) one obtains Fo = O. Since I is 
periodic, i.e.,! (t/J,<p + 21T) =1 (t/J,<p), it follows that 

r'" + 21T J", $(u)du = 0, 

VtjIe[0,21T], from which <l>Ct/J + 21T) = <l>(t/J). This condi-
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tion guarantees I C t/J,q;) =1 (t/J + 21T,<p ), too. According to 
Proposition 1, the vector field K is invariant under the action 
CT, thus 

0= 21T[X,K] 

r21T 
d r21T 

= Jo I (t/J,<p)d<p [X,K] + dt/J Jo 1(t/J,q;)d<pK 

= f1T I (t/J,<p)dq:; [X,K 1 

+ f1T I (t/J,<p )(<l>( t/J) - $( t/J <p) )d<p K . 

But 

f1T ICt/J,<p)<l>(t/J - q;)d<p 

1217 al 
= - -d<p= -/(t/J,21T) +1 (t/J,O) =0, 

° a<p 
thus 

[X,K] = <l>(t/J)K. 

Conversely, if there is a smooth function <I> ( t/J) for 
which [X,K] - $(t/J)K, then in the coordinate system 
(xo ,x1,X2 ,t/J) adapted to X, where the orbits are given by 
X°,xl,X2 = const, 

K: = K; exp( - So'" <l>(U)dU). 

Butp = U(21T,p) , thus K~(21T.P) must be equal to K;. This 
implies f~1T<l>(u)du = O. The action of u(<p). on K can be 
calculated in the coordinate system (xO,X 1,X2,t/J): 

(u(q;).K): = K~( - <I'.q) 

= K; exp( - I P 
<I' <l>(U)dU) 

= K: exp r'" <l>(u)du, 
J",-<I' 

Thus if K is null along O(P) then 

Kg = 1 r21T(exp r'" $(U)dU)dq;Kq 
21T Jo J",-<I' 

is also null for VqeO(p). 0 
Corollary: Let q = uCt/J,p) be a point of O(p), where 

g(X,K) #0. Then K is null along O(p) iff K is null and 
[X,K] = 0 along O(p). 

Proof: Since K is a Killing vector field and V<peSO(2), 
u(q:J) is an isometry, u(<p).K is a null Killing vector field. 
Thus along O(p) one has 

o =XU(u(<p).K)a;bXb =1 (t/J,<p)XGKa;bX b + X aKa :~ 

=XaKJ(t/J,<p)($(t/J) - <l>(t/J - <p»). 

Since xa Ka is not zero at q = CTC t/J,p), <I> (t/J) = <l> ( t/J - <p), 
Vq:JeSO(2); i.e., <l> = const. But the only constant function 
having zero integral on [0,21T] is the zero, thusl (t/J,<p) = 1, 
Vq:J,tPeSO(2); i.e., [X,K] = 0 along O(p). 0 

Thus K is null along O(p) iff [X,K] = 0 and K is null, 
except the very special case in which X and K are orthogonal 
all along O(p). 
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Although, if xa Ka = ° along O(p), <1>( 1/') may be non
zero even if both K and K are null, but then, as the next 
proposition shows, the whole orbit O(p) lies in the closure of 
an open set on which K is timelike. 

Proposition 4: If the commutator [X,K] does not vanish 
at some point qEO(p), then every neighborhood of each 
point of O(p) contains a point where K is timelike. 

Proof If K is timelike at some point of O(p), or if K is 
null along O(p) but there is no function <I> required in Propo
sition 3, then K is timelike on O(p). Thus one can assume 
that K is null and [X,K] = - <l>K along O(p) for some 
smooth function <I> ( 1/') . 

Let rEO(p) and Wbe a neighborhood of r. If K is not 
null at some point SE W, then K is timelike on O(s). Then one 
can assume thatK is null on W. If there is a point SE Wwhere 
the vector [X,Kls is not proportional to K s' then a function 
<l>s' required in Proposition 3, could not exist along the orbit 
O(s), thus K is timelike on O(s). One can assume therefore 
that [X,K] is proportional to K on W. It will be shown, 
however, that K being null on Wand [X,K] being propor
tional to K on W together contradict our hypothesis 
[X,K]q #0. 

If [X,K] is proportional to K, then, because of their 
smoothness, a function <I> exists on W for which 
[X,K] = - <l>K and <I> coincides with <I> on the orbit O(p). 
Here X and K are Killing fields and K is null on W, thus <I> K 
must be a null Killing vector field, therefore 

0= (<I>Ka );b + (<I>Kb );a = <I>;aKb + <I>;bKa . 

Let SE Wand {K,L,E m } be a pseudo-orthonormalized vector 
base at TsM. Contracting the above equation with K a L b

, 

L aL b, and E"",L b one obtains <I>.a Ka = 0, <I>.a L a = 0, and 
<I>.aE ~ = 0, respectively; i.e., d<l>' = Oat s. But S can be cho
se~ arbitrarily, therefore <I> = <1>0 = const on W. 

The orbit O(p) is compact, so it can be covered by finite
ly many neighborhoods WI"'" Wt • But, due to the overlap
pings of the W's, <I> has to be the same constant value <1>0 all 
along O(p). This, however, implies <1>0 = 0, which contra
dicts the hypothesis [X,K]q #0. D 

At the end of this section we review the properties of the 
two-dimensional orbits. If the action a has a fixed point p, 
then a two-dimensional timelike submanifold, called the 
symmetry axis, can be foliated throughp (Ref. 2), and the 
integral curve of K through p lies in this axis. 

Outside the axis X and K together constitute a smooth 
two-dimensional involutive distribution,7 thus there is a 
two-dimensional integral submanifold N(p) of X,K through 
each nonfixedp. Here N(p) is generated by the orbits L(q) 
of the one-parameter group action generated by K, and 
qEO (p). Since X and K are commuting Killing fields, all the 
inner products g(X,x), g(X,K), g(K,K) are constant on 
N(p). ThereforeN(p) is a cylinder with constant circumfer
ence and its causal character does not change along the or
bits L(q). 

If K is null along O(p), then K is null on N(p) and the 
integral curves of K and K, lying in N(p), coincide. In this 
case, because of the Corollary of Proposition 3, and the 
equality X (g(X,K») = g(X, [X,K] ), g(X,K) is constant on 
N(p), too. 
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III. CYCLICALLY SYMMETRIC SPACE-TIMES WITH 
NULL KILLING SYMMETRY 

If K is nonspacelike, then, in general, the causal charac
ter of K may vary on M, due to the changing of the causal 
character of K or of the commutation property of X and K. 

Throughout this section K is assumed to be null. There
fore the first possibility above is ruled out, but, as our main 
theorem states, not the second one. 

Theorem: Let (M,g) be cyclically symmetric with cyclic 
Killing vector field X and SO ( 2) action a, and let K be a 
nowhere vanishing null Killing vector field on M. Then ei
ther [X,K] = ° on M, or 

U: = {a(qJ,p)lqJESO(2), 

pEM: llaER for which [X,K]p = aKp} 

is a nonempty open set and the Killing vector field K is time
like on U. 

Proof If [X,K] is not zero at some pointpEM, then, as a 
corollary to Proposition 4, there is an open set V such that 
pE Vand K is timelike on V. But, as Proposition 3 states, K is 
timelike on U and can be timelike only on U. Here U is open 
and, because of V~ U, nonempty. D 

This theorem is the main result of the present paper. It 
states that the Killing vectors X and K can be noncommuting 
only if the space-time admits an additional timelike Killing 
symmetry on an open subset of M. Thus if we want to consid
er space-times only with cyclic and null Killing symmetries, 
we have to assume they commute, as otherwise stationarity 
on an open set is also assumed implicitly. (See Note added in 
proof.) 

Recall that a null Killing vector field is always geodesic 
and its expansion and shear vanish. Thus space-times admit
ting a null Killing vector field K are classified as the twist cu 
of K vanishes or not, and in the first case as K is covariantly 
constant or not. 3 If, however, in addition a cyclic symmetry 
is also admitted, then a further subclass can be introduced. 

Corollary: Let (M,g) be a cyclically and null Killing 
symmetric space-time with (commuting) Killing vector 
fields X and K, respectively, and SO(2) action a. 

( 1) If g(X,K) = ° throughout M then K is twist-free. 
(2) If K is covariantly constant theng(X,K) is constant 

on M, and, in addition, if a has a fixed point then 
g(X,K) =0. 

Proof (1) If p is not a fixed point of a, then in a neigh
borhood W of p one can define a unit spacelike smooth vec
tor field Y, being orthogonal to both K and X. This Y is 
unique up to a sign. The function x: = (g(X,x»)1 /2 is nonzero 
and smooth on W, thus E 2: = Y, E3: = (l/x)X constitute a 
smooth two-dimensional orthonormal spacelike base field 
on W, being orthogonal to K. The twist of K can be calculat
ed in this base, 

2cux = xg(V E,K,E3 ) - xg(V E3K,E2) 

= - g(K, V yX) + g(K,v x Y) = g(K, [X, y] ) ; 

i.e., if Y is Lie propagated along X then K is twist-free. 
Let qE Wand let Y I denote the vector field along the orbit 

O(p), obtained by Lie propagation of the vector Yq • [HereX 
is a Killing field, thus, in spite of the fact that O(p) is closed, 
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Y' is well defined all along 0 (p ) .] Then 

X(g(X,Y'») = Y'aXa;bXb +xaY~;bXb 

= X a( Y ~;bXb - Xa;b y,b) = 0, 

X(g(K,Y'») = y,aKa;bXb + KaY~;bXb 
= y,aXa;b Kb + KaY~;bXb 
= Ka( Y~;bXb - Xa;b y'b) = 0, 

!X(g(Y',Y'») = Y'aY~;bXb = Y'aXa;bY'b = 0; 

i.e., Y' is the unit spacelike vector field being orthogonal to X 
and K all along O(p). Thus it coincides with Y; i.e., Y is Lie 
propagated along X. 

(2) Let q be a nonfixed point and let Iq denote the inte
gral of g(X,K) on O(p). As we stated at the end of the pre
vious section, g(X,K) is constant along the orbits N (q), thus 
Iq = 21Tgq (X,K). On the other hand, Iq can be considered as 
the integral of the closed one-form field Ka on the one-cycle 
O(q) (Ka is closed; i.e., K[a;b 1 = 0, becauseKa is constant): 

Iq = ( K. 
JO(q) 

Let q' be an arbitrary point of M. Here M is connected, there
fore there is a smooth curve f.-l: [0,1] - M from q = f.-l (0) to 
q' = f.-l ( 1). The mapping 

F: [0,1] X [0,21T] -M: (t,!f;)t---+u(!f;,f.-l(t») 

is a smooth homotopy between the orbits O(q) and O(q'), 
thus Iq = Iq" which implies g(X,K) = const. If there is a 
fixed point p, then q' can be chosen to be p, therefore, because 
of O(p) = {P}, every orbit O(q) is homotopic to zero and 
consequently g(X,K) = 0. D 
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This Corollary gives a sufficient condition on a cyclical
ly and null Killing symmetric space-time to be in Kundt's 
class,3 moreover it states that in physically important axi
symmetric space-times describingpp waves3 the Killing vec
tor K must be orthogonal to the orbits ofaxisymmetry. 

Finally, it is worth noting that the solution of Lukacs, 
Perjes, and Sebestyen4 has a twisting null Killing vector and 
the second Killing vector is a cyclic one on an open domain. 
These vectors commute and have nonzero inner product, as 
it must be according to our Theorem and its Corollary. 

Note added in proof: For the sake of completeness it 
should be noted that the additional timelike Killing vector K 
is independent of K andX on U; i.e., there are not functions a 
and /3 on U for which K = aK + /3X would hold. 
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It is shown that there exist no physically significant solutions of the Einstein vacuum field 
equations, except the trivial one (i.e., Minkowski), for axially and reflection symmetric space
times (Bondi metric) admitting a one-parameter group of conformal motions globally defined 
onS 2

• 

I. INTRODUCTION 

The problem of finding exact solutions of the Einstein 
equations describing gravitational radiation from bounded 
sources is, certainly, one of the most important unsolved 
problems in relativity. 

Due to the complexities created by the nonlinearities of 
the theory, it is almost imperative to introduce additional 
(ad hoc) assumptions in order to integrate the Einstein 
equations. Usually restrictions are introduced in the form of 
different kinds of symmetries (e.g., isometries). However, it 
is known that the existence of an additional Killing vector 
causes all the physically significant Bondi metrics to be non
radiative l-3 (radiative Bondi metrics admitting an addi
tional Killing vector do exist, but present angular singulari
ties). Thus if one is interested in physically significant 
radiative solutions one has to "reduce" the symmetry of the 
space-time. 

It then seems interesting to consider the existence of a 
conformal Killing vector field as an additional restriction. 
This choice is also suggested by the fact that for spherically 
symmetric space-times with fluids (admitting a one-param
eter group of conformal motions) interesting solutions have 
been obtained (see Ref. 4 and references therein). 

However, as we shall show in this paper, the situation 
for the vacuum Bondi-type metrics is rather disappointing. 

In fact, excluding all the singular solutions that do exist, 
the only completely regular (on the sphere) metric, compa
tible with a conformal Killing vector, is the Minkowski met
nco 

II. PRELIMINARY CONSIDERATIONS 

Here we briefly present Bondi's formalism and write 
down the equations for a conformal Killing vector. 

A. Bondi's formalism 

Let us consider a non static, axially, and reflection sym
metric metric5 which in radiation coordinates takes the form 

a) Postal address: Apartado 80793, Caracas 1080A, Venezuela. 

ds2 = (Vr- le2b - U Zre2g )du2 + 2e2b du dr 

+ 2Ure2g du d8 - r(e2g d8 2 + e - 2g sin2 8 dqi), 
(1) 

where U, V,g, and bare functionsofu, 8, andr. Hereu=xois 
the timelike coordinate, r = Xl is a null coordinate, and 8 
and ¢ are two angular coordinates. The condition that the 
solution be truly isolated requires that the metric functions 
be regular everywhere; in particular on the polar axis 
(8 = 0,1T) , which means that V, b, (U Isin 8), and 
(glsin2 8) are regular functions of cos 8 as cos 8 = ± 1. We 
would like to stress that this condition will be satisfied all 
through this paper and that its violation would lead to a 
completely different set of results. 

It is well known that the field equations split into two 
groups: the main equations and the supplementary condi
tions (actually there is also a trivial equation). The former 
read 

bl = !r(gl)2, 

[r4e2(g-b)U
I
L - 2r[b

12 
-g12 

+ 2glg2 - 2b2r- 1 
- 2g1 cot 8] = 0, 

2VI + !r4e2(g-b) ( U
I
)2 - rU

12 

- 4rU2 - rUI cot 8 - 4r cot 8U 

+ 2e2
(b-

g)[ - 1 - (3g2 - b2)cot 8 

(2) 

(3) 

-g22+b22+ (b2)z+2gz(g2-b2)] =0, (4) 

2r(rg)ol + (1 - rg l ) VI - (rgll + gl) V 

- r(1 - rgl ) U2 - r(cot 8 - gz)UI 

+ r(2g12r + 2g2 + rgl cot 8 - 3 cot 8) U 

+ e2(b- g )[ - 1 - (3gz - 2b2 )cot 8 

- g22 + 2g2(g2 - b2 )] = 0, (5) 

differentiation with respect to u, r, 8, and ¢ is denoted by 
SUbscripts 0, 1,2, and 3, respectively. 

Next, if one assumes that the metric functions may be 
expanded in terms of series in powers of r- I, then one ob
tains, using (2)-(5), 
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g = c(u,O)r- 1 + [C(U,O) - ic3]r-3 + O(r- 4
), (6) 

b = - (c2/4)r- 2 + O(r-4
), (7) 

U = - (C2 + 2c cot O)r-2 + [2N(u,O) 

+ 3ccz + 4c2 cot 0 ]r-3 + O(r-4
), (8) 

V = r - 2M(u,O) - [N2 + N cot 0 

- (cz)z - 4ccz cot 0 

- !cz(1 + 8 cot O)2]r-l + O(r-3), (9) 

with 

4Co = 2czco + 2cM + N cot 0 - Nz, ( 10) 

and the three arbitrary functions of integration M, N, and c 
are related by the two supplementary conditions, 

Mo = - (co)z + !(czz + 3cz cot 0 - 2c)o, (11) 

- 3No = M2 + 3c02 + 4cco cot 0 + coc2, 

Next, the associated tetrad may be written as 

IJ1. = e- 2bbt, nJ1. = bb - (V /2r)bt + Ubi, 

mJ1. = (l/r.J2)(e -gb i + ieK csc Ob ~) 

or in covariant components 

I = D? n = (VeZb /2r)D? + e2bb1 
J1. J1.' J1. J1. J1.' 

mJ1. = (r/.J2)(UeKb~ -eKb! -ie-gsinOb!). 

For the spin coeffici~nts we get6 

K=€=O, p= _e- 2b /r, U= _e- 2bgl' 

r = (e- 2b /2) [( Ve2b /2r) 1 - (e2b )o - U(e2b )z], 

(12) 

(13) 

(14) 

1 [reKe - 2b .J2e - g .J2e - g ] 
a =- U1----bz ---- (cotO-gz) , 

4.J2 r r 

/3=~[reKe-2b U1- .J2e-
g 

(bz+gz-cotO)], 
4.J2 r 

(15) 

e - 2b [ 2e - Ke2b ] 
1T=-- reKU1 + bz , 

2.J2 r 

A = U [g2 - co~ 0] + go + ~ [Uz - ~ gl]' 

U V U e2bVe- g 

Il = - cot 0 - - + _z , v = 2 

2 2r 2 2.J2r 

Now, the tetrad components of the Lie derivatives of the 
metric tensor with respect to a general vector field S a are 7 

2693 

!nanP 2'gaP ==2A Re(r) + 2 Re(CV) + aA, 
s 

I anP 2' gaP ==2A Re(€) - 2B Re( r) + 2 Re( C1'T) 
s 

(16) 

- 2 Re(Cr) +DA + t:J1, (17) 

- namP 2'gaP ==B1i - A (a + /3 + r) - cX - CIl 
s 

- 2iCIm(r) - bA + ..:lC, (18) 

Fal P 2'gaP == - 2B Re(€) - CK - CK + DB, (19) 
s 
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-lamP 2'gaP == -AK + B(a +/3 + 1'T) + Cu 
s 

+C[p-2i1m(€)] -bB+DC, 

mainP 2' gap == 2A Re(p) - 2B Re(.u) 
s 

+2Re[C(a-/3)] -bC-bC, 

a P - - --!m m 2'gaP ==Au - BA - bC - C(a - /3), 
s 

with 

sa =Ala + Bna + Cma + Cina 

(20) 

(21) 

(22) 

[this Cis not to be confused with the function C(u,O) in Eqs. 
(6)-(10)], and 

D==IJ1. aJ1.' ..:l==nJ1. aJ1.' b==mJ1. aJ1.' 8==inJ1. aJ1.' 

B. The equations for the conformal Killing vector 

As was stated in the Introduction, we shall assume that 
the space-time admits a one-parameter group of conformal 
motions, i.e., 

(23) 

where rp is an arbitrary function of u, 0, and r. 
Taking into account (1) and (15)-(22), Eqs. (23) read 

e- 2bB I = 0, (24) 

- Be - 2b [( Ve2b /2r) 1 - (e2b )o - U(e2b )z] 

+ 2.J2 Re(C)(b2/r)e- g + e- 2bA I + Bo + Ubz = rp, 
(25) 

(27) 
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2Ae- 2b 
( V) r -B U2 + UcotO- r 

-Re(C) Ii e g(cotO-g2 ) 

r 

-~Re(e-gc2+i~C3)= -t/J. (30) 
lir sm 0 

Before closing this section it is worth making the follow
ing remark. 

Since the scale factor t/J is independent of the angle coor
dinate tP (we are dealing with axially symmetric metrics), 
then taking derivatives of Eqs. (24)-(30) with respect to tP, 
we see that if A, B, and C are functions of tP, condition (23) 
implies the existence of a Killing vector with components 

t" =Ai" + B3n" + C3m" + Cin". (31) 

However, since the Bondi metric (in its most general form) 
admits only one Killing vector (associated with the axial 
symmetry) 

t" = 8'¢, Ulil2)re - g sin O(m" - iii") (32) 

we have assumed that, in principle, only C may depend on tP. 

III. FINDING SOLUTIONS 

The procedure to obtain solutions, under restriction 
(23), is very simple. We shall feed Eqs. (24)-( 31) with the 
series expansion (6)-(9), assuming that the functions A, B, 
C, and t/J can be written as a series in 1/r with both positive 
and negative powers. Then solving for each order in the ex
pansion we shall find restrictions on the news function Co, 
leading to the possible solutions. We shall use superscripts to 
denote the coefficients of each power, 

(

;) (;)( -N) (;)< -I) (;)(0) (;)(1) _I ... 
= ... + ~ + ... + r+ + r + . 

C C C C C 

t/J t/J t/J t/J t/J 

(33) 

Further, we shall consider conformal Killing vector fields 
that asymptotically approach the homothetic vector field, 
i.e., 

t/J = t/J(O) + ifJllr -1 + ... + t/J(N)r- N (N)O). 

It follows from (27) that Re( C) does not depend on tP, 
and from the imaginary part of (29) 

(1m Clz/lm C cot 0 - gz. (34) 

Next from the imaginary part of (26) and (28) we obtain, 
respectively, 

(lmC)JlmC lIr-g l (35) 

and 

-[U(g2- CO;O)+go+ ~ (U2 - V~I)]Im(C) 

+ [ ~ cot 0 + ~2 - ~ ]lm(C) - Im(Co) 

V 
+ - Im(CI ) Ulm(Cz) 0 (36) 

2r 
and, feeding back (34) and (35) into (36), 

(1m C)oIlm C - go. (37) 

Solving (34), (35), and (37) and taking into account 
that 1m C is, at most, linear in tP, as it follows from (30), we 
obtain 

ImC=rsinOe g(atP+b), a,b=const. (38) 

Next, it follows at once from (24) that 

B=B(u,O). (39) 

Then, we obtain from the real part of (26), solving for the 
orderO(r- l

) andO(r- z), 

F( N) = 0, N>2, (40) 
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O(r-I): -F(0)+cF(-IJ-B
2
11i=0, (41) 

0(r- 2
): - 2F(0 + cF(O) + (2B Iii) (c2 + 2c cot 0) 

+ B2clli = 0, (42) 

where 
I 

ReC= L F( N)~. (43) 

We may combine (41) and (42) to obtain 

2F(I) = c2F(-1) + (2B Iii) (cz + 2c cot 0). (44) 

Next, from the real part of (27) and taking into account 
(25) and (29), 

A ( - N) = 0, for N>2, 

OCr): Ab- I ) 0, 

O( 1): A 6°) A (-0/2 = 0, 

O(r-I): A (-l)(2M + cco) - liM2F(-1) +A blJ 
-A~ 1)(c2 +2ccotO) =0. 

Working on (25), in the same way, we obtain 

(45) 

(46) 

(47) 

0(1): A (-I) + Bo = t/J(O), (48) 

O( r- I 
): t/J(J) 0, ( 49) 

0(7-2): - B(M + cCo) + liF(-I)( - cc2 ) A (J) 

+ A (-I)c2/2 - (cz + 2c cot 0)B2 t/J(2). 

Next, from the real part of (28), 
( -I) 

OCr): F6 1) O=?F(-O = F(O), 

0(1): - F(-llco - Ai - 1) Iii + F60) 0, 

and using (48) and (41) in (52) 
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(51) 

(52) 
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t/JiO) = O. (53) 

From the study ofEq. (30) we obtain 

O( 1): - 2A (-I) - F(-I).J2, cot fJ - (21{2)F i-I) 

+ 2a/{2 = - t/J(O), (54) 

or using (48), 

2Bo - {l(F(-1) cot fJ + F i-I) = t/J(O) + {la (55) 

and 

O(r-I): - 2A (0) + B - F(O){2 cot fJ - F(-I){l( - c2) 

- C cot fJ) - {lFiO) + {lcFi - I) = - t/J(!), 
(56) 

or using (41), 

B + cot fJB2 + B22 = 2A (0). (57) 

Finally, from the real part of (29), we get 

0(1): F(-OcotfJ-Fi-1) =a, (58) 

O(r-I): A (-I)c - Bco + F(0)({l/2)cot fJ 

- F(-I)({l/2)(c2 + c cot fJ) - (1/{l)FiO) 

+ (l1{l)cFi - I) = 0, (59) 

or using (41) and (48), 

- 2Boc - 2Bco + 2t/J(O)c - cot fJB2 

- 2{lF(-Oc2 + B22 = O. (60) 

We can now integrate Eq. (58) to obtain 

F(-I) = H sin fJ - a(lnltan(fJ /2) I )sin fJ, (61) 

where H = const. 
Feeding back (61) into (55) we obtain, for Bo' 

2Bo = 2{2H cos fJ - 2{la Inltan(fJ /2) Icos fJ + t/J(O). 

(62) 

Thus for our conformal Killing vector field to be globally 
defined inS 2, we musttake a = O. Next, it follows from (53), 
(48), (45), and (62) that 

t/J(O) = const. (63 ) 

Then feeding back (63) into (48) and integrating, we get 

B(u,fJ) = Bo(fJ)u + B '(fJ), (64) 

whereB I (fJ) is a function of integration that can be eliminat
ed by means of a supertranslation. 

We may now write Eq. (60) as 

c cos fJ + CoU cos fJ + C2 sin fJ 

+ (1!2{lH) t/J(O) (cou - c) = 0, (65) 

where we have used (61) and (62). 
Finally, taking derivatives of (65) with respect to u, we 

obtain 

2 fJ + fJ + . fJ - (c '2 r;:;2H)u·
'
·(0). Co cos coou cos c20 sm = O<Y 'J~. 'I' 

(66) 

This last equation imposes a severe restriction on the news 
function Co. Indeed, for any physically plausible solution Co 
should be different from zero in a finite timelike interval (say 
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[U I ,U2 ]) and vanish outside this inverval. Thus for some 
u = uE[U I,U2], Co has a maximum and coo(u) = O. 

We can solve (66) for co(u,fJ) to obtain 

co(ii,fJ) = I/sin2 fJ, 

where I = const. 

(67) 

Thus if we restrict ourselves to bounded sources we 
must put 1= 0, which means, since Co has a maximum at 
u = ii, that co(u,fJ) = 0 for any UE[U I,U2 ]. Next feeding 
back this result into Eq. (65) we get 

c2 sin fJ = c(a - cos fJ) 

with 

a == t/J(O) /2{lH, 

which after integration yields 

c = K [tan (fJ 12) ] a Isin fJ, 

with K = const. 

(68) . 

(69) 

Again, excluding all possible singular solutions we put 
K = 0, and we have Co = O. At this point it is worth making 
the following comment: singular solutions admitting non
vanishing news do exist, for example, 

Co = K /sin2 fJ, 

where K = const, or also 

Co = (sinK fJ /uP) (tan fJ /2)Pa, 

with K,P = const, and 

P = K + 2, a = t/J(O) 12{lH. 

(70) 

(71) 

Next, we shall show that the assumption of the existence ofa 
conformal Killing vector not only excludes nonsingular ra
diative solutions, but all kinds of regular solutions, except 
the trivial one (Minkowski). 

In fact using ( 41), (44), (57), (61), (62), (64) and the 
order O(r-I) of the real part of (28), we get 

HMsin fJ= 0, (72) 

where we have taken into account that c = Co = 0 and B I is 
eliminated in (64) by means of supertranslation. 

Thus either M = 0, which leads together with c = 0, to a 
flat space-time, or H = O. In this case we have from (61) 

F(-O=O 

and from the order 0(r- 2
) in (30), 

A (I) = - (t/J(O)M /2)u, 

or 

(73) 

(74) 

A 61) = - (t/J(O)M /2). (75) 

Then using (46) and (47) together with (75) and (73) we 
obtain 

Mt/J(O) = o. (76) 

Thus we get again the flat space-time, unless our conformal 
Killing vector becomes a Killing vector field, in which case, 
obviously, there exist nontrivial solutions. 

IV. CONCLUSIONS 

We have seen so far that the existence of a one-param
eter group of conformal motions appears to be too restrictive 
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a condition if we consider the family of physically significant 
Bondi metrics. 

Once again we should insist on the fact that solutions 
presenting angular singularities (unbounded sources) and/ 
or metrics corresponding to systems radiating during an infi
nite period of time do, in principle, exist. 

Recently, using completely different approaches, results 
similar to the one presented in this paper have been reported 
by Eardley et al. 8 and by Garfinkle. 9 

In Ref. 8 it is shown that the only solution of the Einstein 
vacuum equations, asymptotically fiat (spatially) and ad
mitting a conformal Killing field, is the Minkowski space
time. The proof relies on the positive energy theorem and the 
authors use the 3 + 1 split. 

In Ref. 9, a similar result is obtained assuming the space
time to be asymptotically fiat at null infinity and the Bondi 
energy to be positive. 

In this paper we have used the leading terms in the ex
pansion of the Bondi metric to show that the existence of a 
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conformal Killing vector field implies that the space-time is 
either fiat (Minkowski) or nonglobally regular at null infin
ity. 

'R. Berezdivin and L. Herrera, Phys. Rev. D 11, 2063 (1975). It is interest
ing to note that despite the errors contained in the Killing equations, the 
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bE. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
7L. Herrera and 1. Jimenez, Phys. Rev. D 28, 2987 (1983). 
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A class of conformally flat solutions for a charged sphere in general relativity 
Wang Xingxiang 
Department 0/ Physics, Anhui Normal University, Wuhu, Anhui, People's Republic o/China 

(Received 5 February 1987; accepted for publication 3 June 1987) 

In this paper a class of conformally flat interior solutions of Einstein-Maxwell equations for a 
charged sphere is obtained. These solutions satisfy physical conditions inside the sphere. 

I. INTRODUCTION 

The problem of finding the exact solutions of coupled 
Einstein-Maxwell equations for the static distribution of a 
charged sphere has attracted wide attention. These distribu
tions constitute possible sources for a Reissner-Nordstrom 
metric that uniquely describe the exterior field of a spherical
ly symmetric charged distribution of matter. Recently some 
conformally flat solutions of Einstein-Maxwell equations 
for a charged sphere were presented by Banerjee and Santos J 

and Shi-Chang,2 but none of these solutions is free from sin
gularity as well as satisfies the energy conditions. 

In this paper, a class of conform ally flat solutions for a 
static charged sphere is presented by specifying matter dis
tribution. These metrics are free from singularity and can be 
matched to the Reissner-Nordstrom metric. The energy
momentum tensor satisfies the energy conditions, so that the 
solutions are physically reasonable. 

II. FIELD EQUATIONS AND SOLUTIONS 

We will use, as usual, the standard coordinate, and the 
line element is given by 

ds2 = eV dt 2 _ e,t dr _ r dtJ 2 - r sin2 tJ dq; 2. (1) 

Here, v and A are functions of r alone. The resulting Ein
stein-Maxwell equations are3 

2 ,t(A I 1) 1 81Tp+E =e- --- +-, 
r r r (2) 

81TP - E 2 = e -,t (~ + ~) _ ~ , (3) 

2 ,t(V" V'2 A'v' Vi AI) 
81Tp+E =e- 2+4--4-+ 2r ' (4) 

and 

(5) 

where p is the interior presure, p is the mass density, (7 is the 
charge density, and q(r) represents the total charge con
tained within a sphere of radius r. 

Since it is conformally flat, the vanishing of the Weyl 
tensor gives2 

~ 1 V'2 V'A I v" 1 I I 

-----+-----(,.1, -v)=O. r r 4 4 2 2r 

Then subtracting (3) from (4) we have 

[

VII A 'v' V '2 
2E 2 =e-,t ----+-

244 

_ ~ _ ~(A I + Vi) + ~]. r 2r r 

(6) 

(7) 

Multiplying Eq. (6) bye ,t, then adding the result to (7), 
we get 

E2=~_e ,t(~+~). (8) r 2r r 
We have five equations (2)-(5) and (8) and six variables 
(p, (7, p, E 2, v, A). Hence we have only one free variable. By 
solving these equations we can obtain the other five, if any 
variables have been predetermined. In this paper we assume 
that the mass density is 

81Tp = 6nC( 1 - Cr)/[ 1 + (n - l)Crp, (9) 

where C is a positive constant and n is a parameter 
(n = 1,2,3, ... ). For each integral value ofn, we have a differ
ent model. Due to the requirement that p>O, we have a re
striction on C, that is Ca2 < 1, where a is the radius of the 
sphere. Clearly, the mass density is a monotonically decreas
ing function of r. 

In what follows, defining 

(10) 

Eqs. (2)-(4), (8), and (9) can now be expressed as 

81Tp+E
2 =~-2 dZ, 

C x dx 
(II) 

81TP - E 2 _ 4Z dy 1 - Z 
C --;- dx ---x-' (12) 

81TP + E2 = 4xZ d 2y + 4Z dy + 3:::. dZ dy + dZ , 
C Y dx2 ydx ydxdx dx 

E2 1 Z dZ -=---+-, 
C x dx 

81TP _ 6n(1 x) 
C-[I+(n l)xp' 

From (11) and (14) we have 

dZ _ 81Tp 
dx 3C 

Substituting (15) into (16), we get 

e-,t Z = (1- x)2/[l + (n - l)xf. 

(13) 

(14) 

(15) 

(16) 

(17) 

We have taken the constant of integration equal to 0 so that 
e ,t = 1 when r O. 

From (12)-(14), we have 

4x2Z d
2
y + 2x2 dZ dy _ [x dZ + (1- Z)]y = O. 

dx2 dx dx dx 
(18) 

Substitution of ( 17) into Eq. (18) gives a particular solution 
ofyas 
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Yl = (l_x)n12. (19) 

Then another particular solution ofEq. ( 18) can be obtained 
as 

Y2 = Y1J Y\- 2Z -\/2 dx = x( 1 - x) - n12. (20) 

Then the general solution of Eq. (18) is 

Y = B [(l - x) n12 + Ax (1 - x) - nl2], (21a) 

also 

(21b) 

where A and B are constants. From ( 12), ( 14), and (21 ) the 
pressure, electric field intensity, and charge density can be 
obtained as 

81TP = 2(1- x){2(l- x)[1 + (n - l)x] + n(n - 1)x2}{A _ n[2 + (n - 1)x] (l _x)n } 

C [1+(n-1)xp[(1-x)n+Ax] 2(1-x)[1+(n-l)x]+n(n-1)x2 ' 
(22) 

E2 = Cnx[(3n - 2) + (n -l)(n - 2)x]l[1 + (n -l)xp, (23) 

(24) 
Cvn(1-x)[3(3n - 2) + 4(n - l)(n - 2)x + (n - 1)2(n - 2)x2] 

U= ± 41T[1+(n-1)xr /2 [(3n-2)+(n-l)(n-2)x]1/2 . 

The gravitational field in the exterior region of the static 
charged fluid sphere of radius a is uniquely described by the 
Reissner-Nordstrom metric 

(
2m Q2) ( 2m Q2)-\ 

ds2 = 1 - --;- + 7 dt 2 - 1 - -r- + 7 dr 

(25) 

Accordingly, metrics ( 17) and (22) will describe the field in 
the interior of a charged fluid sphere of radius a, if and only if 
the boundary conditions 

ev(a) = e-,\(a) = (1- 2m/a + Q2/a2) 

and 

p(r= a) = 0 

are satisfied across the boundary r = a. 

(26) 

(27) 

From (5) and (23) we have the following expression for 
total charge: 

Q2 nxi [(3n - 2) + (n - l)(n - 2)x\1 

a2 [1 + (n -1)x\p 
(28) 

wherex 1 = Ca2
• The constants A andB and total mass m can 

be determined by considering the boundary conditions (26) 
and (27), i.e., 

A= n(1-xj)n[2+(n-l)xd ,(29) 
2(1-x\)[1 + (n - l)xd + n(n - l)xi 

( 1_x\)n+2 B 2 = ____ ---' __ ...!...:.... _____ --,-

[(1-x\)n +Ax\F[1 + (n -l)x\f' 
(30) 

2m nxi[(3n - 2) + (n - l)(n - 2)x\] 
- = 1 + -------------

a [1+(n-1)xd 3 

(1-X1)2 
(31) 

[1 + (n - l)x d 2 • 

It is clear that the metrics are free from singularity for all 
values of n inside the sphere. A physically reasonable energy
momentum tensor has to obey the energy conditions 

- p<P<:'p, p;;.3p. (32) 

From (15), (22), and (29) we can see that the requirements 
(32) are satisfied, at least in the case x 1 ~ 1. More details of 
the solutions will be studied for several particular values of n 
in the next section. 
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III. SOLUTIONS FOR DIFFERENT VALUES OF n 

By taking different values of n, we obtained a very large 
number of exact solutions of Einstein-Maxwell equations. 
Here, we write the exact solutions for n = 1 and n = 2 only, 
and discuss the physical relevance of these solutions. 

A.n=1 

From (28)-(31) we have 

A=l, B 2=(1-X\)3, 

m/a=x\, Q2/a2=xi 

(33) 

(34) 

(where x \ = Ca2
). Then the solutions are given by 

p = (3C /41T) (l - x), U = ±P, (35) 

E 2 = Cx, P = 0, (36) 

e- A =(1_x)2, eV =(1-x\)3/(1-x). (37) 

It is clear that the solution describes a dust sphere 
(p = 0) and proper charge density Ue"-12 is constant. Also, 
the De-Raychaudhari requirement u = ± p is fulfilled. 
This charged dust sphere solution belongs to the class of 
solutions previously found by Bonnor.4 

B.n=2 

and 

The solutions can be written as 

3C (1-x) 
p=- , U= 

21T (1 + X)3 
+ 3jiC (1 -x) , (38) 
- 21T (1 +X)712 

E2 = 8Cx/(1 + X)3, (39) 

81TP = 4(1 - x) 

C (1 + X)3[ (1 - X)2 +Ax] 

X[A - (2+X)(1_X)2], (40) 

e- A = (1_X)2/(1 +X)2, 

eV = B2[ (1 -x) +Ax(1 - x) -If, (41 ) 

8xi m _ 2x\(1 + 3x\) 
-;;- (1+X1)3 

(42) 

2 2 1 
A=(2+x\)(1-x\), B = 6 

(1 +x\) 
(43) 
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This is a charged fluid sphere solution. The metric is free 
from singluarity and the enegy conditions (32) are satisfied, 
at least in the case x I < j, i.e., m/ a < ft. 
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Relativistic fluids with shear and timelike conformal collineations 
K. L. Duggal 
Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

(Received 17 March 1987; accepted for publication 1 July 1987) 

This paper deals with perfect fluid matter plus nonsingular aligned electromagnetic fields 
admitting a timelike conformal collineation. It is proved that non vanishing shear is itself a 
symmetry condition that partially underlines timelike conformal collineations with symmetry 
vector parallel to the fluid velocity vector. The results provide a natural counterpart to the 
study on shear-free space-times. It is also shown that the present study is applicable to a variety 
of physical problems. 

I. INTRODUCTION 

A space-time ( V4 ,gab ) admits a one-parameter group of 
conformal motions (Conf M) generated by a vector field g if 

5t'r;gab =2'1'gab (a,b = 0,1,2,3), (1) 

where 5t' is the Lie-derivative operator and 'I' is an arbitrary 
function of the coordinates. Since the celebrated work of 
WeyV in 1921, conformal symmetry property (preserving 
angles but not scale lengths at different points) has been an 
essential geometric prescription for a good part of physics. 
For example, all equations of massless particles,2 including 
the Yang-Mills equations,3 are conformally invariant. In the 
context of general relativity, conformal symmetry has been 
very useful in finding exact solutions4

-
7 offield equations. In 

particular, for the study of fluid space-times, conformal sym
metry plays the role of preserving the continuity of the mat
ter flow at critical points of transition during a change of 
state. A simple example is of a liquid which changes to gas 
when heated through its boiling point. When the pressure is 
raised, the transition becomes less and less abrupt, until at a 
critical pressure it is continuous. But, at this critical point, 
the density fluctuations occur at all length scales. It is a re
markable phenomenon of universality that most physical 
systems do respond in a natural way to the local conformal 
symmetry (scale transformations) at those critical points. 
Thus the conformal symmetry measures the response of the 
fluid subject to large density fluctuations and describes the 
leading finite size correction to scaling at critical points. We 
also mention Cahill and Taub8 who pointed out that spheri
cal symmetric perfect fluid solutions admitting a homothetic 
(special case of conformal) symmetry represents the relativ
istic generalization of the self-similar solutions of classical 
hydrodynamics (cf. also Eardley9 and Wainwright lO

). 

It is well-known that every (Conf M) must satisfy 

5t' r;{ b ae} = oa b'l';e + oae'l';b - gbe~d'l';d' (2) 

but the converse is not necessarily true. However, condition 
(2) is equivalent to 

5t'r;gab =2'1'gab +hab' h(ab] =O=hab;e' (3) 

where hab is a symmetric, parallel (and therefore Killing) 
tensor associated with g. 

Definition: A space-time V4 admits a conformal collin
eation (Conf C) generated by an affine conformal vector 
(ACV) if (2) or equivalently (3) holds. 

Thus, in general, conformal symmetry extends to con-

formal collineation (which may not pull back Conf M) as a 
result of the action of 5t'r; on the connection coefficients 
{b a e}. Using this information and a paper by Herreraetal.,4 
Duggal and Sharma II indicated the possibility of new aniso
tropic and isotropic solutions if (Conf M) is replaced by 
(Conf C). Motivated by the above, we continue our study on 
this subject. The objective is to investigate some properties of 
fluids with nonvanishing shear (the results are valid for 
space-times of general relativity) directly related to 
(Conf C) with symmetry vector parallel to the fluid velocity 
vector. We consider a perfect fluid matter with electromag
netic field. This choice is motivated by the following known 
results in the related study on fluids. Tupperl2 has shown the 
equivalence of perfect fluids plus electromagnetic fields with 
viscous fluids under some geometric restrictions. This work 
was further extended by Maiti and Das 13 to include heat 
flux. It is also important to note that a particular case of an 
anisotropic fluid is that of a viscous fluid, characterized by 
an anisotropic pressure tensor proportional to the shear ten
sor of the velocity field. 7 

The main emphasis, in this paper, is on the important 
role of conformal collineations in the study on .fluids with 
shear as a counterpart of the shear-free fluids characterized 
by conformal motions. We also show that the present study 
is applicable to a variety of physical problems in relativistic 
fluids and astrophysics. 

II. ENERGY-MOMENTUM TENSOR 

Let the energy momentum tensor Tab be of the form 

Tab = (j..t + p)uaub + pgab + Eab , 
(4a) 

Eab = Fae Fc b - !FedF Cd gab' 

where ua ,j..t,p, andFab are the four-velocity vector, density, 
pressure, and electromagnetic field. The Maxwell's equa
tions are 

F(ab;c]=O and Fab;a=J b, (4b) 

where Jb is the current four-vector. To state, precisely, the 
type of Fab we recall that at each point of a space-time one 
can introduce Newman-Penrose (NP) tetrad 
{ma ,rna ,la,k a} such that m a and rna are conjugate complex 
and la ,ka (principal null directions: see Fig. 1) are real null 

vectors. Here marna = 1, kala = - I (other products 
zero). Thus gab = 2m(arnb) - 2k(alb) with Maxwell sca-
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ka 
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X2-- - -.. ... ../ 
/ 

FIG. 1. Principal null directions in the NP tetrad. 

lars <Po=Fabkamb, <PI=V"ab(kalb +mamb), <P2=Fab 
Xma lb. 

In this paper, we assume that Fab is non-null and it cor
responds to the family of an aligned (<Po = 0), nonradiative 
(rp2 = 0) and real or imaginary (rpl :;;60) field. Set rpl = rp. 
Thus 

Fab = 2rp(/a kb - ka1b) or Fab = 2<p(mamb - mamb) 
(4c) 

according as rp is real or imaginary. For a flat space, 
E·H 0, IEI2 - IHI2:;;60, where E and H are electric and 
magnetic vectors. Following Synge,14 we state the following 
theorem. 

Theorem: In a field that satisfies (4) with rp real, to a 
general observer, E 1 H, E> H, and E constitutes an electro
magnetic wrench consisting of an electric vector only (see 
Fig. 2). For imaginary rp, H> E and the electromagnetic 
wrench consists of a magnetic vector only (see Fig. 3). 

In terms ofalocal orthonormal frame (u,n,y,z), we have 

(4d) 

where ua 
Ua = - 1 is the four-velocity vector of the fluid 

and nO no = yaYa = z"za = 1. 

~--------~--------~ 
B 

FIG. 2. Representation (OA,OB) in the observer's space of the principal 
null directions. 
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B 

FIG. 3. Representation (OH,OB) in 
the observer's space of the principal 
null directions. 

III. AN EXAMPLE OF CONFORMAL COLLINEATIONS 

We use the following terminology and notations from 
differential geometry. 15 Iff M -N is a map of a manifold M 
into another manifold N (all maps and manifolds are 
smooth), then Tf TM - TN is the tangent map of the corre
sponding tangent bundles. If g is a covariant tensor field on 
N, thenf*g denotes its pullback on M. If S is a vector field 
and 'TJ is a p-form on M, then S J 'TJ is the (p 1) -form on M 
obtained by contracting 'TJ with s. This means that, for x EM 
and V2, ... ,Vp E Tx (M), we have 

(s J 1]) (V2, .. ·,Vp ) = 1](S(X),v2'''''Vp )' 

For example, if U and V are vector fields on M then 
g{ U,V) = U J v where Va = gab P is a one-form. A vector 
field S on M generates a one-parameter group oflocal trans
formations, called a flow (It ). For any sufficiently small t E 

R,1t is a diffeomorphism of an open submanifold of M onto 
another such submanifold. For small t and s, It Is = It + s. 

Thus for any tensor field n we get 

f~(f:n) =f~+sn. 

Differentiating both sides with respect to s at s = 0, we get 

!!...(f~n)=f~Lsn, wherexsn=!!...(f~n)1 . 
~ ~ .=0 

It is well-known that for ap-form 1], we have 

X s1] = S J d1] + des J 1]), 

where d denotes the exterior product. Let Mbe a space-time 
V4 • Based on the NP formalism, one can generate a two
dimensional distribution D: x -> D x of all the principal direc
tions which cut the null cone by the two principal null direc
tions [a and ka as indicated in Fig. 4. 

As D will contain a timelike vector, D is non-null (see 
Ref. 16). We assume that V4 has a conformal structure 
which is needed to preserve the causal character of D. A 
conformal structure, along with D, defines another two-di
mensional distribution ff . Here D and Dl define vector bun
dles over V4 such that 

TV4 =D®D\ DnU = {O}. 

The vector bundle U - V4 has also a conformal structure 
induced from D. Let the flow (J. ), generated by S, preserve 
the conformal structure of U . This means that there exists a 
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Principal null directions 

k" 

_ _ _ _ _ Principal two-space of D 

FIG. 4. Representation of the distribution D of all the principal directions 
cutting the null cone. 

posItIve hER, such that for any U,VElY (x), 
(j,g) ( U, V) = hg( U, V). This is equivalent to the existence 
ofa function h, and two one-forms w, and rJ, in D such that 
j,g=h,g+w,®rJ, +rJ,®w,. By differentiating, this im
plies 

.!t'sg = 2'1'g + w ® rJ + rJ ® w, (5a) 

where 'I' is a function wand rJ are one-forms in D. Let t be 
non-null and generates the flow (j,) in D. Then, for an or
thonormal frame {u,n,y,z}, rJa and Wa are in the local two
space generated by {u,n} asD cuts the null cone (see Fig. 4). 
This means that (for some scalars A, B, and C) 

.!t'sgab = 2'1'gab + hab' (5b) 

hab =Auaub + Bnanb +C[uanb +ubna]' (5c) 

Now we deal with the case when t is null. As t cannot be 
complex, it must be along one of the null principal directions 
and, therefore, belongs to D. So we choose S = ex: ka 

• For 
this case, the local two-spaces of D will be generated by the 
set {k,J} and we consider a pseudo-orthonormal basis 
{k,l,y,z}. For details on this, we refer to Ref. 17. Thus (5b) 
will hold with 

hab =A [la1b +kakb] +B [lakb +ka1b]' (5d) 
Conclusion 1: Based on the above discussion, it is possi

ble to generate an ACV S so that (5b) holds with hab pre
scribed by (5c) for non-null and (5d) for nUlls provided 
the NP tetrad is chosen in such a way that hab;c = O. 

Note 1: Most physical space-times inherit spherical or 
cylindrical or plane symmetry, etc. Thus it is quite reasona
ble to construct an (ACV) that belongs to two-dimensional 
distribution D. This will include the most important special 
cases; namely, timelike, spacelike, and null congruences. For 
example it is known that Raychaudhuri's equation l8 shows 
directly the influence of the fluid matter on the convergence 
of timelike geodesics. This convergence property for the 
timelike geodesics, together with the related property for 
null geodesics, is now the root of the singularity theorems l7

; 

cf. also Ref. 19. 

IV. TIMELIKE CONFORMAL COLLINEATIONS 

Let S =tua,uaua = -1, and t= ~(tata) >0. 
Thus S is a timelike ACV iff (3) holds. Equation (3) may 
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be rewritten equivalently as 

t(a;b) = 2'1'gab + hab' h lab) = 0 = hab;c' (6) 

We now initiate a comparative study on the kinematic prop
erties of space-times with (Conf M) and (Conf C) followed 
by indicating the advantages of using (Conf C). For this 
purpose, we first state a known result on (Conf M) followed 
by a corresponding result on (Conf C). We prefer to present 
general results for a timelike curve congruence with unit 
tangent vector ua 

• The results are also valid for fluid space
times for which ua is its velocity vector. The following result 
on (Conf M) is known. 

Theorem 1 (Oliver and Davis, Ref. 20): A space-time 
admits a timelike (Conf M) with symmetry vector S = tua 
(t>O) iff 

(i) (7ab = 0, 
(7) 

(ii) Ua = (logt),a + (eI3)u a , 

where 'I' = te 13 and (7ab' e, and ua are, respectively, the 
shear, expansion, and the acceleration vector of the timelike 
congruence generated by ua 

. 

Let Pab = gab + Ua Ub be the projection tensor. The fol
lowing fundamental equation is well known: 

(8) 

where Wab is the vorticity tensor. For details see Ref. 21. For 
a (Conf C) we have the following corresponding result. 

Theorem 2: A space-time admits a timelike (Conf C) 
with symmetry vector S = tua (uaua = - 1, t>O) iff 

(i) (7cd = (2t)-1 [pacpbdhab - jOPcd]' 

(ii) Ua = t -I [t.a + (t)ua + hbc Uc ph a], 

where 20 = ha a + habUaub and 'I' = j(te - 0). 

(9) 

Proof Assume that (6) holds for a timelike symmetry 
vector S = tua . Contracting (6) in turn with ~b and uaub 

gives 'I' = 1 [te + t - ~h a a] and 'I' = t + ~hab uaub. This 
implies that 'I' = jete - 0), where 20 = h aa + hab ua ub. 
Now (i) and (ii) follow by contracting (6) withpacPbd and 
then with ua ph c [where we make use of Eq. (8) and the 
value of 'I' ]. Conversely, assuming (9) holds for some covar
iant constant and symmetric tensor hab and 'I' = jete - 0), 
one can show that S is an ACV with S = tua . 

Conclusion 2: It is clear from (i) in (9) that there is an 
advantage of using (Conf C) over (Conf M), in particular 
reference to the study of space-times with non vanishing 
shear. 

For an application of Theorem 2 to fluid space-times, we 
first prove the following for which hab satisfies (5b). This 
means 

hab =Auaub + Bnanb +C(uanb +naub)· 

Theorem 3: A fluid space-time admits a timelike 
(Conf C) with symmetry vector S = tua and hab satisfying 
(5b) iff 

(i) (7ab = (/3/2)(7(nanb -jPab)' 

(ii) ua = (log t),a + (log t)ua, 'I' = t(e - (/3/2)(7). 
( to) 
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Proof" For hab specified by (Sb), the following will hold: 
pcaP d

b = Bnanb' 20 = B. Now contracting (i) in (9) with 

ifd and using the above results, we obtain B = !3su, where 
U is the magnitude of Uab defined by cr = !ifd Ucd ;;;.0. Also 
hbcucPba = O. Using all these results in (9) we obtain (l0). 

For further analysis of the above result, we consider the 
following general form for the energy-momentum tensor of a 
fluid22

: 

Tab = jiuaUb + P Pab + IIab + qa Ub + qbua' (lla) 

whereji,p, qa, and IIab are the density, the thermodynamic 
pressure, the energy flux vector, and the anisotropic pressure 
tensor, respectively (qa ua = 0, IIab ub = 0, IIa

a = 0). 
A particular case of (lla) is viscous fluids,7 such that 

(lIb) 

where (17 > 0) is the kinematical viscosity. The expression 
(lla) along with (lIb) establishes the relativistic equiva
lent to the Navier-Stokes theory of Newtonian fluid me
chanics. 

Another special case is a preferred direction of the an
isotropic pressure with no energy flux (qa = 0), for 
which4

•
11 

(llc) 

where na is along the preferred direction, Sab = Pab - na nb 
is the projection tensor into the two-plane of the pressure 
isotropy (Sabub = 0 = Sabnb), and PII and P1 are the pres
sure along and orthogonal to na

, respectively. The energy
momentum tensor (lla) reduces to (llc) when 

(i) p = j(PII + 2Pl)' 
(lId) 

(ii) IIab = (Pl-PII)[jPab -nanb]' 

In this paper, we consider the following energy-momentum 
tensor: 

(l2) 

where f-l and P are the energy density, and isotropic pressure, 
and + or - represent the real or imaginary Maxwell scalar 
¢J. For more details see Sec. II. The energy-momentum ten
sor with perfect fluid matter and electromagnetic field (12) 
reduces to (llc), when 

- + ,/,2 - ,/,2 + ,/,2 f-l = f-l _ '1" PII = P + '1" Pl = P - 'I' . (l3a) 

Therefore, 

PII + 2Pl = 3p ± ¢J2, Pl - PII = ± 2¢J2. (l3b) 

Furthermore, it follows from (lla) and (l3b) that (l2) will 
also reduce to (lla) without energy flux (qa = 0), when 

3p = 3p ± ¢J2, IIab = ± 2¢J2 [jPab - nanb]' (l3c) 

Finally, using (l0), (lIb), and (13c), for viscous fluids 
(with no energy flux) the following will hold if sa = Sua: 

17 = ± [¢J2/U]. (14) 
Note 2: The above equivalence is subject to the Rainchi

Misner-Wheeler23 conditions. See also Refs. 12 and 13. 
Conclusion 3: We have established that our present 
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study is applicable to a large variety of physical problems in 
relativistic fluids. 

For an application to cosmology (0 is not identically 
zero) we first mention that although shear-free solutions 
would retain the feature of isotropy of local motions, non
vanishing shear solutions are important as the red shift and 
the microwave background need no longer be isotropic. To 
illustrate this property, let a connecting vector X be drawn 
from points on one galactic world line to a neighboring 
world line. Then the vector xa = P a br, which lies in the 
instantaneous rest space of the first observer, has magnitude 
t>/ and direction na , where na na = 1 and naua = O. The rate 
of change of relative distance is22 

(t>i)/t>/ = jO + Uabnanb. (lSa) 

The relative red shift of galaxies in the direction of na is 

(lSb) 

The rate of change of direction is 

pab(nb)"= [Wab +~b - (Ucdncnd)pab]nb. (1SC) 

It is known24 that there is a preferred direction [except for 
some degenerate cases, such as Friedmann-Robertson
Walker (FR W) models] so that neighboring clusters of gal
axies appear to be instantaneously fixed in a local inertial 
frame. For shear-free (Uab = 0) and irrotational (Wab = 0) 
fluids, this is clearly true of all directions. However, for 
shear-free and rotational fluids (wab #0), this property 
holds only in the direction of the vorticity vector wa 

• Ob
serve that the above general results are compatible with 
Theorem 1. However, for a possible physical interpretation 
with respect to the (Conf C) mappings, we first state the 
following proposition. 

Proposition: If a fluid space-time admits timelike 
(Conf C) with symmetry vector sa = sua (5) 0), then 

(t>i)/t>/ = j(O + !3u), 

dA. /A. = [j(O + !3u) + uana]M, 

P a b (n b )" = Wabnb + (1/2!3)una. 

Conclusion 4: If U = 0, then we recover the results on 
shear-free cosmologies (see Collins, Ref. 2S). 

For u#O, we observe that all the three observational 
aspects are anisotropic. For the irrotational (Wab = 0) 
fluids, the motion of neighboring galaxies is in the direction 
ofna

, but the rotational (wab #0) cosmological models are, 
in general, degenerate as there are no preferred directions. In 
particular, if na is chosen parallel to the vorticity vector wa 

, 

then the preferred direction coincides with na 
• 

v. CONCLUDING REMARKS 

It is evident from this paper that, whereas the timelike 
conformal motions inherit shear-free property, the confor
mal collineation mappings with timelike symmetry vector 
parallel to the velocity vector play an important role in the 
study of anisotropic fluids. The essential distinct property of 
this congruence is the non vanishing o/the shear tensor. 

For comparative study, we have considered only one 
(Theorem 1) of the several other results on timelike congru
ences and (Conf M). For example, it is known26 that two 
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different timelike conformal motions cannot have the same 
streamlines. There are quite a few useful results on the prop
agation equations for tensor quantities along a curve of the 
congruence. Thus we recommend further study on the physi
cally relevant aspects of timelike congruences as related to 
conformal collineations. 

In another direction, the investigation of spacelike 
(null) conformal collineation should provide a natural 
counterpart to the study of spacelike (null) conformal mo
tions, for which the notion of shear, expansion, vorticity, and 
accele(ation may be defined in a manner similar to that out
lined in Ref. 21. For a recent study on spacelike conformal 
motions, see Ref. 19. 

Finally, it must be mentioned that the subject matter 
presented in this paper is a preliminary and tentative attempt 
that undoubtedly leaves much room for improvement. How
ever, it does illustrate progress in providing some ground
work for further study on space-time with non vanishing 
shear. It is hoped that the mathematical example of an affine 
conformal vector (constructed in Sec. III) may be useful in 
gaining insight into the really difficult question of finding a 
physical example of a conformal collineation other than con
formal motion. 
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Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a 
particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion 
is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and 
dynamic conditions are established for a rotating rigid motion to be isometric. 

I. INTRODUCTION 

In this paper we study the kinematic and dynamic prop
erties of rotating rigid motion in general relativity. 

A definition of rigid motion in Minkowski space-time 
was proposed by Born 1 for rectilinear rigid motion and then 
independently by Herglotz2 and Noether3 for general rigid 
motion. Salzman and Taub4 suggested that the same defini
tion could be used for rigid motion in a curved space-time: A 
body is called rigid if the distance between every neighboring 
pair of particles measured orthogonal to the world line of 
either of them, remains constant along the world line. 

In a rigid motion of a continuous medium, the shear 
tensor (7 ab and the rate of expansion e both vanish and there
fore the only nonzero kinematic quantities besides the kine
matic four-velocity ua are the vorticity vector and vorticity 
tensor, (j)a and (j)ab' and the four-acceleration vector ua. 

Rayner,5 Pirani and Williams,6 and Trautman 7 have 
shown with the aid of Einstein's field equations that the an
gular velocity (vorticity) of a rigid heavy body, which con
tributes to the gravitational field, and of a rigid test body in 
vacuo, are constant in magnitude along any particle world 
line ofthe body. The condition for a heavy body is that the 
kinematic four-velocity ua, which occurs in the equations of 
rigid motion, is the same as the dynamic four-velocity u'tJ, 
which is the timelike eigenvector of the energy-momentum 
tensor.6--8 (The kinematic and dynamic four-velocities are 
characterized, respectively, by the properties that an observ
er with four-velocity ua sees no particle flux density while an 
observer with four-velocity u'tJ measures vanishing energy 
flux.) For a continuous medium such as a fluid, ua is in 
general not equal to u'tJ and therefore qa, the energy flux 
relative to ua

, does not in general vanish. By expressing the 
Riemann curvature tensor in terms of the Weyl and Ricci 
tensors we derive a new kinematic expression, and a new 
dynamic expression which does not assume qa 0, for the 
rate of change of the magnitUde of the vorticity along a parti
cle world line in a rigid motion. We also derive new kinemat
ic and dynamic expressions for the Lie derivative of (j)a and 
(j)ab along a particle world line in a rigid motion. It is found 
that the evolution of vorticity in a rigid motion is governed 
by the "electric" part of the Weyl tensor Eab and is indepen
dent of the "magnetic" part of the Weyl tensor H ab • 

A motion is isometric if there exists a Killing vector field 

everywhere tangent to the world lines of the material parti
cles. Every isometric motion is rigid but a rigid motion is 
isometric if and only if the acceleration four-vector u is the 
gradient of a scalar. Herglotz2 and Noether3 have ashown 
that every rotating rigid motion in flat space-time is isomet
ric and this result is sometimes referred to as the Herglotz
Noether theorem. Williams9 has extended the Herglotz
Noether theorem to space-times of constant curvature. Wil
liam's results, like that of Herglotz and Noether, is purely 
kinematical. Pirani and Williams6 and Trautman,7 however, 
have shown that there exist curved space-times which admit 
nonisometric rotating rigid motions. BoyerlO has derived 
sufficient, but not necessary, conditions for the Herglotz
Noether theorem to be valid in curved space-times. We will 
derive here necessary and sufficient kinematic conditions for 
a rotating rigid motion to be isometric. We then apply Ein
stein's field equations to investigate the dynamic restrictions 
imposed on these kinematic conditions. 

In Sec. II the equations of rigid motion are briefly re
viewed. Section III is concerned with the vorticity of a rigid 
motion. Kinematic and dynamic expressions are derived for 
the Lie derivative of the magnitude of the vorticity (j) and for 
(j)a and (j)ab along a particle world line. In Sec. IV, necessary 
and sufficient kinematic and dynamic conditions for a rotat
ing rigid motion to be isometric are established. Concluding 
remarks are made in Sec. V. 

The notation of Ellis 11.12 will be followed throughout. 13 

II. EQUATIONS OF RIGID MOTION 

In this section we review the equations of rigid motion. 
This serves also to introduce notation and define quantities 
required later. 

We first establish necessary and sufficient kinematic 
conditions for a motion to be rigid.6

•
7 The equations of the 

world lines of the particles of a body or continuous medium 
may be written asxa Xa (ya,7) , where {va} are the coordi
nates of the particles in some arbitrarily chosen space section 
S, and 7 denotes proper time measured along the world lines 
from the initial surface S. The kinematic four-velocity ua is 
defined by 

(2.1) 
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and satisfies U a u
a = - 1. Consider two neighboring world 

lines C:xa = Xa(ya,7) and C':xa = xa(ya + oya,7). The con
necting vector oxa joins the points (ya,7) and (ya + oya,7) 

on the world lines C and C' for all proper time 7. It can be 
shown that"· 12 

(2.2) 

where !f u stands for the Lie derivative along ua
. The rela

tive position vector is 

oxr = h%oxb, 

where 

(2.3 ) 

(2.4 ) 

is the projection tensor onto the three-plane orthogonal to 
ua

• The orthogonal distance from C to C' is 

on =gabox~oxf = haboxaOXb. (2.5) 

For a rigid motion, 011 remains constant along C; thus 

(haboxaOXb) . = 0, (2.6) 

which may be rewritten with the aid of (2.2) as 

(2.7) 

Also, since habUb = 0 and !f u ub=O, we have 

(!f uhab )ub = O. (2.8) 

Since (2.7) must hold for all world lines C' near to C it 
follows from (2.7) and (2.8) that a motion is rigid if and 
only if 

!fuhab = O. (2.9) 

Since"· 12 

Ua;b = U ab + (0/3)hab + OJab - UaU b, (2.10) 

where U ab is the shear tensor, 0 is the rate of expansion, OJ ab is 
the vorticity tensor, and ua is the acceleration vector, it can 
easily be verified that 

!fuhab =2uab +jOhab , (2.11) 

and therefore (2.9) is satisfied and the motion is rigid if and 
only if 

U ab = 0 and 0 = O. (2.12) 

The nonzero kinematic quantities in a rigid motion are 
therefore ua, OJab' and ua

. 
The integrability conditions for the equations of rigid 

motion (2.9) have been derived by Pirani and Williams.6 

The first integrability condition is 

(2.13 ) 

where R abed is the Riemann curvature tensor of space-time. 
The projection symbol 1 before a tensor expression denotes 
that after any indicated contractions in that expression have 
been performed each remaining free index is projected with 
h ~ (Ref. 13). Equation (2.13) can conveniently be derived 
by projecting the identity 14 

!fuRabcd =2(!fur%[d );cl (2.14) 

with h % on all indices, where r%c is the Christoffel symbol of 
the second kind. An outline of the derivation of (2.13) is 
given in Appendix A. 

Consider now any covariant tensor Tab ... c which is or-
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thogonal to ua on all of its indices and which satisfies 

!fuTab"'c=O. (2.15) 

Then if the motion is rigid6
•
7 

!f u (lTab ·· 'c;d) = O. (2.16) 

An outline of the derivation of this result is given in Appen
dix B for the case of a covariant vector Ta' The proof extends 
immediately to higher-order covariant tensors. It therefore 
follows from (2.13) and (2.16) that a second integrability 
condition of the equations of rigid motion is 

!f u (l( - 3OJab OJcd + lRabcd );e) = 0, (2.17) 

and by performing higher-order derivatives further integra
bility conditions can be written down. 

The physical significance of the integrability condition 
(2.13) can be seen by considering the quotient space (space
time) / (world lines), i.e., the space of dimension 3 consisting 
of space-time with identification of points lying on the same 
member of the congruence of curves generated by ua (Refs. 
6, 7, and 15). The tensors Tab ... c in this quotient space are 
orthogonal to ua on all indices and satisfy (2.15). When the 
motion is rigid the quotient space has a well defined metric 
tensor hab . We define the covariant derivative 3V d in the 
quotient space by 

3V d T ab ... c = h ~h ~. h ~h~ T rs ' tJ = lTab'c;d' (2.18) 

The three-space Riemann tensor 3 R abcd of the quotient space 
is defined by the three-space Ricci identities 

(2.19) 

which hold for any vector Ta in the quotient space, i.e., for 
any vector Ta which satisfies 

Taua=O, !fuTa =0. (2.20) 

In order to obtain 3 R abcd we evaluate the left-hand side of 
(2.19). For a rigid motion 

3Vc 3V b Ta = OJach ~ urTr,s + OJbch ~ t + 1 Ta;bc . 

But, for a rigid motion, since urTr = 0, 

h ~urTr,s = OJbrT
r
, 

and since !f u Tr = 0, 

(2.21 ) 

(2.22) 

h ~ t = OJar r. (2.23) 

Thus 

3Vc 3V b Ta = (OJacOJbr + OJbcOJar ) Tr + 1 Ta;bc . (2.24) 

Hence, with the aid of the Ricci identity applied to Ta , 

Ta;[bc 1 = ~Rrabc Tr, 

it follows that 

(2.25 ) 

- OJobOJcr + lR rabc ) Tr. (2.26) 

But since OJ ab = - OJ ba and OJ ab ub = 0, it can be verified that 

OJa[b OJed 1 = 0 

and therefore 

(2.27) 

3Ve 3VbTa - 3Vb 3VeTa = ( - 3OJ ra OJbe + lRrabc)Tr. 

(2.28) 
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Since Ta is an arbitrary vector in the quotient space it follows 
from (2.19) and (2.28) that 

(2.29) 

The integrability condition (2.13) may therefore be re
written as 

(2.30) 

We define the three-space Ricci tensor 3Rab and the three
space Ricci scalar 3 R by 

3Rab = h rs 3R rasb ' 

3R = h ab 3R ab . 

Since for a rigid motion 

(2.31 ) 

(2.32) 

.Yuh ab =2u(aub) (2.33) 

and 3 R abcd is orthogonal to ua on all indices, we obtain from 
(2.30) the following two results, valid for a rigid motion: 

.Y u 3Rab = 0, 

.Yu 3R = 0. 

(2.34) 

(2.35) 

Finally we observe that (2.16) may be written as 

.Y u (3V d Tab ... c ) = 0, (2.36) 

which holds for a rigid motion and for tensors Tab· .. c orthog
onal to ua on all indices and which satisfy (2.15). 

III. VORTICITY IN A RIGID MOTION 

This section is concerned with the evolution of vorticity 
in a rigid motion. Kinematic results will first be derived for 
the rate of change of the magnitude of the vorticity along a 
particle world line and also for the Lie derivative of the vorti
city vector and the vorticity tensor along a particle world 
line. We will then impose Einstein's field equations to inves
tigate the dynamic restrictions imposed by a rigid motion on 
vorticity. 

A. Kinematic results 

In order to apply (2.30), (2.34), and (2.35) we first 
derive kinematic expressions for 3Rabcd ' 3R ab , and 3R. We 
have 

3Rab = 3(Wa Wb - w2hab ) + lRarbs h rs, 

3R = Rabcdh aCh bd _ 6w2, 

where l6 

Wa = !1JabcdUbWcd' 

w2 = wawa = !Wab Wab, 

and in deriving (3.1) we used the identity 

which is obtained using the inverse of (3.3), 

(3.1 ) 

(3.2) 

(3.3 ) 

(3.4 ) 

(3.5) 

(3.6) 

We now express the Riemann curvature tensor R abcd in 
terms of the Weyl tensor Cabcd ' the Ricci tensor R ab , and the 
Ricci scalar R; we have ll

•
12 

Rab cd = Cab cd + 2g[a [CR b Id l - jRg[a [cgb Idl . (3.7) 

The Weyl tensor can be decomposed with respect to ua as 
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Cab cd = - 8u [aEb I [cUd I + 4g[a clEb I d I 

+ 21JabrsurHs[cudl + 21JcdrsurHs[aUb I' (3.8) 

where the electric part Eab and the magnetic part Hab of the 
Weyl tensor are defined by 

Eab = Carbsurus, Hab = !1JarpqCPqbsurus, 

and satisfy 

Eab = E ba , EabUb = 0, E a
a = 0; 

Hab = H ba , HabUb = 0, H a
a = 0. 

(3.9) 

(3.10) 

By substituting from (3.7) and (3.8) into (2.29), (3.1), and 
(3.2) a direct calculation gives 

3 R abcd = - 3WabWcd + 2hc[a (Eb Id + !lRb Id) 

- 2hd [a (Eb Ic + !Rb Ic) 

- (R /6) (hachbd - hbchad ), 

3Rab = 3WaWb + Eab + !lRab 

+ qRs,uV + iR - 3(2 )hab' 

3R = 2Rs,u
su' + R - 6w2

• 

(3.11 ) 

(3.12 ) 

(3.13 ) 

The three-space curvature tensors 3 R abcd ' 3 R ab , and 3 Rare 
independent of the magnetic part of the Weyl tensor, H ab . 

A simplification can be achieved by rewriting (3.11)
(3.13) in terms of the Einstein tensor Gab' Since 
Gab = Rab - !Rgab we have 

R aa = - Gaa, 

Rs,usu' = Gs,usu' + !G a
a, 

(3.14 ) 

(3.15 ) 

lRab = Gab -j(hstGs,)hab + (jGs,usu'-fpaa)hab' 
( 3.16) 

and (3.11)-(3.13) become 

+ 2hc[a (Eb Id + !(lGb Id - j (h stGs, )hb Id) 

-2hd[a(Eblc +!(lGblc -j(hstGs,)hblc)) 

+ j(Gs,USU') (hachbd - hbchad ), (3.17) 

3Rab = 3WaWb + Eab + WGab - j(h stGs, )hab ) 

+ (~Gs'uV - 3(2 )hab' (3.18) 

3R = 2Gs,u
su' - 6w2

• (3.19) 

Like Eab , the tensor IGab - j(h stGs, )hab is trace-free, sym
metric, and orthogonal to ua (Ref. 17). In place of the two 
scalar quantities Rs,u'u' and R in (3.11)-(3.13), Eqs. 
(3.17 )-( 3.19) depend on the one-scalar quantity Gs, uSu'. 
The scalar Gs'usu' and the tensor IGab - j(h s'Gs, )hab are 
directly related to dynamic quantities through Einstein's 
field equations [see (3.46) and (3.47) below]. 

In order to simplify subsequent expressions we define 

'G' ab = Eab + !(lGab - j(h stGs, )hab ), 

which satisfies 

'G' ab = 'G' ba' 'G' abub = 0, 'G'aa = 0. 

D. P. Mason and C. A. Pooe 
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Theorem 3.1: If the motion is rigid 
(i) w = - (114£u3) (ofwd.!f u 3" cd); (3.22) 

(Gs,USu') . = - (3/2w2)(wcw d.!f u 3" cd); (3.23) 

(ii) .!f uWa = (1I12w4) (wcwd.!f u 3" cd )Wa 

- (1I3w2 )wb .!f u 3" ab; (3.24 ) 

(iii) .!f uWab = (1I12w4) (wcwd.!f u 3" cd )Wab 

+ (2/3w2)W[a'.!f u 3" b Il'; (3.25 ) 

(iv) w = O<=>ofwd.!f u 3" cd = 0, (3.26) 

.!f uWa = O¢:>.!f u 3" ab = O<=>.!f uWab = O. (3.27) 

Proof: (i) By substituting from (3.19) into (2.35) we 
obtain 

(Gs, Usu') . = 6ww. 

Also, it follows from (2.34) and (3.18) that 

3wa .!f u W b + 3w b .!f u Wa + .!f u 3" ab 

+ [~(Gs,uV)' - 6ww]hab = 0, 

and by contracting (3.29) with wb we obtain 

3wa (wb .!f u W b) + 3w2.!f u Wa + wb.!f u 3" ab 

(3.28 ) 

(3.29) 

+ [j(Gs,uV) . - 6ww]wa = O. (3.30) 

But by taking the Lie derivative along u a of wawa = w 2 and 
using for a rigid motion the identity 

.!f ugab = 2it [aub] 

it can be shown for a rigid motion that 

Equation (3.30) therefore simplifies to 

3w2.!f u Wa + wb.!f u 3" ab 

+ U(Gs,uSu')' -3ww]wa =0, 

(3.31) 

(3.32) 

(3.33 ) 

and by contracting (3.33) with w a and using (3.32) we find 
that 

(3.34) 

Equation (3.22) follows immediately from (3.28) and 
(3.34). 

(ii) Equation (3.24) follows directly from (3.33), 
(3.22), and (3.23). 

(iii) Equation (3.25) can be derived in two ways. First, 
(3.25) can be obtained using (3.24). Since Wab = TJabcdWcud 

and 

.!f u TJabcd = (JTJabcd = 0, 

.!f uud=O, 

(3.35) 

(3.36) 

it follows with the aid of (3.31) that for a rigid motion 

(3.37) 

By substituting from (3.24) into (3.37) and using the identi
ty 

'YI
abcd

'YI = _ 4'8{a8b,s;c8d ] (3.38) 
'1 'Iefgh • e .f"g h 

Eq. (3.25) may be derived. 
Alternatively, (3.25) may be obtained from (2.30) and 

(3.17). If (3.17) is substituted into (2.30), we obtain 
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- 3Wab.!fuWcd - 3Wcd.!fuWab + 2hc[a.!f u 3"b]d 

- 2hd [a.!f u 3" b ]c 

+ j (Gs,USU') . (hachbd - hbchad) = O. (3.39) 

But, by taking the Lie derivative along u a of wcdwcd = 2w2 

and using (3.31) it can be shown for a rigid motion that 

(3.40) 

Hence, by contracting (3.39) with w cd and using (3.40) we 
find that 

6w2.!fuwab = n(Gs,uSu')' - 6ww] 

+4w[a
d.!fu 3"b]d' (3.41) 

Equation (3.25) follows immediately with the aid of (3.22) 
and (3.23). 

(iv) The result (3.26) is a direct consequence of (3.22). 
To show that .!f uWa = O¢:>.!f u 3" ab = 0, we first observe 
that if .!f u 3" ab = o then .!f uWa = o from (3.24). Converse
ly,if.!fuwa =Othenw=Oby(3.32)and(Gs,u

Su')· =Oby 
(3.28) and therefore .!f u 3" ab = 0 by (3.29). To establish 
the remaining condition in (3.27) we can either show that 
.!f uWab = 0 <=>.!f uWa = 0 or .!f uWab = 0 <=>.!f u 3" ab = O. 
The former results follows from (3.37) and the inverse of 
(3.37), 

(3.42) 

which can be derived by operating on (3.37) with TJrsabus and 
using 

(3.43 ) 

To establish the latter result we note that if .!f u 3" ab = 0 then 
.!f uWab = 0 by (3.25), and conversely by contracting 
(3.39) with hac and using (2.33) and (3.43), it is easily 
verified with the aid of (3.21) that .!f uWab = 0 
~ .!f u 3" ab = O. 0 

B. Dynamic results 

We now impose Einstein's field equations, 

Gab + Agab = Tab' (3.44) 

where A is the cosmological constant. The energy-momen
tum tensor Tab may be decomposed with respect to the kine
matic four-velocity ua as 

Tab =J-luaub +phab + 2q(aUb) + 1T"ab' (3.45) 

where J-l is the total energy density measured by an observer 
with four-velocity ua, qa is the energy flux relative to 
ua (q a u a = 0), P is the isotropic pressure, and 1T" ab is the 
trace-free anisotropic stress tensor (1T" ab = 1T" ba' 1T" ab u b = 0, 
~a = 0). We have from (3.44) and (3.45), 

Gs, uSu' = J-l + A, 

lGab - j(h stGs, )hab = 1T"ab' 

Equations (3.22 )-( 3.25) become 

w = - {l/4£u3)wcw d.!f u (Ecd + 1T"cd)' 

it = - (3/2w2 )wcw d.!f u (Ecd + 1T"cd)' 

.!f uWa = (1I12w4)(wCw d.!f u (Ecd + 1T"cd )Wa 

- (1I3w
2

)W
b
.!f u (Eab + 1T"ab)' 
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!t' uWab = (l/12w4 )(wCw d!t' u (Ecd + 1Tcd ) )Wab 

+ (2/3W2)W[a'!t' u (Eb]t + 1Tb]t)· (3.51) 

An alternative expression for it is given by the energy 
conservation equation along a particle world line ll

•
12

: 

it + (Jl + p)() + 1Tab o"b + qa;a + qaua + 0, 

which simplifies for a rigid motion to 

it = - (qa;a + qaua). 

Hence 

(3.52) 

(3.53 ) 

wCwd!t'u(Ecd +1Tcd ) = (2w2/3)(qa'a +qaua), (3.54) 

and 

(3.55) 

The foregoing results apply in general to any rigid mo
tion satisfying Einstein's field equations. We now consider 
two special cases, the rotation of a rigid heavy body and the 
rigid rotation of a fluid. In the first case qa = 0 and in the 
second 1Tab = O. 

The condition for a heavy body is that the kinematic 
four-velocity ua is the same as the dynamic four-velocity u'::, 
which is the timelike eigenvector of Tab (Refs. 6-8), 

(3.56) 

whereJlD is the energy density of the body as measured by an 
observer with four-velocity u'::, and is the minimum of the 
energy densities of the body measured by all possible observ
ers. When ua = u'::" it follows from (3.45) and (3.56) that 
qa = O. Thus 

w=o, 

it = 0, 

!t' uWa = - (1/3w2)Wb!t' u (Eab + 1Tab ), 

(3.57) 

(3.58) 

(3.59) 

!t' u Wab = (2/3w2 )w[a'!t' u (Eb]t + 1T b ]t ). (3.60) 

For a rigid test body in vacuo, Tab = 0 and (3.57)-(3.60) 
apply with 1Tab = O. Equation (3.57) was first derived by 
Rayner: for a rigid heavy body or a rigid test body in vacuo, 

the angular velocity is constant in magnitude along any par
ticle world line of the body. Equation (3.55) gives the gener
alization of this result for the rotating rigid motion of a sys
tem with qa#-o. 

Consider now the rigid rotation of a fluid. The phenom
enological equation of state 

(3.61 ) 

where A is the coefficient of shear viscosity, is necessary if the 
rate of production of entropy is never negativey,I2 Since 
Uab = 0 in a rigid flow, it follows that 1Tab = 0 if (3.61) is 
satisfied, and Eqs. (3.48)-(3.51) with 1Tab = 0 then apply. 
The evolution of Jl and of the vorticity of the fluid are con
trolled entirely by the electric part of the Weyl tensor, which 
in turn is related to qa through (3.54) with 1Tcd = O. In gen
eral for a fluid, qa#-o, and therefore from (3.55), w#-O. 

IV. RIGID AND ISOMETRIC ROTATING MOTIONS 

A motion is isometric if there exists a Killing vector field 
parallel to the kinematic four-velocity field ua

• Necessary 
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and sufficient conditions for a motion to be isometric are6,7 

Uab =0, ()=O, U[a;b] =0. (4.1 ) 

We seefrom (2.12) and (4.1) that every isometric motion is 
rigid but a rigid motion is isometric if and only if ua is the 
gradient of a scalar. 

We now establish necessary and sufficient conditions for 
a rotating rigid motion to be isometric. As in Sec. III we first 
establish kinematic conditions. We then investigate the dy
namic restrictions imposed by Einstein's field equations. 

A. Kinematic results 

Theorem 4.1: A rotating rigid motion is isometric if and 
only if 

!t' uEab = 0, 

!t'u(lGab -j(hstGst)hab ) =0, 

(4.2) 

(4.3) 

!t' uHab = O. (4.4) 

Proof: We first note some results which are true in gen
eral, even for a motion which is not rigid. The propagation 
equation for the vorticity tensor is 

h ~h ~ (wcd - U[c;d ]) - 2~[aWb]d + j()wab = 0, (4.5) 

which may be rewritten as 

!t' uWab = h ~h ~U[c;d ]. 

Also, 

!t'uua =2U[a;b]U
b
. 

It follows directly from (4.6) and (4.7) that 

U[a;b] = !t' uWab + u[a!t' uUb]' 

Hence 

(4.6) 

(4.7) 

( 4.8) 

U[a;b]=O¢:>!t'uWab=O and !t'uua=O, (4.9) 

which forms the basis of the following proof. 
(i) Suppose first that the motion is rigid and that condi

tions (4.2)-(4.4) are satisfied. We prove that the motion is 
isometric by showing that U[a;b ] = O. 

It follows from (4.2) and (4.3) that !t' uEab = 0 and 
thereforefrom (3.25), 

(4.10) 

In order to obtain an expression for !t' u Ua, consider the 
constraint equation 11,12 

H 2 · hSht( d·c d'c) .f (411) ab = u(awb) - a b W(s ' + U(s' 7Jt)fdcU"' • 

Equation (4.11) is purely kinematical. Einstein's field equa
tions are not used in its derivation. For a rigid motion, 
Uab = 0, and (4.11) may be rewritten in the form 

Hab = 2w(aUb) - hp(a (h~) h ';h ~wsm;n )iffdcuf. (4.12) 

We take the Lie derivative along ua of (4.12). Since 
!t' u ~ ab = 0 it follows from (3.24) that !t' uWa = O. Also, 
since Wab is orthogonal to ua on both indices and (4.10) is 
satisfied we have for a rigid motion by (2.16), 

!t' u (h ~h ';h ~wsm;n) = !t' u (lwbd;c) = O. (4.13 ) 

Further 

(4.14 ) 
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(4.15 ) 

:? uHab = 2OJ(a:? u ub) - hp(a (h ~) h 'dh ~OJlm;n )llPfdcUf' 
(4.16 ) 

But it can be verified by a direct calculation using (3.6) and 
(3.38) that for a rigid motion 

h h I h mh n ,.,.,pfdc . - ° pa b d cOJlm;n'l Uf - , 

and therefore 

( 4.17) 

:? uHab = 2OJ(a:? u ub)' (4.18) 

Equation (4.18) can be solved for:? u ub by contracting first 
with OJb and then with OJa: 

:?uUa = (l/OJ2)(OJb:?u H ab 

- (1I2OJ2) (OJcOJd:? uHcd )OJa ). ( 4.19) 

Hence by (4.4), 

( 4.20) 

and therefore from (4.9), (4.10), and (4.20), U [a;b I = 0. 
Thus the rigid motion is isometric. 

(ii) Conversely, suppose that the motion is isometric. It 
is shown in Appendix C by a direct calculation that (4.2)
( 4.4) are satisfied. We give here an alternative proof using 
the converse of results established in part (i). 

Consider first condition (4.4). Since the motion is iso
metric, U[a;b I = 0, and therefore from (4.9), 

(4.21 ) 

Since:? uOJab = ° it follows from (2.16) and (3.42) that 

:?u(lOJab;c) =0, :?uOJa=O. (4.22) 

But we have seen that if a rigid motion satisfies conditions 
(4.22) then (4.18) holds and since also:? u ua = 0, it fol
lows directly that:? uHab = 0. 

Consider now the remaining two conditions, (4.2) and 
(4.3). Since :? uOJab = ° we have by (3.27) that 
:? u if ab = 0; thus 

(4.23 ) 

In order to obtain a second equation relating the Lie deriva
tives of Eab and lGab - j(h slGst )hab consider the shear 
propagation equation in kinematic form, 

h ~h t (ircd - U(c;d» - uaub + OJaOJb + aala
l
b 

+ j8aab + j(UC;c - OJ2 - 2~)hab 

+ Eab - !(lGab - j(h stGSI )hab ) = 0. (4.24) 

Equation (4.24) is derived by taking the symmetric trace
free part of the propagation equation for lUa'b (Refs. 11 and 
12) and without applying Einstein's field equations. For an 
isometric motion, (4.24) reduces to 

-lua;b - uaub + OJaOJb + !(UC;c - OJ2)hab 

( 4.25) 

We take the Lie derivative along ua of ( 4.25). Since ua u
a = ° 

and:? u ua = 0, it follows from (2.16) that 

:?u(lua;b) =0 (4.26) 
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and by contracting (4.26) with gab and using (3.31) we find 
that 

(4.27 ) 

Also, since:? uOJab = 0, we have from (3.40) that Ii> = 0. 
The Lie derivative along ua of (4.25) therefore yields 

:?uEab -~:?u(lGab _!(hS'Gst)hab) =0. (4.28) 

Conditions (4.2) and (4.3) follow immediately from (4.23) 
and (4.28). 0 

The kinematic results of Herglotz2 and Noether3 and of 
Williams9 that every rotating rigid motion in a flat space
time and in a space-time of constant curvature is isometric 
are special cases of Theorem 4.1. We now check that condi
tions (4.2 )-( 4.4) are satisfied in both cases. 

(i) Flat space-time. Since R abcd = ° we have 

Eab = 0, Hab = 0, lGab - !(h stGSI )hab = 0, (4.29) 

and therefore (4.2 )-( 4.4) are identically satisfied. 
(ii) Space-time of constant curvature. For a space-time 

of constant curvature 

R abcd = K(gacgbd - gadgbc)' 

where K is a constant. Thus 

(4.30) 

Rab = 3Kgab , R = 12K, Gab = - 3Kgab · (4.31) 

It is easily verified from (3.7) that Cabcd = 0. We find that 
(4.29) again holds and therefore that conditions (4.2)
( 4.4) are identically satisfied. The result remains valid if K 
depends on xa. 

B. Dynamic results 

We now impose Einstein's field equations. The follow
ing theorem follows immediately from (3.47) and Theorem 
4.1. 

Theorem 4.2: If Einstein's field equations (3.44) are sat
isfied, then a rotating rigid motion is isometric if and only if 

:? uEab = 0, :? u 1Tab = 0, :? uHab = 0. (4.32) 

If, further, the phenomenological equation of state, 

1Tab = - ..1,aab (..1,;;'0) (4.33) 

is satisfied then a rotating rigid motion is isometric if and 
only if 

(4.34 ) 

o 
We have observed that the phenomenological equation 

(4.33) is necessary in a fluid if the rate of generation of en
tropy is never negative. In that case only two conditions, 
given by (4.34), are necessary and sufficient for a rotating 
rigid motion to be isometric. 

If Einstein's field equations (3.44) are satisfied and the 
motion is rigid, then Eab and Hab satisfy the propagation 
equations II 

:? uEab + E,(aOJb) I + h ~a llb)rs,u rH c S;I - 2H '(a llb)rSI urus 

- U(aqb) - ~h ~h ~q(S;t) i(q';, + u,q')hab 

( 4.35) 

:? uHab + H,(aOJb) I - h ~a llb)rs,u rE c S;I + 2E;a llb)rsl UrUs 

= !( (OJ,q')hab - 3OJ(aqb) ) - ~h ~a llb)rSIUr1T/;I, (4.36) 
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and the constraint equations 

h ~Ers;th ~ + 3H a
bw b 

= 1 tJ h ab _ 3wabq _ Ih atr"b + 11T"bU :1 r-,b b 2 c ;b 2 b' (4.37) 

h ~Hrs;th ~ - 3E a
bWb 

= (f-l + P )W
a + ~rtrsturqs;t - !1T"bWb · (4.38) 

Hence in general, .? uEab and'? uHab will be nonzero in a 
rigid motion. 

The results of this section apply to rotating rigid motions 
only. Equations (4.35 )-( 4.38) can place restrictions on the 
vorticity of a rigid motion. Consider for instance a confor
mally flat space-time with qa = 0 and 1T"b = O. The latter 
condition would be satisfied in a rigid flow of a fluid obeying 
the phenomenological equation (4.33). It follows from 
(4.38) that if f-l +P#O then Wa =0, Hence if f-l +P#O, 
Theorem 4.2 will not apply, although conditions (4,32) are 
identically satisfied, because the motion is irrotational. [We 
observe, however, that if further P = P (f-l), then from (4.37) 

(4.39) 

and therefore it follows from the momentum conservation 
equation 11,12 

(4.40) 

that ua = 0 if f-l + P # O. Therefore the rigid motion is isomet
ric.] A space-time of constant curvature is conformally flat 
and using (3,44), (3.45), and (4.31) it can be verified that 

f-l = 3K - A, P = A - 3K, qa = 0, 1T"b == 0. (4.41) 

However, sincef-l + P = 0, the vorticity need not vanish and 
the theorem ofWilliams,9 that every rotating rigid motion in 
a space-time of constant curvature is isometric, has applica
tion. For a space-time of constant curvature, (4.35 )-( 4.38) 
are identically satisfied, but it follows from (3.22), (3.24), 
and (3.25) that 

W=O, .?uwa =0, .?uWab =0, (4.42) 

Finally we observe that if a rigid motion is irrotational 
then qa = O. This follows immediately from the (O,a) field 
equations, 11,12 

qa = h ab(~e;b - (Tbc;d h cd) - 77abcdUb (Wc;d + 2wcu d ). 

(4.43 ) 

v. CONCLUDING REMARKS 

We did not use the second integrability condition 
(2.17). Instead we found it more convenient to apply the 
integrability condition (2.16) of Eq. (2.15) directly to the 
tensors Wab and u a which are orthogonal to u a on all indices 
and which had been shown to have vanishing Lie derivatives 
along ua

• 

The Born criterion for rigid motion is much more re
strictive than may have been expected from Newtonian the
ory. For instance, if qa = 0 or for the class of rigid motions 
which are isometric, the vorticity of a rigid body is constant 
in magnitude along any particle world line of the body. A 
view sometimes taken, therefore, is that a less restrictive de-
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finition should be found, However, as pointed out by Pirani 
and Williams,6 restrictions on the motion of a rigid body 
may be explained by the argument that the application of 
forces to the body in order to change its momentum or angu
lar momentum must distort the body so that a body which is 
required to be rigid cannot be subject to such forces. Hence 
severe restrictions on ua and wa are to be expected. 
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APPENDIX A: INTEGRABILITY CONDITION FOR RIGID 
MOTION 

An outline is given of the derivation of the integrability 
condition for the equations of rigid motion, 

.? u ( - 3WabWcd + lR abdc ) = 0, 

by starting from the identity 

(Al) 

.?uR rslg = 2('?ur;[g);JJ' (A2) 

Consider a rigid motion. Project on the indices of (A2) 
with harh ~h{h~; this gives 

harh ~h{h~.? uR rslg = 2har h ~h{h ~ (.? u r;[g);J J' 

(A3) 

We first evaluate the left-hand side of (A3). Since 

.? uh ~ = uaub (A4) 

and, for a rigid motion, .? uhab = 0, we have 

harh ~h{h~.? uR 'slg = .? u (lR abcd ) + ublRtacdut 

+ uclRtdbaut + udlRtcab ut. 
(A5) 

Consider next the right-hand side of (A3). Using the 
identity 14 

.? ur%c 

= ~at [(.? u gbt );c + (.? u get );b - (.? u gbc );t], 
(A6) 

where for a rigid motion 

.? u gab = - 2U(a Ub) 

a direct calculation gives 

ha,h ~h{h~ (.? u r;g);J 

(A7) 

= Wac ( -lu(b;d) - UbUd ) + Wbc ( - U[a;d J + uaud ) 

+ Wdc ( -lu[a;b J + uaub ) - 2wa(b 1ud);C 

+ 2u(b 1wd)a;c' (A8) 

In order to derive an expression for Ua;b we expand Ua;b 

= (ua;t Ut);b and use the Ricci identity applied to u a , 

Ua;[bcJ = !R,abc U'. (A9) 

It can be verified that this gives for a rigid motion 

Ua;b = Wab - Ua Ub - WatWb' - Ua Ub 

- Wa,U'Ub + Rasb'usU', 

and therefore 
. l' .. '+ lR sUr 1ua;b = Wab - UaU b - Wa,Wb asb'U, 

D. P. Mason and C. A. Pooe 
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In order to derive an expression for Wab;c we first observe that 

Wab;c = 3W[ab;c] + 2wc[b;a]' (AI2) 

But since R, [abc] = 0, it follows from (A9) that 

u[a;be] = 0, (A13) 

and therefore since Ua;b = Wab - u a Ub for a rigid motion, we 
find that 

W[ab;e] = j(UaU[c;b] + ubu[a;c] + UcU[b;a]) + U[aWbe]' 
(AI4) 

Also, by covariantly differentiating Web = Ue;b + ueub with 
respect to xa, taking the skew part on indices a and band 
using (A9) it can be verified that 

We[b;a] = Ue;[aUb ] + Uc (wba + U[aUb]) + !R,eba U'. 
(AI5) 

By substituting from (A 14) and (A 15) into (A 12) and us
ing (A 10) we obtain 

+ 2U[a Wb ],wc' + lRabe,u', 

and therefore 

lWab;e = - Wab u e + 2u [awb]e + lRabe,u'. 

Using (All) and (AI7), (A8) becomes 

harh th~h~ (2' ur;g);j 

(AI6) 

(AI7) 

= Wac (Wbt W/ + 2UbUd -lRbsd,USU') - 2we(b 1wd)a 

+ 2U(b lRd)ae,U'. 

But for a rigid motion, 

lWab = 2' uWab' 

and therefore 

2har h th~h ~ (2' u r;[g);j] 

= 2' u ( 2WabWed + WaeWbd + wadWeb ) 

+ ublR,aed u ' + udlR,eab u ' + uelR'dba U'. 

(AI8) 

(AI9) 

(A20) 

But since Wab = - W ba and Wab u b = 0, it can be verified that 

Wa[b Wed] = ° 
and therefore 

2har h th~h ~ (2' u r;[g);j] 

= 2' u (3W ab Wed ) 

+ ublR,aed u ' + udlR,eab u ' + uelR'dba U'. 

(A21) 

(A22) 

Equation (AI) follows immediately by substituting 
from (A5) and (A22) into (A3). 

APPENDIX B: LIE DERIVATIVE IN A RIGID MOTION 

We prove that if a covariant vector Ta satisfies 

Ta u
a = 0, 2' u Ta = 0, 

and if the motion is rigid, then 

2' u (lTa;b) = 0. 

(BI) 

(B2) 

Consider a rigid motion. Now, using (A4) it can be 
shown that 
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2' u (lTa;b) = uah tuTr,s + ubh ~ t + h ~h t2' u Tr,s' 
(B3) 

But since uTr = 0, we have for a rigid motion, 

(B4) 

and since 2' u Ta = ° it follows for a rigid motion that 

h~'t =warTr. 

Also, in general,14 

2' u ( Tr,s) = (2' u Tr );s - Te 2' u r~s 

and therefore since 2' u Tr = ° we have 

2' u ( Tr,s) = - Tc 2' u r~s' 

(B5) 

(B6) 

(B7) 

Hence by substituting from (B4), (B5),and (B7) into (B3) 
we obtain 

2' u (lTa;b) = 2U(aWb)e T
e 

- h ~h t (2' u r~s) Te· (B8) 

But by using (A6) and (A 7) a direct calculation gives, for a 
rigid motion, 

(B9) 

Equation (B2) follows immediately from (B8) and (B9). 

APPENDIX C: ISOMETRIC MOTION 

We prove that if the motion is isometric then 

2'uEab = 0, 

2'uHab = 0, 

2' u (lGab - j (h stGs, )hab ) = 0. 

(CI) 

(C2) 

(C3) 

Consider an isometric motion. Then there exists a Kill
ing vector field Sa = Sua, S = ( - SaS a) 1/2, such that 

2' s gab = 0. (C4 ) 

By contracting (C4) in turn with uaub and with ub it can be 
shown that 

t = 0, S.a = SUa' (C5) 

and therefore that 

2' sua = 0, 2' sh ab = 0, 2' sh % = 0, 2' shab = 0, 
(C6) 

results which will be used below. The operation of raising or 
lowering an index commutes with the Lie derivative along 
S a and therefore for instance 

2's T ab .. e =Q¢:?2'g T a
b" e =0. (C7) 

Also it is readily verified that if Tab 'e is orthogonal to ua on 
all indices then 

and 

2' u T ab" e = (1/ S) 2' g T ab .. ·e · 

Since for any vector Sa (Ref. 14) 

2' sR abed = 2(2' • .r% [d );e] 

2'gr%c =~at[(2'sgb');C + (2'ggct);b 

- (2'sgbc);t] 

it follows for a Killing vector S a that 

2' gR abed = 0. 

Hence 
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.!? sRab = 0, .!? sR = 0, .!? SGab = 0, 

and therefore by Eq. (3.7) 

.!? sCabed = O. 

Thus by (C6) and (CI3), 

(CI2) 

(C13) 

.!?sEab =.!?s(CarbsUrUs) =0, (CI4) 

and since EabUa = 0 = EabUb it follows from (C8) that 
.!? uEab = O. Also 

.!? sTJabed = TJabed5 ';, = 0 (CI5) 

since 5 ';, = 0 for a Killing vector, and therefore 

.!?sHab = .!?s(!TJarpqCPqbsurUs) =0. (CI6) 

Since HabUQ = 0 = HabUb it follows from (C8) that 
.!? uHab = O. Finally, it is readily verified using (C6) and 
(CI2) that 

(CI7) 

and since IGab - j(h stGs, )hab is orthogonal to ua on both 
indices, (C3) follows directly from (C8). 
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The Lagrange method is used to obtain a class of solutions of the three-dimensional 
hydrodynamical equations governing the motion of matter with vanishing pressure in its own 
Newtonian gravitational field. The class is characterized by the property that each fluid 
particle has constant acceleration. The class contains rotational and irrotational flows. For 
rotational flows the expansion tensor has one zero eigenvalue, while for irrotational flows it has 
two zero eigenvalues, which implies that every fluid element contracts or expands in two or 
one spatial directions, respectively; nevertheless, the density depends on all three coordinates. 
The general one-dimensional solution is included as a subclass. 

I. INTRODUCTION 

The study of solutions of the equations of a hydrodyna
mical system including self-gravity has been, on one hand, 
the subject of astrophysicists focusing on spherically sym
metric stellar collapse, and on the other hand, the subject of 
cosmologists interested in the process of galaxy formation 
dominated by nonspherical motions. The exact solutions in
cluding pressure are, for spherical symmetry, based on poly
tropic equations of state providing stellar models (time-de
pendent models are treated by Munier and co-workers, I 
Glass/ and others); for dust, the evolution of spherically 
symmetric inhomogeneities is studied, e.g., by Henriksen 
and Robertis. 3 Spatially homogeneous solutions are dis
cussed in Heckmann and Schiicking.4 The dynamics of ho
mogeneous ellipsoids are also treated in a paper by Barrow 
and Silk.5 Up to now almost nothing is known about inho
mogeneous, anisotropic solutions (for the dust case, similar
ity solutions have been studied by Fillmore and Goldreich6 

for spherical, cylindrical, and planar symmetry); the New
tonian analogs of Szekeres space-times in general relativity 
have been discussed by Lawitzky.7 

This work is primarily motivated by the intention to get 
a precise understanding of the role played by nonlinearities 
in the evolution of density inhomogeneities. In the present 
paper we concentrate on the zero pressure case and obtain 
solutions that remain valid until singularities in the density 
develop, i.e., in the regime where perturbation theories fail. 

One fruitful effort to go beyond perturbation analysis is 
the so-called "pancake-scenario" in galaxy formation theory 
conceived by Zel'dovich8 in the 1970's. He proposed an "ap
proximate nonlinear theory" based on assumptions extrapo
lating the linear theory of gravitational instability. This sce
nario contains key elements relevant to the evolution oflarge 
scale structure in the universe (see the review by Shandarin 
et al. 9

). The latter is ascribed to the caustic structure of the 
underlying evolution ansatz (Arnol'd, Shandarin, and 
Zel'dovich 10). A realization of the "pancake-scenario" is 
achieved, e.g., by the assumption that "cold dark matter" 
(i.e., dust) is the dominant matter constituent. Another ap
proach to tackle the problem of nonlinear evolution uses 
numerical simulations (Davies et al. II and Shapiro et al. 12; 

for spherical symmetry a survey by Woodward 13). How
ever, in view of the high numerical resolution that would be 
required to detect certain nonlinear phenomena such as soli
tons or self-focusing singularities (Kates 14), it is important 
to pursue analytic studies. This paper is an attempt to estab
lish the basis for the treatment of more complex problems, 
e.g., the inclusion of pressure and viscosity. 

The article is organized as follows: Section II presents 
the basic equations in Eulerian and Lagrangian form, Sec. 
III contains the solution obtained through an ansatz sug
gested by the one-dimensional case, and a discussion of the 
solution is left to Sec. IV. 

II. THE SYSTEM OF EQUATIONS 

Denoting the density, the velocity, and the acceleration 
field with respect to some nonrotating frame (Eulerian de
scription) by p(x,t), v(x,f), and g(x,t), respectively, the 
equations for self-gravitating dust are 

p, + V·(pv) = 0, 

v, + (v·V)v = g, 

VXg=O=?g=:-Vrp, 

V·g = - 41TGp, 

p>O. 

(la) 

(Ib) 

(Ic) 

(ld) 

(Ie) 

Equations (lc) and (ld) are equivalent to Poisson's equa
tion for the gravitational potential rp. These equations retain 
their form if transformed to a translation ally accelerated 
frame provided rp is appropriately transformed.4 

To obtain solutions it is useful to transform from Euler
ian coordinates Xi to Lagrangian coordinates Xi (i = 1,2,3) 
leaving the time unchanged. Lagrangian coordinates are de
fined as the labels X of the integral curves x = f(X,t) of the 
vector field v (X,t), 15 

df 0 

- = v(f,t), f(X,O) = f(X) = X, 
dt 

(2) 

which are interpreted as the paths followed by fluid particles 
initially at the point f(X,O). Recall that for any vector func
tion F(x,t) one has 

F(x,t)lx~const =F(f(X,t),t)=J,F(X,t). (3) 
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Now x becomes a dependent variable and is considered as a 
vector field in the Lagrangian picture, which gives the trans
formation back to the Eulerian picture and determines com
pletely the dynamics of the fluid as long as the inverse trans
formation exists, i.e., the Jacobian remains nonsingular: 

af 
J jk (X,!): = - , det(Jjk ) = :J #0. 

aXk 

(4a) 

Recall also that the following evolution equations for the 
Jacobian and its determinant hold l6

: 

. aUj aUj • 

J jk =--=-Jjk' J=V·vJ. aXk aXj 

(4b) 

Upon integrating the continuity equation (la) with the help 
of ( 4b) and expressing the operator V in terms of derivatives 
with respect to X j , the system (1) is cast into the following 
form: 

P =Po(X)J-I, (5a) 

(5b) 

gj.kJkjl=gj.kJkll U#j), (5c) 

gj.kJ kl 1= - 41TGp. (5d) 

Inserting (5a) and (5b) into (5c) and (5d), we obtain a 
system of four equations for the Jacobian: 

(6a) 

(6b) 

Denoting the functional determinant of any three functions 
hi (X,t), h1(X,t), and h3 (X,t) by 

D(h h h ). _ a(h l ,h1,h3 ) 

I' l' 3 • - a (XI,x1,x3 ) , 

the system (6) may be finally cast into the form that pro
vides the basis for seeking solutions to the present problem: 

€pquD(ii]J;,,/q) = ° (three equations), (7a) 

€abcD(Ia.Jb'/c) = - 81TGpo (one equation). (7b) 

(Note: Jab 1= ad (Jab )J -I = [11(2 J) ]€ajk€blmJIjJmk.) 

III. THE SOLUTION 

We consider the class of motions characterized by the 
property that fluid particles be uniformly accelerated along 
their paths, labeled by X, i.e., 

g(X,t) = g(X,O) = :g(X). (8a) 

This ansatz implies, by means of Eq. (5b), 

v(X,t) = v(X)t + g(X)t, (8b) 

f(X,!) = X + v(X)t + g(X)t 1/2. (8c) 

The derivative of the map X--x at time t is, according to 
( 8c), 

Jjk(X,!) =8 jk +Vj.kt+gj.kt1/2 (8d) 

[g (X), v (X), and fc X,O) = X are the initial data of the fields 
g, v, and f, given at the instant t = 0]. 

Uniform acceleration is a general property of one-di
mensional flows, as can be seen from Eqs. (la) and (ld) 
restricted to one spatial dimension: 
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PI + (pU)x = 0, gx = - 41TGp. 

Inserting the second equation into the first we find 
g = /3(t). Without loss of generality a may be set equal to 
zero since /3 is only associated with a spatially constant ve
locity field and does not alter the density distribution (the 
basic equations are "translation covariant," see Heckmann 
and Schticking4b 

); i.e., the ansatz (8a) yields the general 
solution in this case. [Note that the field equation (lc) is 
trivially satisfied in one dimension.] 

In the three-dimensional case we proceed as follows: We 
plug (8c) into the system of equations (7) whose left-hand 
sides yield polynomials in t whose coefficients must vanish. 
The resulting 17 equations, which constrain the coefficient 
functions veX) and g(X), are given in Appendix A. 

Lemma: Relations (A2)-(A4) and (A6)-(A9) listed 
in Appendix A are satisfied ifand only if the six functions VI' 
V1, V3 and gl' gl' g3 depend functionally on a single function 
only, which-without loss of generality-is taken as g I: 

VI =F(gl)' (9a) 

v1=H(gl)' (9b) 

V3 = K(gl)' 

g2 =A(gl)' 

g3 = B(gl)' 

Relation (AI) implies that 

gl =E(XI +A 'X2 +B'X3 ), 

(9c) 

(9d) 

(ge) 

(9f) 

where E is arbitrary, (A5) simply determines Po' (The proof 
is given in Appendix A. ) 

This formulation of the solutions of Eqs. (A2)-(A4) 
and (A6) -( A9) avoids using explicitly the gravitational po-

tential ~, whose existence is guaranteed by 1 (c). This ~ is 
defined by 

~(X): = ¢(X,O), g(X,t) 

(8a) 0 

= - V¢(X,!) = - V¢II=o = - Vx ¢' (10) 

An alternative formulation of the Lemma provides the fol
lowing corollary. 

Corollary: Taking the function on which all the others 
have to depend as ¢.l' the complete set of restrictions (Al)
(A9) reads 

o 0 O

2 
¢.2.2 ¢,3,3 - ¢,2,3 = 0, 

o 0 O

2 
¢,3,3¢,1,1 - ¢,3,1 = 0, 
o 0 O

2 
¢,1,1 ¢,2,2 - ¢,1,2 = 0, 

~I = F(~,I)' 

(1la) 

(lIb) 

(llc) 

(lId) 

~2 = H(~,l ), (lIe) 

~3 = K(~,l)' (llf) 
One of the equations [( lla)-( llc)] is redundant. The gen
erallocal solution of the restrictions l

? (lla)-(llc) can be 
written down in terms of three functions A,B,C (see Ref. 
18): 

~ = aXI +A(a)X2 + B(a)X3 + C(a), (l2a) 

° =X1 +A '(a)X2 +B'(a)X3 + C'(a) (l2b) 

(where a is written for ~,I and the prime denotes a derivative 
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with respect to the argument). This implies that the deriva
tives of ¢l are functionally dependent 

[¢,I =a,¢.2 =A(a),¢.3 =D(a)]. 

The functions A and D are the same as those we used in (9), 
the function C is related to the inverse function of E by 
- C'(a) = E -I(a). [The proof that an local solutions of 
(11a)-(11c) are determined by (12) is given in Appendix 
B.] 

Equations (11a)-(11c) express the property that the 
two-surfaces ¢l (X, = const Xj ,X k) (i, j,k = 1,2,3 pairwise 
different) have zero Gaussian curvature everywhere, i.e., 
have to be developable surfaces. 

Theorem 1: The solution of Eqs. (1) under assumption 
(8a) is given by 

(X t) - Po P ,- 0 0 0 2 ' 
1 + (VI,1 + v2,2 + V3.3 )t - 41TGpot /2 

Po;;.o, 

(13a) 

p(X,O) = Po(X) = ilx ¢/41TG 

(1 + A '2 + D '2) 
= -----~--------~-----

v(X,t) = v - Vx¢t, 

v(X,O) = veX), 

I(X,t) =x+vt-Vx ¢t 2/2, 

I(X,O) = X, 

(13b) 

( 13c) 

where v and ¢ are constrained by ( 11), The restrictions on ¢ 
are equivalent to the restrictions (9) on g. [The proof of the 
theorem follows from the Lemma and the Corollary by 
means of (Sa), (8b), and (8c),] 

Note that the determinant of the Jacobian (8d) reads 

J = iOabEijkEbedJa,JejJdk' 

which reduces to 

J= 1 +Tr(i\,k)t+Tr(g;,k)t 2/2, 

in view of the constraints that have to be imposed on the 
initial data (11). 

A particular solution is obtained by prescribing A,D,C 
and F,H,K, solving (12b) for a which in turn yields ¢ via 
(12a). Elimination of X inverts the transformation from Eu
lerian to Lagrangian coordinates and yields the Eulerian de
scription of the solutionsp(x,t) and v(x,t). The density giv
en in ( 13a) has to be positive for the whole range of X if one 
is interested in physically meaningful solutions. This re
quires a choice of the functions A,D,C and such that 

A "X2 + D "X3 + C" < 0. 

This is possible in the one-dimensional case. Thus the three
dimensional solutions can have this property at least in some 
small neighborhood of the submanifold in (A,D,C) space, 
which generates the plane-symmetric solutions with Po > 0. 

Finally we remark that the class of solutions presented 
above contains the general one-dimensional solution as a 
subclass: Assuming v2 = V3 = ° and vanishing derivatives 
with respect to X 2 and X3 shows that Egs. (1Ia)-( 110 no 
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longer provide restrictions on the initial data [VI = F(¢,I ) is 
locally true for functions of one variable]. The only nontri
vial field equation (5d) reads 

ag(X,t) ax ag(X) ax 

ax ax ax ax 

and is solved uniquely by (8a); the solution is general since 
one can choose Po(X) and the initial velocity field VI (X) 
arbitrarily. 

IV. DISCUSSION 

In this section we focus on the kinematical properties of 
the solution, which helps us to understand the kinds of mo
tions admitted. For this purpose we adopt the standard de
composition of the velocity gradient into its symmetric and 
antisymmetric parts: 

av, 1 
ax = wij + eij = wij + (J'ij + 3 eOij' 

J 

(14) 

where wij = aV[J/aXj] represents the vorticity tensor and 
eij = avu/ax)) the expansion tensor, split into its trace-free 
part (J'ij' which represents the shear of the flow, and its trace 
e, the expansion rate. 

Let us now concentrate on single particle paths. For the 
class of solutions presented, the kinematical variables along 
these paths are, in terms of initial conditions, 

Wik(X,t) =~(Vi,k -Vk,i)J- l
, (15) 

eik (X,t) = (!(Vi,k + Vk,;) + g;,kt)J -I, (16a) 

(J'ik(X,t) =eik(X,t) -j(Vi,i -41TGpot)8;kJ-I, (16b) 

e(X,t) = (Vi,i - 41TGpot)J- l
• (16c) 

The scalar e measures the rate of change of a fluid element's 
volume. Equation (16c) shows that, for the time interval 
O<,t < te [J(te) = 0], e lies within the bounds Vi,i;;.e 
> - 00, if Po> 0, which shows that, irrespective of (suffi
ciently smooth) initial conditions, the collapse cannot be 
avoided (t ..... to e ..... - 00). If the initial divergence of the 
velocity field is positive, then e is positive (expansion) dur
ing the time ill = vi,J41TGpo' The shear scalar (J', defined by 
~: = !(J'ik (J'ki' which measures the anisotropy of the motion, 
IS 

~(X,t) =!(VI,l)2+ (V2,2)2+ (V3,3)2jJ-2+WiWi/2, 
(17) 

where Wi = !EijkWjk are the components of the rotation vec
tor w = ~ rot v, Starting out with initial isotropy [~(X,O) 
= 0], which is only possible for Vi,k = 0, the motion always 

becomes anisotropic for t> 0. 
A refined measure for the anisotropy of the expansion/ 

contraction of fluid elements is provided by an investigation 
of the eigenvalues of the expansion tensor. These eigenvalues 
are the extrema of the expansion rate along the directions of 
the principle axes of eik . They are the solutions of the char
acteristic polynomial 

A 3 - A 2 I + A II - III = 0, ( 18) 
where 

I : = e, 
II : = eZZe33 + e33e ll + elleZZ - e~3 - e~l - ei2' 
III: = det(eik ) 
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denote the three scalar invariants of ()jk' 

For our solution it turns out that l9 

II = - UJjUJ j <0, III = 0, 

which implies 

AI =!«() +~()2-4II»0, 
,12=0, 

,13 = !«() - ~()2 - 4II) <0. 

(19a) 

(19b) 

Nonvanishing rotation causes the fluid elements to expand 
in one direction and to contract in another for all times. The 
rotation vector ro is an eigenvector of the expansion tensor 
with eigenvalue 42 = 0 «()jk UJ k = 0). Equation (15) shows 
that the direction of ro is locally preserved along the particle 
path, the modulus of ro increasing proportionally to the den
sity. This implies that ro/p is a conserved quantity of our 
solution. 

For potential flows, the expansion tensor ()jk = JvJ JXk 
(UJjk = 0) has only one nonvanishing eigenvalue [see (19) ], 
meaning that every fluid element expands/contracts along 
one spatial direction. Note that these directions are, in gen
eral, different for different paths and vary smoothly from 
point to point. An immediate consequence of this behavior 
of fluid elements is the tendency for the matter to pile up into 
flat structures; volume elements located at X degenerate into 
elements of caustics in Eulerian space at times tc (X). The 
caustics (surfaces of infinite density) are given by the image 
of the singular set $ of points in Lagrangian space at a time t' 
[see Eq. (13a)]: 

$ = {(X,t ')/J(X,t') = 1 + Vx ·tt' - 41TGpot '2/2 = O}. 
(20) 

Vanishing rotation implies restrictions on the functions 
F, H, and K [Eqs. (11d)-(11f)]' which, expressed in terms 
of the velocity potentiaI8(X)(v = VS It=o = Vx 8), are 

8,1 = F(¢.I ), (21a) 

8,2 = H(¢,I)' (21b) 

8,3 = K(¢,I ), 

F'A'=H', 

F'B'=K'. 

(21c) 

(21d) 

(21e) 

To obtain Eqs. (21d) and (21e) we used the potential char
acter to relate F, H, and K via Eqs. (21a)-(21c) and ex
pressed these relations in terms of A and B by means of ( 12). 
According to the Kelvin-Helmholtz circulation theorem, 
the potential character of the flow is preserved in time. From 
Eqs. (21a)-(21c) follow restrictions completely equivalent 
to those imposed on ¢ by Eqs. (lla)-( 11c): 

o 0 0 2 
S,2,2S,3,3 - S ,2,3 = 0, 
o 0 0 2 
S,3,3S,I,I - S ,3,1 = 0, 
o 0 0 2 
S,I,1S,2,2 - S ,1,2 = O. 

(Again, one of these equations is redundant.) 

(22a) 

(22b) 

(22c) 

Expressing the solution for the potential 8 in a manner 
similar to Eqs. (12) in terms of the parameter a = ¢,I , we 
have 

(23a) 
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0= F'(a)XI + H'(a)X2 + K '(a)X3 + C'(a) 

(C' =F'C'). (23b) 

We can choose, instead of six, only four functions indepen
dently. The choice F' = 1, i.e., F is the identity, means that 
¢ and 8 are identical surfaces. This implies that the complete 
set I7 of functions n for which the two-surfaces n(Xj 

= const,Aj,xk) (i,j,k = 1,2,3, i#k) have vanishing Gaus
sian curvature generate the solution. 

One may ask whether there are further solutions that 
have the property of two vanishing eigenvalues of the expan
sion tensor. 

Theorem 2: In the class of all irrotational flows our solu
tion is the general three-dimensional one with the property 
of two vanishing eigenvalues of the expansion tensor. 

Proof We consider the general equations (6) and follow 
the motion of a fluid element along some fixed path 'Y: 
t -+ f( X' ,t) . We fix a coordinate system at t = 0 such that the 
directions of the coordinate axes coincide with the eigendir
ections of the expansion tensor. Along a path 'Y, these axes do 
not change in time, since the transport equation for any vec
tor n along the path is (Ellis20 ) 

Ojkhk = (UJjk + u jk - (uabnanb )Ojdnk' 

If ujknk a: nj and UJjk = 0, then Ojkhk = O. 
The fact that ()ij remains diagonal renders the Jacobian 

diagonal along the path [see Eq. (4b)]. Now, Eq. (6a) is 
identically satisfied and Eq. (6b) reads 

j llJ2zI33 + j2zI33J II + j33J IIJ22 1 x = x' = - 41TGpo· 
(24) 

Ifwe assume two eigenvalues of ()ij to be zero, 

()22(X = X',t) = ()33(X = X',t) = 0, 

then from (24) it follows that ill = gl I = 0, which yields 
exactly the assumption (8a) on which our solution is based. 
This argument holds for any 'Y. 

This shows that the solution is an exact description for 
the idealized situation where fluid elements contract in one 
preferred spatial direction (which is different for different 
fluid elements) and where the motion in the other two direc
tions is absent. Therefore the solution might reflect general 
properties of highly anisotropic motions. 

Further papers are in preparation, one of them concern
ing solutions for the dynamics of dust relative to an isotropi
cally expanding homogeneous background; it will be shown 
there that the class of solutions, which corresponds to the 
class considered here, contains the self-consistent21 part of 
the "approximate ansatz" of "pancake-theory" proposed by 
Zel'dovich8 as a subclass. Also solutions for self-gravitating 
fluids including pressure will be given; it will be discussed 
that solitons may arise in such a system. 
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APPENDIX A: RESTRICTIONS ON INITIAL DATA: 
(PROOF OF THEOREM 1) 

Inserting our ansatz [Eq. (S)] into the system of equa
tions (7) we obtain explicitly from (7a) 

to: D(gk'/k,J;) = D(gpJ;,fj )<=?Vx Xg = 0, (AI) 

t I: D(gk,Vk,J;) + D(gk'/k'V j ) 

= D(gj,J;,vj ) + D(gj,vj,fj), (A2) 

t 2:D(gkA,vi ) + ¥J(gk'/k,Ogi) D(gj,vj,vj ) + ¥J(gj,gi,J;), 
(A3) 

(A4) 

(i,j,k = 1,2,3, i,j,k pairwise different; no summation over 
repeated indices here). 

Equation (7b) yields 

to: CijkD(gj1fj'/k) = - S1TGpo<=?Vx 'g = 41TGpO' (AS) 

t 1: cijk(D(gi,fjA) + D(gi,Vj'/k») = 0, (A6) 

t 2: CijdD(gj1fj,gk) + D(gi,VjA») = 0, (A 7) 

t 3
: CijkD(gj1gj,Vk) = 0, 

t 4
; D(gl,g2,g3) ° 

(AS) 

(A9) 

(Cijk = C[ijk l' CI23 = + 1, summation over repeated in
dices). 

The advantage of the chosen form (7) of the equations is 
now obvious, since they yield compact functional expres
sions for the constraining equations. 

Proof of the Lemma: Since each of Eqs. (AI )-(A4) 
yields three different equations we have 17 equations to solve 
in total. Starting with (A9) we get a functional relationship 
betweengt,g2,g3' which may be locally written as 

g3 = tPO(gl,gZ), (AIO) 

where tPo is arbitrary. 
Adding linear combinations of the five equations (A4)

(AS) we have 

(All) 

where (AlO) has been used. Equation (All) implies func
tional relations betweengl, g2' and Vi' which are assumed 
to be solvable for Vi; 

(AI2) 

The tP;'s are again arbitrary. 
The assumption that (AI2) is the solution to (All) is 

only a weak restriction since it would not change the follow
ing procedure if the functional relations implied by (A 11 ) 
were not solvable for Vi at some points in the (g t,g2,Vi ) space, 
but for gt or g2' 

Linear combinations of (A3) added to (A 7) yield, to
gether with (AlO)-(AI2), 

(A13) 

From Eq. (A13) we obtain for i = 3 with the help of (AI) 

(AI4) 

which implies locally the existence of a function A such that 

gz =A(gl)' (AISa) 

Then (AlO) and (AI2) may be written as 
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g3 =B(gt), (A1Sb) 

VI = P(gt), (AlSc) 

V2 = H(gl)' (AISd) 

V3 =K(gl), (A1Se) 

where B, P, H, and K are arbitrary. 
It is easy to convince oneself that the remaining equa

tions [(A2) and (A6)] are trivially satisfied if (A1S) holds. 
Equations (AI) imply, by means of (A1Sa) and 

(A1Sb), 

A '(gl)gl,l =gt.2' 

B'(g,)gl.l = gl.3· 

These differential equations are equivalent to 

dg 1 0, 
dXz 
dg l 

dX3 

on curves, 

o· , 

-A', 

-B'. 

(A16a) 

(A16b) 

(A17a) 

(A17b) 

(AISa) 

(AISb) 

Since gl is constant on these curves, (AISa) and (AlSb) 
integrate to 

XI + A 'X2 + B 'X3 : 5, 5 = const. 

Thus g I is an arbitrary function E of 5: 
gl =E(5)' 

(AI9) 

(A20) 
Q.E.D. 

APPENDIX B: SOLUTION OF THE CONSTRAINTS (11a)
(11c) 

Equations (12a) and (12b) are an extended version of 
the representation of solutions of Zxx Zyy - Z;y = ° for sur
faces Z (x,y) of vanishing Gaussian curvature given in Cour
ant and Hilbert. 18 

We have to prove that the hypersurfaces ;p given in 
(l2a) and (12b) provide a representation of any solution of 
the set of equations ( 11 a) -( 11 c). These equations imply the 
existence of functions A ,B such that 

;P.2 =A(;P.I), ;P,3 B(;P,I) 

holds (see Appendix A). 
Define a function Cby (;P,I = :a) 

C: ;p - ;P.IXI - ¢,zX2 - ¢'3X3 

=;p - aXt -A(a)X2 - B(a)X3. 

(Bl) 

(B2) 

Now we show that C is functionally dependent on a: The 
necessary and sufficient condition for two functions C and a 
of three variables X I ,x2,x3 to be functionally dependent is 
the vanishing of all subdeterminants of the matrix 

[
C,I C,2 C,3], 
a,l a,2 a.3 

(B3) 

i.e., 
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C.2 a.3 - C.3 a.2 = 0, 

C.! a.3 - C.3 a.! = 0, 

C.! a.2 - C.2 a.! = O. 

(B4) 

Inserting (B2) into (B4) shows that these conditions are 
satisfied for any ~ if (B 1) holds. 

Since C depends only on a we have 

d~ = a dXI + A dX2 + B dX3 

+ (XI +A 'X2 + B 'X3 + C')da, (BS) 

which implies 

O=XI +A'X2 +B'X3 +C'. (B6) 

Here (B2) and (B6) are identicalto the formulas (12a) and 
(12b); (B6) is also identical to (A20) with - C'(a) 
= E -I(a). 
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It is rather usual in general nonlinear fields that even if the waves begin to propagate under 
smooth initial conditions, after a finite time a shocklike discontinuity in the field quantities 
occurs at the wave front. Then the field theories fail to set a well-defined initial-value problem. 
By applying the method of characteristics, this propagation character of nonlinear 
gravitational waves which obey the lowest-order Gauss-Bonnet extended Einstein equations in 
higher-dimensional theory of gravity is studied. A diagonal metric tensor is assumed to be 
dependent on only two coordinate variables. It is found that the quadratic curvature terms 
added to the Einstein equations do not induce the occurrence of shock waves in the 
gravitational field. 

I. INTRODUCTION 

Although the correct theory is not yet known, most uni
fied theories require more than four dimensions in space
time. The effective gravitational Lagrangian may contain 
higher-order curvature corrections in addition to the usual 
Einstein Lagrangian. Lovelock I proved that if the field equa
tions are of second order the most general metric Lagrangian 
is simply expressed as a finite sum of dimensionally contin
ued Gauss-Bonnet densities. Zwiebach2 and Zumin03 em
phasized the importance of the Lovelock Lagrangian in 
terms of the ghost-free character of string theories. Even if 
the relevance to string theories is still obscure,4 it is a natural 
Lagrangian to study higher-dimensional theories of gravity, 
and various properties of the cosmological or spherically 
symmetric solutions have been extensively investigated.5 In 
this paper we propose to analyze another basic aspect of this 
extended gravity theory, i.e., nonlinear propagation of gravi
tational waves. 

In the following we consider only the leading quadratic 
correction, and so the action has the form 

1=11 +12' (1) 

II = J dDx( _g)I/2RIK, (2) 

12 = J d DX( - g) II2a (R!-,va{3R !-'va{3 

-4R!-'vR!-,v+R2), (3) 

in aD-dimensional (D> 4) space-time with signature 
(-,+, ... ,+). We use conventions such that R!-'va{3 

= + r!-' v{3,a ... , R!-'v = R {3!-'{3v, R = R {3 {3' The constant a is 
an undetermined parameter. One may be concerned with a 
small deviation h!-,v (=g!-'v - 'T/!-'v' Ih!-,v I ~ 1) from the flat 
metric 'T/!-'v' Then the quadratic Gauss-Bonnet action 12 con
tributes only to terms quadratic and higher in h!-,v in the field 
equations, and no propagator correction is induced. If one 
considers nonlinear wave propagation, it is not so trivial to 
understand the contribution of 12, What physical effects can 
be expected from the quadractic curvature terms? 

Let us recall some results of the characteristic theory of 
the hyperbolic partial differential system in two independent 
variables with the form 

U,t +AU,x +B=O, (4) 

where U is a column vector with n components U I ,U2""'U n 

and the matrix A and the column vector B are functions of 
field quantities U j • We consider wave propagation in the 
positive direction of the x axis under smooth (Lipschitz con
tinuous) initial conditions. It is rather usual in the nonlinear 
system that after a finite time tc neighboring characteristic 
curves cross on the wave front and then a shocklike discon
tinuity in the field quantities occurs there.6 We encounter an 
ill-posed Cauchy problem, because various solutions includ
ing the discontinuity (weak solutions) can satisfy the same 
initial conditions. In order to remove such nonuniqueness in 
the initial value problem, one must give a definite physical 
principle for selection of an adequate solution among many 
weak solutions. 

We call a hyperbolic system "exceptional" if the critical 
time tc does not exist. Semilinear equations in which A is a 
constant matrix become a typical example of exceptional 
systems. Our main concern here is to investigate whether in 
the lowest-order Gauss-Bonnet extended Einstein theory 
gravitational shock waves (discontinuities on wave fronts) 
occur under continuous initial conditions or not. It has been 
already known that the pure Einstein system in two indepen
dent variables is exceptional. 7 However the quadratic 
Gauss-Bonnet term makes nontrivial contributions to the 
matrix A in Eq. (4) and therefore the behavior of character
istic curves can be modified. The exceptional property in 
wave propagation may be lost. 

In Sec. II we review briefly the method of characteristics 
for the general hyperbolic system ( 4 ) to derive a criterion for 
the occurrence of discontinuity.6,7 With the aim of applica
tion of the criterion to the lowest-order Gauss-Bonnet ex
tended Einstein system, we rewrite in Sec. III the field equa
tions for gravitational wave propagation into the standard 
form (4). We assume a diagonal metric tensor dependent on 

2720 J. Math. Phys. 28 (11), November 1987 0022-2488/87/112720-06$02.50 © 1987 American Institute of Physics 2720 



                                                                                                                                    

two coordinate variables I and x. Our conclusion obtained in 
Sec. IV is that in spite of the complicated form of matrix A 
this hyperbolic system including the quadratic curvature 
terms remains exceptional. The final section contains discus
sions of the problems left to future investigations. 

II. CRITERION FOR OCCURRENCE OF DISCONTINUITY 

For the hyperbolic system (4) all eigenvalues of matrix 
A are real. If the wave propagates in the positive direction of 
the x axis, there exists at least one positive eigenvalue. We 
denote one of the positive eigenvalues by A (<P), which is the 
velocity of wave propagation. The equation 

¢;.t + A (<P)¢;,x = 0 (5) 

determines the characteristic curve ¢; (x,t) const. If the 
multiplicity of the eigenvalue A (<p) is m<p' there exist the cor
responding left and right eigenvectors I (<p.k) and r(""k), where 
k = l, ... ,m<p' The other left and right eigenvectors are de
noted by I (j) and r(j), wherej m<p + l, ... ,n. 

Let us consider waves propagating into the constant 
state such that 

B(Uo ) = 0, (6) 

where Uo is a constant solution ofEq. (4). The wave front is 
taken as 

¢;(x,t) = 0, (7) 

which starts from x = 0 at t = 0 (see Fig. I). Before a criti
cal time U remains Lipschitz continuous on the wave front, 
i.e., 

U(¢; = 0_,1) = U(¢; = 0+,1), 

aU(¢; = 0_,1) _ aU(¢; = O+,t) 

at at 

(8) 

where ¢; = 0 _ and 0 + mean limiting operations on the sides 
¢; < 0 (wave-disturbed region) and l{> > 0 (constant state), 
respectively. The derivatives with respect to ¢; admit a jump 
across the wave front as follows: 

t 

constant 
state 

n(t) ;60, 

x 

FIG.!. Wave propagation into constant state. 
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axe¢; = O_,t) _ axe¢; = O+,t) =X(t);60 (9) 
a¢; a¢; , 

where ax(¢;,t)la¢; (=x,<p) represents a measure of distance 
between the two neighboring characteristic curves. If at 
t = te the curve ¢; = 8 < 0 in the disturbed side intersects 
with the wave front ¢; = 0, we have 

axel{> = O_,le ) 

a¢; = o. (10) 

Then by virtue of the relation 

u'x = U,<p1x,,,,, ( 11) 

the function U ceases to be Lipschitz continuous on the wave 
front. 

Now we want to find the criterion for the occurrence of 
discontinuity. By differentiating the characteristic equation 

ax(¢;,t) = A (<p) (12) 
at 

with respect to l{>, we obtain the result 

X,I = i (aA (<P») nit 
;=1 au; 0 

(13) 

where ni is the ith component of the column vector n. Here
after the subscript 0 refers to the constant state solution. [In 
Eq. (13) aA (<p) lau i is assumed to be continuous on the wave 
front.] Integration of Eq. (13) gives 

axe¢; = O_,lc ) 

a¢; 

axe¢; = 0_,0) n Ltc (aA (<P») = + L -- nidI, 
a¢; ;=1 0 aU i 0 

(14) 

because the quantity (x,,,,)<p=o+ inEq. (9) is constant. This 
tells us that Eq. (10) cannot be satisfied if 

n (aA (<P») L - n;=o. 
i=1 au; 0 

(15) 

The components ni are determined by multiplying Eq. (4) 
by the left eigenvectors I (j) and I ("',k). Using the jump condi
tions across the wave front, we have 

n 

L (li/»ini =0, j=m", + 1, ... ,n, (16) 
i=l 

k = l, ... ,m"" (17) 

where 
n 

b (<p,k) L (l (<P,k»jB
i

• 

;=1 

From Eq. (16) we note that n can be expressed as a linear 
combination of the right eigenvectors r~""k). Thus Eq. (15) 
reduces to the final form of the criterion 

n (aA (",») L -- (rJ""k) )0 = 0, 
i=1 aUi 0 

(18) 

which assures the exceptional property of the hyperbolic sys
tem. It is also true that ifEq. (18) does not hold the shock
like discontinuity can occur after a finite time. The criterion 
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(18) is very useful, since our remaining task is only to solve 
an eigenvalue problem of matrix A. 

III. HYPERBOLIC EQUATIONS FOR GRAVITATIONAL 
WAVES 

We now tum to the special hyperbolic system given by 
the quadratic Gauss-Bonnet extended Einstein theory. The 
nonlinear fields we consider here correspond to gravitational 
waves propagating in the direction of the x axis. We assume 
that the wave propagation is independent of the other spatial 
coordinates / (i = 1, ... ,n). Then the line element in a 
(n + 2)-dimensional space-time can be written in the form 

n 
'-.2 2 2 "" hid j ds = - expfo(x,t)(dt - dx ) + ~ ij(x,t)dy y. 

i.j~ 1 

(19) 

This metric may be interpreted as plane or cylindrical waves, 
but it differs from the so-calledpp metric (plane-fronted par
allel-ray waves) which has the form 

n 

d?=2H(u'Yi)du2+2dudv+ 2: (d/)2. (20) 
i~1 

The pp wave solution remains a solution of the pure Einstein 
equations, because then the Gauss-Bonnet contributions to 
the field equations vanish. s For the line element (19) the 
metric components hij rather thenfo represent the dynami
cal degree of freedom of the gravitational field. The Gauss
Bonnet term survives even in Einstein geometries such that 

Gl-'v=Rl-'v - !,gl-'vR = O. (21) 

In the following, for mathematical simplicity, the off
diagonal components of hij will be omitted. The metric con
tains only n - 1 dynamical modes, since the trace part 
~7~ 1 In hjj obeys a constraint equation. We rewrite the diag
onal components as 

hjj = exp/;o (22) 

The Einstein plus Gauss-Bonnet action yields field 
equations of second order. We express the equations as 

GI-'V + KaHl-'v = 0, (23) 

where GI-'V is the Einstein tensor andHl-'v denotes the Gauss
Bonnet corrections. Each tensor can be divided into parts 
according to the degree in the second-order derivatives of 
fa (a = O,l, ... ,n) as follows: 

G - G(O) + G(\) (24) 
J.lV - J1.V /-lV' 

H =H(O) +H(\) +H(2) (25) 
J.lV J.lV JlV /-tv • 

The parts of the lowest degree, G ~~ and H ~~), are composed 
offa and the first-order derivatives only. We must obtain the 
matrix A in Eq. (4) to check the criterion ( 18). No explicit 
forms of these parts are necessary for this purpose. 

The Einstein part linear in the second-order derivatives 
gives 

(26) 

G (\) - 1 ~ I" 
xx - -2 i~IJi.tt' (27) 
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n 
G(l) = 

II 2: <Ia.tt -fa.xx)· 
2 a~O.a#i 

(28) 

Thus the pure Einstein equations become semilinear. This 
property is not altered even if the off-diagonal components 
ofhij are present. It is obvious for the metric (19) thatgravi
tational shock waves never occur under continuous initial 
conditions so far as the pure Einstein theory is concerned. 

The Gauss-Bonnet linear part H ~~ includes very com
plicated functions offa, fa.x, andfa.t in the coefficients of the 
second-order derivatives. A remarkable point for the Gauss
Bonnet extended Einstein equations is that there exist terms 
quadratic in the second-order derivatives such that 

Hi(2) =H~~) = 0, (29) 
n 

H,(,2) = exp ( - 1"0) "" (I'. I"k J ( ~ J j.tt J) .xx 
j>k~ I. 

j#i. k #i 

+ J;.xx Att - 2J;,tx fk.tx ). (30) 

We regard the (x,x) and (i,i) components of Eqs. (23) as 
the set of equations which should be rewritten into the stan
dard form (4). The solutions of this hyperbolic system auto
matically satisfy the remaining components of Eq. (23) if 
the initial conditions are adequately chosen. 

The set of equations obtained here is not quasilinear, 
and so the application of the results in Sec. II seems impossi
ble. However we can overcome this obstacle. Fortunately 
any terms quadratic in the second-order derivatives with re
spect to time, i.e., fa.tt Att are absent in H ~2). The set of 
equations can be considered as a linear inhomogenous alge
braic system for fa.II' Then, by solving this algebraic system, 
it is always possible to expressfa.1I as a function of the deriva
tives oflower order with respect to time, i.e., 

(31) 

wherevb =fb.x' Wb =fb.t,Pb =fb.xx, andqb =fb.tX. Unless a 
discontinuity occurs, Eq. (31) admits a continuous exten
sion of solutions from the initial state. Furthermore we find a 
manipulation which reduces Eq. (31) to a quasilinear sys
tem. Wetreatpa andqa aswellasfa, Va' andwa asindepen
dent unknown field variables, by giving the supplemental 
equations 

Ia.t = W a , (32) 

va.t = qa' (33) 

Pa.t = qa.x' (34) 

qa" = Ka,x' (35) 

besides Eq. (31). (If the function K a is linear in P a and q a , 
the set of fa' Va' and Wa only should be treated as unknown 
field variables.) Now we arrive at the standard quasilinear 
form (4) in which the column vector U has 5 (n + 1) com-

ponentsfo, .. ·,fn' VO'''''Vn' WO'''''Wn' PO,· .. ,Pn' and qo, .. ·,qn' 
and matrix A is expressed as 

o 
o 

-Pab 
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Here we write the right-hand side of Eq. (35) as follows: 

n [(aKa) (aKa \n 
Ka,x = b~O alb Vb + aVb Tb 

+ (~~: )qb + Pab Pb,x + qabqb,x J. (37) 

aKa aKa 
Pab = ah' qab = aqb . (38) 

In the next section we will study the eigenvalue problem for 
matrix (36). 

IV. ABSENCE OF GRAVITATIONAL SHOCK WAVES 

Let us denote the A th component of right eigenvectors 
of matrix (36) bY'A [A = 1, ... ,5(n + 1)]. The eigenvectors 
of the type 

'3(n+I)+1 = ... ='5(n+l) =0 

are uninteresting since the corresponding eigenvalue is equal 
to zero. The eigenvalue A related to the dynamical modes is 
given by the equation 

(
A8ab 8ab ) 

det = 0, 
Pab qab + A8ab 

(39) 

and so it is sufficient to consider the eigenvectors of the type 

'I = ... = '3(n + I) = O. 

This means that the derivatives aA I ala' aA I aVa' and 
aA I aWa have nothing to do with the criterion (18). 

Gravitational waves propagate into a constant state (6) 
thatweassumetobetheflatmetic, wherefa = Va = Wa = Pa 
= qa = O. The occurrence of dicontinuity is determined by 

the values of the derivatives aA lap a and aA I aq a at the wave 
front where the unknown field variablesfa, ... ,qa are contin
uous. We can obtain these values by solving Eq. (39) under 
the conditions la = Va = Wa = 0 which make the terms 
H 1~, H 1~), and G 1~) vanish. Our tedious task is to derive the 
explicit forms of the functions Ka (Ib = 0, Vb = 0, Wb = 0, 
Pb' qb) in Eq. (31). From the surviving terms of the (x,x) 
and (i,i) components in Eq. (23) we have the n + 1 algebra
ic equations 

" IK;=O, (40) 
;=1 

n 

- 2Ka I (KjPk + pjKk - 2qjqk) = o. (41) 
j>k= I, 
j#l, k#; 

By subtracting the ith component ofEq. (41) from any other 
components, we can cancel the term Ko - Po from this alge
braic system. Hence the solution K; becomes independent of 
both Po and qo (Le"PID = qlD = 0), and then the characteris
tic equation (39) reduces to 

(42) 

Because we have Poo = 1 and qoo = 0, the first factor in the 
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left-hand side of Eq. (42) gives the constant eigenvalues 
A = ± 1 which correspond to unphysical modes decoupled 
from any dynamical modes due to the metric components};. 
Thus the criterion ( 18) for our hyperbolic system should be 
read as 

2n ( aA ) I -- ('p)o=O, 
p= 1 dup 0 

(43) 

where U1 = PI"",Un = Pn' u" + 1 = ql,,,,,U2n = qn' and,p is 
the f3 th component of the right eigenvectors of the 2n X 2n 
matrix 

(44) 

The subscript 0 refers to the value at the wave front where 
la = Va = Wa = Pa = qa = O. 

Now let us obtain the eigenvalues of the matrix (44). 
The algebraic equations ( 40) and (41 ) admit the solution K; 
of a power series in Ka as follows: 

00 

K; = I (Ka)' K ~s>, (45) 
s=O 

whereK ~s) is a polynomial of orders + 1 inp; andq;. There
fore the matrix (44) and its eigenvalue A can be expressed in 
the same manner, 

(46) 

00 

A = I (Ka)'A s • (47) 
s=o 

Since for the terms As (s>2) of higher order in Ka all the 
derivatives aAJaup vanish atpi = qi = 0, we need only the 
first-order Gauss-Bonnet correction A 1 if we want to evalu
ate the terms (aAlaup)oinEq. (43). 

For the pure Einstein part, Eqs. (40) and (41) become 
n 

I K~O) =0, (48) 
;=1 

n 

I (K~O) -Pa) - (K~O) -Pi) =0. (49) 
a=O 

Equations (48) and (49) can be explicitly solved as follows: 

(0) _ 1 ~ K; -Pi -- ~ Pj, 
n j= 1 

which leads to 
(0) _ ~ II (0) - 0 

Pij - Uij - n, qij - . 

Thus we obtain the degenerate eigenvalues 

..1,0 = 0, ± 1. 

(50) 

(51) 

The presence of the eigenvalue ..1,0 = 0 results from the con
straint equation for the trace part ~7= I}; [see Eq. (40)], 
while the eigenvalues ..1,0 = ± 1 (the multiplicity is n - 1, 
respectively) represent gravitational waves propagating in 
the positive (or negative) direction of the x axis. Hence the 
components (, p ) 0 in Eq. (43) are given by the n - 1 linearly 
independent right eigenvectors corresponding to ..1,0 = 1 and 
satisfy the relations 
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(52) 
n 

I rj=O. 
;=1 

The degeneracy of the unperturbed eigenvalue ,,1,0 = 1 is 
removed by the Gauss-Bonnet correction A I' The first-order 
terms in Eqs. (40) and (41) are 

n 

I Krl) =0, (53) 
;=0 

iK~ll=2Ka i (KJOlPk+pjKiOl_2qjqk) 
a~O. j>k= 1, 

a"i'i j"i'i, k "i'i 

-2 ipJ+.i.5 2 

j=1 n 

- 2(1 + 2/n)5P; + 4pt 
n 

+ 2 I qJ - 21/ + 41/qj - 4q;, (54) 
j= I 

where 
n n 

5= I Pi' 1/= I qj. (55) 
i=1 1=1 

From Eqs. (53) and (54) we obtain 

K (I) 4{ - pt +..!.. ~ pJ + (..!.. + ..!..)(p; -1.)5 
I n /~l 2 n n 

(56) 

+ {( 2 + :) 5 - 8Pi }Oij, (57) 

8 8 
q(l) = - qj + -1/ - 4qj + (8qj 41/)oij' 

I) n n 

Following the usual perturbation method in degenerate 
cases, we evaluate the first-order correction A I to the eigen
value ,,1,0 = 1. This requires us to solve the algebraic equation 

(58) 

where X mm, is the (n - 1) X (n - 1) matrix defined by 

l(m)( 0 
-PY) 

{( 1 + ~)5 + 21/ }Omm' 
n 

- 8 I (p; + ql )rim)rim '>' 
;=1 

(59) 

where I (m) and r(m') are n 1 left and right eigenvectors for 
,,1,0 = 1 satisfying the orthonormal condition 

2n 
~ nm)r(m') =0 '. 
~ I I mm 
;=1 

In general, Eq. (58) will have n - 1 roots which are ex
pressed as 
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A ~k) =jCk)(7,U;) (k= 1,2, ... ,n 1), (60) 

where 

7= (1 + 21n)5 + 21/, (61) 

Ui=pj +qj' 

For example, in the case n = 3, the perturbed eigenvalueA J 

turns out to be 

4 3 2 ( 3 )112 
A I 7 - - I Uj ± - . I (Ui - Uj ) 2 . (62) 

3 1=1 3."",=1 
We derived the Gauss-Bonnet correction AI to the ve

locity of wave propagation and found that it depends on the 
field variables PI and qj through the limited combinations of 
7 and U;. Now we are in a position to answer the main ques
tion in this paper: Does the field profile near the wave front 
steepen toward a shocklike discontinuity? The answer is no, 
because it is easy to check the orthogonality (43) with the 
aid ofEq. (52), i.e., 

By virtue of this orthogonality relation the velocity A of 
wave propagation satisfies the criterion (15). If we recall 
U = 0 at the side of the constant state (the flat metric), we 
get from Eq. (9), 

fI aU(t/J=o_,t) (64) 

at/J 
and so Eq. (15) gives 

aA(t/J=O_,t) =I(aA) fI; O. 
at/J ; au; 0 

(65) 

Thus a characteristic curve at the side of wave-disturbed 
regiont/J = - 101 (101 « 1) neighboring the wave front t/J = 0 
becomes almost parallel to it, i.e., 

(66) 

The intersection of the characteristic curve with the wave 
front is surely prohibited. The hyperbolic system in the low
est-order Gauss-Bonnet extended Einstein theory becomes 
exceptional so far as the diagonal metric for waves propagat
ing into the flat space-time is concerned. 

V. DISCUSSIONS 

We have shown that the Gauss-Bonnet extended Ein
stein theory does not miss the property desirable for setting a 
well-defined initial value problem on wave propagation. 
However our proof in this paper covers only a limited case 
and many problems remain unsolved. 

First, our proof should be extended to the case that the 
metric contains the off-diagonal components hij (i i=-j). Even 
if it is improbable that the coupled terms, such as h ij,xx It,ll' 
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induce the occurrence of discontinuity, some definite proof 
will be necessary. 

We assumed the flat metric in the undisturbed region. 
The theory has (anti-) de Sitter space as a solution. We can 
consider nonlinear wave propagation in (anti-) de Sitter 
space to check the occurrence of discontinuity there, al
though no straight application of the method mentioned in 
this paper is possible. 

Let us give a comment on the contribution of the Gauss
Bonnet terms higher than quadratic in curvature. If all the 
terms do not contain the second-order derivatives with re
spect to time in nonlinear forms, such as /;.tt fj,t/, we can 
always rewrite the field equations into the standard quasilin
ear form (4) through the manipulation done in Sec. III. 
Then we obtain the eigenvalue A of matrix A and express it as 
a power series inp; and q;. Because the Gauss-Bonnet com
bination of order k in curvature generates terms of at least 
order k info and/;, only the quadratic curvature combina
tion (k = 2) can contribute to the first-order correction Al 
of the eigenvalue. This point is investigated in Ref. 9, and it is 
shown that even for the general Lovelock Lagrangian the 
above-mentioned conclusion is not altered. 

If any quadratic and higher-order curvature terms dif
ferent from the Gauss-Bonnet combinations are added to 
the gravitational Lagrangian, we encounter field equations 
of fourth order. The propagation character of gravitational 
waves is mainly determined by terms including the fourth-
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order derivatives (e.g., R k - IDRJty), and the Einstein La
grangian plays no essential role in wave propagation. Appar
ently the field equations can be treated as a quasilinear 
system, and so the investigation of occurrence of shock 
waves is possible. A detailed comparison between the propa
gation characters of nonlinear waves in the higher-derivative 
theory of gravity and in the Gauss-Bonnet extended Ein
stein one is an interesting problem. 
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In quantum statistics there are four categories of quantum degeneracy: nondegenerate, weak, 
intermediate, and strong. These are associated with the Fermi-Dirac and Bose-Einstein 
integrals, which are difficult to evaluate over the entire range of the activity parameter r 
defined as the particle density divided by the quantum concentration. In this paper (I), four 
classical systems with r~ 1, and four weakly degenerate systems with r S 1 are examined. In the 
former, the Maxwell-Boltzmann distribution is sufficient. In the latter, the treatment of 
Landau and Lifschitz is extended. Physically realistic systems, like electrons in intrinsic and 
impurity semiconductors, and noble gases at different pressures and temperatures, are 
investigated. The neutrino and neutral pion systems are illustrative, albeit esoteric. Expressions 
for the quantum concentration for different dimensions and particle velocities are useful in 
predicting the onset of degeneracy. In the companion paper (II), intermediate and strong 
degeneracies are studied for r? 1. 

I. INTRODUCTION 

The word degenerate, in common usage, is pejorative. 
However, in physics, degenerate systems are among the 
most interesting and significant. In fact the word has two 
distinct scientific meanings. J A degenerate quantum system 
is one in which two or more wave functions share the same 
energy value. A degenerate statistical system is one in which 
a number of wave functions share the same region of space. 

In the early days of modern physics, the word "degener
ate" was used to describe abnormal or unusual behavior. 2 

Thus it was considered normal for an eigenvalue to have just 
one associated eigenfunction. The Boltzmann distribution 
described a "normal" gas. The Fermi-Dirac and the Bose
Einstein distributions represented the degeneration of a gas. 

In this paper (I) and the companion paper (II), we do a 
case study of degeneracy in statistical systems. Where possi
ble, cases of real physical interest are selected. In some in
stances, for purposes of illustration, the physical systems de
scribed are fictitious. 

II. THE SIGNIFICANT PARAMETERS IN DEGENERACY 

In the literature, four related quantities are used to de
scribe the degeneracy of a physical system; usually a gas of 
noninteracting particles. The absolute activity 

r=n/n~, (1) 

where n is the particle density and n~ is the quantum concen
tration3 

nQ times the quantum degeneracy g. (In these two 
papers we refer to n~ as the quantum concentration.) If 
r~ 1, Fermi and Bose gases behave classically. Otherwise the 
gas is in the quantum regime. 

In systems where the concentration n is fixed and the 
temperature is variable, a degeneracy temperature To is de
fined, using the condition that r = 1. Then 

T~ To or TS To (2) 

designates the classical or the quantum regime, respectively. 
The chemical potential f-l in Maxwell-Boltzmann 

(MB), Bose-Einstein (BE), and Fermi-Dirac (FD) statis-

tics is a normalization parameter which depends on nand T. 
Although it is frequently less accessible than r or To, the 
quantity 

1]=f-l/kT (3) 

is often used to characterize the degree of degeneracy. In MB 
statistics 1] is always negative. In BE statistics 1] may be nega
tive or zero. In FD statistics 1] may be negative, zero, or 
positive. 

In the majority of calculations in statistical physics, an 
expression for the density of states D(€) is required. This 
depends on the number of dimensions in the problem, and on 
the relativistic character of the particles. It is independent of 
the type of statistics used (MB, BE, or FD). A classical MB 
calculation using each of the density of states expressions 
enables one to find explicit formulas for the quantum con
centration used in the ratio ( 1 ). We designate the density of 
states as the fourth parameter that is useful in describing all 
types of degeneracy. 

We develop expressions for the density of states in one, 
two, or three dimensions for either nonrelativistic or ultra
relativistic particles,4 

D) (p )dp = 2gL /21T'fz, 

D2(p)dp = 2gA1Tp dp/(21T'fz) 2, 

D3(p)dp = gV 41Tp2 dp/(21T'fz)3. 

(4a) 

(4b) 

(4c) 

In (4), L is the length, A is the area, and V is the volume; if 
the particle rest mass m =f 0, the quantum dengeneracy 
g = 2S + 1, where S is the spin; if m = 0, g = 2S, p is the 
momentum, and fz is Planck's constant divided by 21T. 

If the particles are nonrelativistic, € = p2/2m and the 
corresponding density of states expressions,5 as a function of 
energy, are 

D J (€) = gL(2m/€) J/2/21T'fz, 

D2(€) = gAm/2~, 

D3(€) =gVm3/2(2€)J/2/2~fz3. 

(5a) 

(5b) 

(5c) 

On the other hand, if the particles are uItrarelativistic, 
€ = cp, in which case 
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DI (E) = gL hrfu:, 

D2(E) =gAEI21T"1f-c2, 

D3(E) =gVc/2-rrffc3, 

where c is the speed of light in a vacuum. 

(6a) 

(6b) 

(6c) 

The quantum concentration n~, discussed in connec
tion with (1), should be considered as a generic symbol. It 
could represent a linear, surface, or volume concentration. 
There are six different expressions for the quantum concen
tration, one for each of the density of states expressions. We 
calculate n~ = A ~ from Eq. (Sa). The other five functions 
may be found in a similar fashion, 

N = 1"" D(E)e(1-' - E)lkt dE 

= el-'lkTgL ioo 
E- I / 2e - Elkt dE. 

(21rll)(2m) 1/2 0 

Integrating and solving for 'TJ = plkT, we find 

'TJ = In (A I A ~ ), 

where A = NIL, and 

A ~ =g(mkT)I/2/(21rll2)1I2. 

Similarly, for nonrelativistic particles, 

~ = gmkT 121T"1f-, 

and 

P~ = g(mkT 121rll2) 3/2. 

For ultrarelativistic particles, 

A ~ = gkT 11rllc, 

~ = (g/21T) (kT Ik)2, 

and 
P~ = (gl-rr) (kT Ik)3. 

(7) 

(8) 

(9a) 

(9b) 

(9c) 

( lOa) 

( lOb) 

( lOc) 

The dimensions of A~, ~, and P~ are cm-t, cm- 2
, and 

cm-3
, respectively. The density of states (Sc) and (6c) and 

the corresponding quantum concentrations (9c) and (IOc) 
are well known.6 The other expressions may not be so famil
iar. All six of the quantities n~ may be calculated from the 
appropriate Boltzmann partition function Z, where Z is of 
the form n~ V'lg and V' represents a volume, area, or 
length.7 

III. NONDEGENERATE SYSTEMS 

A nondegenerate system is classical and is described for 
fermions and bosons alike by the Maxwell-Boltzmann dis
tribution. 

A. Fermions 

Case 1: The conduction electrons in an intrinsic semi
conductor,8 e.g., Si. 

In this three-dimensional problem, the conduction elec
tron speed v~c, the effective mass m* is 1.06 times the free 
electron mass, and g = 2. The energy of an electron E - Ec 

refers to the conduction band energy Ec as the origin. We use 
(Sc) for the density of states. The particle density 
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_ (mkT)3/2 [p - Ec ] 
Pe - 2 21T"1f- exp ~ . 

We define 

'TJ = (p - Ec )lkT = In(Pelp~), 
where 

p~ = 2(m*kT 121T"1f-) 3/2 = 3.87x 1019 cm- 3, 

(11 ) 

(12) 

(13) 

for T = 300 K. ( 14 ) 
Ifwe wish to find 'TJ, we must consider the concentration 

of holes, as this quantity depends on the energy gap and the 
effective masses of electrons and holes, 

Ph = 2(mtkT 121rll2) 3/2 exp(Ev -p)lkT), (1S) 

where mt = 0.S8 min Si and Ev is the energy at the top of the 
valence band. In an intrinsic semiconductor Pe = Ph' Using 
(12) and (1S) we have 

Eg 3 mt 
'TJ= --- +-In-, 

2kT 4 m: 
(16) 

where Eg = Ec - Ev is the energy gap. In Si, Eg = 1.14 eV. 
From (12), (13), (14), and (16) we find Pe = 4.78x 109 

cm-3,r=Pelp~ = 1.24 X 10- 10
, and'TJ = -22.8.Thede

generacy temperature follows when we set r = 1 and solve 
for To from (14), 

To = 9.39X 10-5 K. (17) 

In case 1, we have seen that r ~ 1, 'TJ is negative and large, and 
To ~ T. These values justify the use of MB statistics. 

Case 2: A one-dimensional stream of neutrinos at 
T= 300 K, with a density of A = NvlL = Sx 109 cm- I. 

The number density is numerically about the same as Po 
for the conduction electrons in Si. But of course, the dimen
sions differ. Neutrinos have a zero rest mass and are treated 
ultrarelativistically. For a neutrino g = 1. The appropriate 
density of states expression is (6a). The number of neutrinos 

L -l-'lkT ioo 

N = e -ElkTd veE. 
1rllc 0 

(18) 

Integrating and solving for 'TJ yields 

'TJ=ln(AIA~), (19) 

with A ~ given by (lOa). Numerically A ~ = 417 em-I. The 
absolute activity r = 1.20 X 107

• The calculation for A ~ and 
r is correct since these quantities do not depend on the type 
of statistical distribution used. As r> 1, the appropriate sta
tistical description is FD, not MB. The expression (19) for'TJ 
is, therefore, invalid. 

If we modify the problem dramatically and set 
A = 4 cm- I at T= 300 K, then r = 9.S7X 10-3 and 
'TJ = - 4.6S. The degeneracy temperature 

To = (1rllcA)lk = 2.87 K. (20) 

This example is classical, but marginally so. The ratio r is 
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about 1 %,1] is negative, but not large, and Tis a factor of 104 
above the degeneracy temperature. 

From a physical point of view, a stream of neutrinos at 
T = 300 K, whose linear density A -10 cm -I is much more 
likely than A _109 cm -I. 

B.Bosons 
Case 3: A three-dimensional gas of neon atoms at 

T = 300 K in a very high laboratory vacuum p = 10- 18 

atm.9 The mass of a Ne atom is 3.53 X 10- 23 g. 
We expect that the particles are nonrelativistic and that 

the statistical system is classical. 
The particle speed may be found from 

mv2/2 = 3kT /2. (21) 

This gives a v = 5.93 X 104 cm/sec which is indeed much 
smaller than e. The particle density follows from the equa
tion of state 

p=pkT. 

The neon concentration 

p = 24.5 cm- 3
. 

Hence 

r =p/p~ = 2.55x 10-25
, 

(22) 

(23) 

(24) 

which is extremely small compared to unity. Therefore, the 
classical prescription may be used to find 

1] = ll!kT = In r = - 56.6. (25) 

As a final check in this case, we calculate the degeneracy 
temperature, which should be very small compared to 
3OOK, 

(26) 

Case 4: Neutral pions with a kinetic energy of 200 MeV 
and a volume density p<109 cm- 3

• 

The spin of the 1r
0 is zero. Hence g = 1. The rest mass 10 

of this particle is 264.3me = 135 MeV /e2
• 

Since the kinetic energy exceeds the rest energy, the par
ticles are relativistic. Indeed, using 

(27) 

with r = 0 - v2 /e2
) -1/2, it follows that v = 0.92e. We use 

the kinetic temperature 

3kT/2 = KE (28) 

to calculate T = 1.54 X 1012 K. A comparison of p with p~ 
will tell us whether or not the MB distribution is valid. From 
( IOc), 

p~ = (kT /he)3r = 3.12X 1037 cm-3
• 

The absolute activity 

r = p/p~<3.21 X 10- 29 

and 

1] = In r< - 65.6. 

The degeneracy temperature 

To = fle( rp) 1/3/k<492 K. 

(29) 

(30) 

(31) 

(32) 

Each of the quantities given by (30)-(32) is consistent with 
the classical MB representation for an ultrarelativistic gas. 
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In each of the four cases considered, the most practical 
and significant quantity to calculate is the absolute activity r, 
defined by Eq. (1). This is the ratio of the actual density of 
the gas to the quantum concentration. If r ~ 1, the MB distri
bution may be used to find 1]. It is generally not possible to 
guess n~ with any accuracy. This quantity depends on the 
dimensionality and relativistic nature of the problem. It is 
for this reason that Eqs. (9) and (10) are quite useful. 

IV. WEAKLY DEGENERATE SYSTEMS 

In most of the calculations in statistical mechanics, the 
systems are either nondegenerate or strongly degenerate. In 
this section and in paper II, we consider two regions which 
are in between: weak degeneracy and intermediate degener
acy. We establish a range for r in each of these four regions. 

A weakly degenerate system is one in which degenerate 
behavior is just beginning. II 

In the description of an ideal gas, whether it be one, two, 
or three dimensional, a very important relationship is the 
equation of state. Classically, this is 

p'V' = NkT. (33) 

In this paper, the primed quantities on the left represent 
pressure p and volume V in three dimensions, force per unit 
length Q and area A in two dimensions, and force F and 
length L in one dimension. 

A Fermi-Dirac or Bose-Einstein gas, which is weakly 
degenerate, is described by (33) multiplied by a series of 
decreasing correction terms. We generate these correction 
terms, following the procedure given by Landau and 
Lifschitz. 12 The method starts with the grand potential,13 

0= +kT fO InO ±e(/l-€)/kT)D(€)d€. (34) 

The upper (lower) sign corresponds to FD (BE) statistics. 
We use the series 

w2 w3 w4 

In(1 +_w) = +w-- +- --+ "', (35) 
2 - 3 4-

to expand the integrand. We insert each of the six density of 
states expressions from Eqs. (5) and (6) and integrate over 
x = €/kT term by term. The resulting expression for the 
grand potential has the form 

( 
e'1 e2 '1 e3 '1 ) 

O=-NkT 1+-+-+-+"', 
2s 3s 4s 

(36) 

where s = ~ for a nonrelativistic three-dimensional gas. The 
leading term, of course, is 0Boltzmann' We use the classical 
formula exp( 1]) = r, and write the result in terms of Tand V. 
Now we make use of the fact that small increments in ther
modynamic functions, expressed in terms of the correspond
ing variables, are equal,14 e.g., 

(8u),,/l,V' = (8F)Y,v',N' (37) 

Thus 

F=Fo+8F=Fo+NkT(+...c. _ r ±.c+ ... ). 
- 2s 3' 4s 

(38) 

We find p from the thermodynamic relation 
pi = _ (JF /JV')yo Noting that 
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ar n 
--= ---
av' V'n~ 

(39) 

the result is 

( 

00 (_ 1) 1 + 1/1 ) 
p' = nkT 1 + IL= I (/+1), 

(40) 

for FD statistics and 

, _ nkT(1 _ ~ /1 ) 
p - I-=-I (/ + I)S 

(41 ) 

for BE statistics. 
The parameter s in these equations depends on the rela

tivistic character of the problem and on the dimensionality. 
See Table I. 

This procedure may seem circuitous since the grand po
tential in (33) is in fact PV. The equation of state, however, 
connects the variables P, V, and T. Therefore we must elimi
nate the parameter f.J from (34) which we do by means of the 
classical approximation 

N= 100 

D(E)dE/e[E-IL/kT] ± 1 

(42) 

or f.J = ILBoltzmann .15 

Consider the first correction term in (40) and (41) for 
the three-dimensional nonrelativistic case, 

oP = ± N 2'fi3/2-1f /2gV 2m 3/2 (kT) 1/2. (43) 

This agrees with the published result. 16 Our results are more 
general. 

We use these now to define the appropriate range for 
two of the four types of degeneracy. This definition is arbi
trary, as there are five values of s, depending on geometry 
and particle speed. 

If the gas is classical (or nondegenerate), the absolute 
activity 

0<r<2s x 10-2
• (44) 

Hence for a three-dimensional NR gas, r must be less than 
5.66X 10-2

• Ifr = 2s x 10- 2
, the equation of state differs by 

1 % from the classical value. In general, nondegeneracy re
quires r to be less than 0.16. 

If the gas is weakly degenerate, the absolute activity 

(45) 

The weakly degenerate expressions for the equation of 
state given by (40) and (41) are obtained by expansion of 
the integrand in (34). These three series converge if 
exp(1]) = r< 1. 

TABLE I. Here s = power of (I + 1) in Eqs. (40) and (41). 

One dimension 

Two dimensions 

Three dimensions 

Nonrelativistic 
problem 

2 

Ultrarelativistic 
problem 

2 

3 

4 
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On the other hand, if the gas exhibits intermediate or 
strong degeneracy, r~ 1. In Paper II, we establish a range for 
each of these two regions. 

A. Fermions 

Case 5: Phosphorus doped silicon at T = 4.2 K with a 
donor concentration of9.18 X 1015 cm- 3

• 

As this is a three-dimensional nonrelativistic problem, 
the quantum concentration is given by 

p~ =g(mkT/21rli2
)3/

2 =2.08X1016 cm- 3
. (46) 

We chose the donor concentration to be 20% of this value. 
The concentration of conduction electrons is less than the 
donor concentration and may be calculated by means of the 
grand partition function, 17 

(47) 

Here, lEd I = 45 X 10- 3 eV, is the energy required to ionize a 
phosphorus donorl8 in Si. Hence 

(48) 

using g = 2 and exp( 1]) = Pe/P~ = r. With f = 20% and 
lEd l4.kT, we find r = 0.153. 

If we use the first two correction terms in the equation of 
state (40), with s = ~, we find that the pressure exceeds the 
classical value by 2.40%. The contributions from the higher
order terms are negligible. 

Here 1] = In r = - 1.88, which is negative, but not as 
large as in cases 1-4. 

One might expect that this case of weak degeneracy 
would have a degeneracy temperature not far removed from 
the sample temperature of 4.2 K. Indeed 

To = r13T= 1.20 K. (49) 

Case 6: A one-dimensional stream of neutrinos at 
T= 1 K with a density A = 1 cm- I

• 

This is an ultrarelativistic one-dimensional problem, 
similar to case 2. The quantum concentration 

A ~ = gkT hrfzc = 1.39. 

The absolute activity 

and 

r = A/A ~ = 0.720, 

1] = - 0.329, 

To = rT= 0.718 K. 

(50) 

(51) 

(52) 

(53) 

With r an appreciable fraction of unity, we have a case of 
weak degeneracy in which 1] is negative, but small, and Tis 
only slightly greater than the degeneracy temperature. 

The generalized pressure for this gas is a force. In (40), 
we use s = 2. We find that F exceeds its classical value by 
9.93%. Since r is fairly close to 1, the series does not con
verge rapidly. We used the first eight terms. 

B.Bosons 

Case 7: Consider helium to be an "ideal" gas at P = 1.2 
atm and T= 1 K. 

The density p = P /kT= 8.78X 1021 cm-3
. The quan

tum concentration may be found from (9c) with g = 1, 
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p~ = 1.50X 1021 cm- 3
• Therefore the absolute activity 

r =p/p~ = 5.84, 7J = In r = 1.76, and To = ~/3T 
= 3.25 K. 

Helium atoms are bosons requiring the use of Eq. (41) 
for the equation of state. Here the correction terms are all 
negative. They do not alternate in sign as in FD statistics. We 
find that the pressure is 14.4% less than the classical value. 
The eighth- and higher-order terms in (41) make negligible 
contributions. 

Case 8: Consider case 4, with all the parameters the 
same, except p = 9 X 1042 cm -3, an unlikely value, chosen 
for illustrative purposes. This is a three-dimensional ul
trarelativistic problem. The absolute activity r = 0.289, 
7J = - 1.24, and To = rl/2T= 8.28X lOll K. These values 
characterize weak degeneracy. The pressure calculated from 
Eq. (41) is less than the classical value by only 1.83%. This 
example shows that degeneracy for an ultrarelativistic gas of 
pions requires a particle concentration in which the interpar
ticle spacing is less than the range of the strong force. Clearly 
such a gas is not "ideal." 

v. CONCLUSION 

In quantum statistics, there are four degeneracy re
gimes: classical or nondegenerate, weak, intermediate, and 
strong. The reason why there is more than one category is 
primarily mathematical. There is no single analytic method 
which can be used to find solutions to the Fermi-Dirac and 
Bose-Einstein integrals over the entire range of the activity 
parameter r. In this and the succeeding paper, we extend the 
elegant methods of Landau and Lifschitz, Joyce and Dix
on,19 and Blankenbecler,20 so that it is possible to obtain 
analytic solutions for 0 < r < 00. In this paper, we examine 
eight cases: four are classical systems and four are weakly 
degenerate systems. The fermions studied are electrons in 
both intrinsic and impurity semiconductors and neutrinos of 
various linear particle densities. The bosons studied include 
Ne and He atoms with a particle density ranging from 20 
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cm -3 to 1021 cm -3. High energy neutral pions, which are 
also bosons, are studied using widely disparate particle den
sities. The semiconductor and ideal gas systems are physical
ly plausible. Certainly the high energy, high density, weakly 
degenerate 11'0 system is physically unrealistic. This particu
lar example makes an interesting point: The interparticle 
spacing must be comparable to the range of the nuclear force 
before the onset of degeneracy, for the pion system. 

lSee, for example, C. Kittle and H. Kroemer, Thermal Physics (Freeman, 
San Francisco, 1980), footnote p. 182. 

2W. Pauli, General Principles 0/ Quantum Mechanics (Springer, Berlin, 
1980), p. 48; F. Hund, The History o/Quantum Theory (Barnes and No
ble, New York, 1974), p. 168; W. H. Cropper, The Quantum Physics (Ox· 
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Statistical Thermodynamics (Harper and Row, New York, 1973), Chap. 
10. 

3See Ref. I, p. 73. 
4For background, see L. D. Landau and E. M. Lifschitz, Statistical Physics 
(Addison-Wesley, Reading, MA, 1958), p. 156. 

5See, for example, Ref. I, pp. 202 and 218. 
6See W. A. Barker, J. Math. Phys. 27, 302 (1986); Ref. I, p. 218; Ref. 4, pp. 
160 and 166. 

7See Ref. I, pp. 61 and 73. 
"The parameters and general approach are taken from Ref. I, pp. 355-363. 
9D. Halliday and R. Resnick, Fundamentals 0/ Physics (Wiley, New York, 
1970), p. 428. 

lOR. C. Weast, Handbook 0/ Chemistry and Physics (Chemical Rubber, 
Cleveland, 1977), F-270. 

"See Ref. 4, p. 159. 
12See Ref. 4, pp. 157-159. 
l3See also, A. Isihara, Statistical Physics (Academic, New York, 1971), p. 

83. 
l4See Ref. I, p. 70. 
l5In his treatment of the three-dimensional nonrelativistic case, Isihara uses 

(34) and (42) without using the classical expression for the chemical po
tential. See Ref. 13, p. 83. 

l6See Ref. 4, Eq. (55.15), p. 159; Ref. 13, Eq. 3.17, p. 83. 
l7See Ref. I, p. 141. 
l8See Ref. I, p. 368. 
19W. B. Joyce and R. W. Dixon, Appl. Phys. Lett. 31, 354 (1977). 
2°R. Blankenbecler, Am. J. Phys. 25, 279 (1957). 

Barker, Raney, and Sy 2730 



                                                                                                                                    

Correlation functions in finite memory-time reservoir theory 
Henk F. Arnoldus and Thomas F. George 
Departments of Physics and Astronomy and of Chemistry, 239 Fronczak Hall, State University of New 
York at Buffalo, Buffalo, New York 14260 

(Received 6 April 1987; accepted for publication 22 July 1987) 

Interaction of a small system S with a large reservoir R amounts to thermal relaxation of the 
reduced system density operator Ps (t). The presence of the reservoir enters the equation of 
motion for p s (t) through the reservoir correlation functions fkl ( 'T) (defined in the text), 
which decay to zero for 'T ..... 00 on a time scale 'Tc' Commonly, this 'Tc is much smaller than the 
inverse relaxation constants for the time evolution of Ps (t). Then a series of approximations 
can be made, which lead to a Markovian equation of motion for Ps (t). In this paper the 
assumption of a small reservoir correlation time is removed. The equation of motion for p s (t) 
is solved, and it appears that the memory effect, due to 'Tc <#0, can be incorporated in a 
frequency dependence of the relaxation operator f(w). Subsequently, (unequal-time) 
quantum correlation functions of two system operators are considered, where explicit 
expressions for (the Laplace transform of) the correlation functions are obtained. They involve 
again the relaxation operator f(w), which accounts for the time regression. Additionally it is 
found that an initial-correlation operator Y(w) arises, as a consequence of the fact that the 
equal-time correlation functions do not factorize as Ps (t) times the reservoir density operator. 
It is pointed out that the frequency dependence of f (w) and the occurrence of a nonzero Y (w ) 
both arise as a result of'Tc <#0, and should therefore be treated on an equal footing. Explicit 
evaluation of f (w) and Y (w) shows that their matrix elements can be expressed entirely in 
ikl (w ), just as in the Markov approximation. Hence no essential complications appear if one 
should go beyond the limits of a small reservoir correlation time 'T c . 

I. INTRODUCTION 

In many practical cases the equation for the evolution of 
the density operator p (t) of a quantum system assumes the 
general form 

0.1 ) 

where H ~ and the HR pertain to separated components S 
( = system) and R ( = reservoir) of the entire configura
tion, and H; denotes an interaction between Sand R. Prob
ably the most familiar example is spontaneous decay of an 
excited atom in empty space. Then, H ~ equals the atomic 
Hamiltonian (internal structure), H R represents the elec
tromagnetic field, and H ; is the dipole coupling between the 
atom and the electric component of the radiation field, 
which causes the spontaneous transitions. Since H R has a 
large (infinite) number of eigenstates, an exact diagonaliza
tion of the complete Hamiltonian H ~ + H R + H; is intrac
table. The interest is, however, in the behavior ofthe atom, as 
it is determined by its interaction with the radiation field 
(vacuum or black-body radiation). Therefore, one intro
duces the reduced atomic (system) density operator by 

Ps(t) = TrR p(t), (1.2) 

where the trace runs over all states of the radiation field (the 
reservoir). The issue of reservoir, relaxation, or heat-bath 
theory is then to derive an accurate equation of motion for 
Ps (t), in which the properties of R only enter as simple (and 
explicit) parameter functions. In the theory of spontaneous 
decay these are the Einstein coefficients and the Lamb shifts. 

Most crucial for the development of a relaxation theory 
is the concept of a large reservoir. If the system S were not 
present, the reservoir would be in a (thermal equilibrium) 
state ,oR' which obeys 

[HR,pR] =0, ,ok =pR' TrRpR = 1, (1.3) 

and it is assumed that the interaction between Sand R does 
not substantially affect this reservoir state. Or more precise
ly, the state ,oR changes a little due to the interaction with S, 
but the effect on the time evolution of the system density 
operator Ps (t) is negligible. In the quoted example this im
plies that an atom in complete vacuum should decay in the 
same fashion as an atom in space with a single photon pres
ent. As a consequence of this large-reservoir assumption, we 
can factorize the density operator as 

0.4) 

in places where the value ofp(t) determines the strength of 
the interaction. 

In order to derive a relatively simple equation for Ps (t), 
a sequence of additional approximations is usually made, 
which rely on the fact that the reservoir correlation time 'Tc is 
short in comparison with the inverse relaxation constants 1/ 
r. The idea is as follows. One derives an equation for Ps (t) 
which contains a quantity of the form (R (t)R (0», withR a 
typical reservoir operator (for instance the electric field), 
and where the angular brackets indicate an average with the 
density operator ,oR' e.g., 

( 1.5) 
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Due to the many eigenvalues fwJ of H R and the large cutoff 
frequency CUe' the function (R(t)R(O) will decay to zero 
on a time scale of the order of 7 e - 1/ CUe' On the other hand, 
as a result of the interaction between Sand R, the system 
density operator Ps (t) will decay on a time scale 1/r (with 
r an Einstein coefficient, for instance), and in many cases 
the relation 

( 1.6) 

holds. The validity of ( 1.6) allows a series of approximations 
(see the Appendix), commonly referred to as the Markov 
approximation. 

For spontaneous decay the restriction ( 1.6) is rigorous
ly justified, and the equation of motion for Ps (t) is known 
for more than a decade. 1-3 However, not every reservoir has 
a short correlation time. For instance, an adsorbed atom or 
molecule on a surface interacts with the substrate through 
phonon coupling (crystals) or electron-hole pair creation 
(metals). In the case of physisorbed atoms on a harmonic 
crystal, the Hamiltonian H ~ accounts for the kinetic and 
potential energy of the atom. The potential supports bound 
states, separated by _106_108 MHz (infrared), which is res
onant with the thermal excitations of the crystal (phonons). 
Mechanical coupling (vibrations) between the adsorbed 
atom and the lattice atoms gives rise to thermal relaxation of 
the adbond system.4

--{) Typical relaxation constants acquire 
an order of magnitude of 103_106 MHz, whereas the cutoff 
frequency (Debye frequency) is of the order of 106 MHz. 
For electron-hole pair formation the situation is even worse, 
where we have r7c ~ 1 so that a Markov approximation can 
never be justified. 7 

There exist many relaxation theories. Most notable are 
the projection techniques, 8-10 a Langevin formulation, 2 and, 
as we adopt here, a reservoir approach. 11-13 A feature of the 
quoted theories is that they all lead to the same result as soon 
as the Markov approximation is imposed. Several attempts 
have been undertaken to drop this Markov assumption. 14-16 

To the best of our knowledge, however, a treatment free of 
inconsistencies and leading to explicit expressions (rather 
than formal expressions which cannot be evaluated) was 
never formulated. 

II. RESERVOIR INTEGRAL 

In this section we set up the notation and derive an inte
gral of Eq. (1.1), which is appropriate for imposing the res
ervoir assumption. The first step is a redefinition of the sys
tem Hamiltonian. We recall that the interaction 
Hamiltonian H; is an operator in S + R space, and there
fore its reservoir average (H ; ) will be an operator in S space. 
In order to eliminate so-called secular terms, we define the 
new system and interaction Hamiltonians by 

Hs =H~ + (H;), 

HI =H; - (H;), 

(2.1 ) 

(2.2) 

and the advantage ofthis rearrangement comes from the fact 
that the reservoir average of HI equals zero. Explicitly, 

(HI) = O. (2.3) 
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A compact and transparent representation of reservoir 
theory can be obtained with a Liouville-operator formalism. 
If we introduce the Liouvillians La by 

(2.4) 

which defines their action on an arbitrary operator 0' in 
S + R space, then the equation of motion (1.1) becomes 

i.!!...p(t) = (Ls +LR +LI)p(t)· (2.5) 
dt 

For later purposes we mention a few properties of the Liou
villians. First, Ls and LR commute, since they act on a dif
ferent part of Liouville space. Second, LR stands for a com
mutator, which implies the relation 

(2.6) 

for any 0'. From [H R ,,oR] = 0, Eq. (1.3), we find 

- iLR,- - (2.7) e PR =PR' 

and due to the shift of the interaction over its average, L I 
obeys 

(2.8) 

Here and in the following, 0' s will indicate an arbitrary oper
ator in S space. 

An integral ofEq. (2.5) reads 

p(t) = e-i(Ls+LR)(t-IO)p(to) 

- i f.' dt' e - i(Ls+ LR)(I - 1')LIP(t ') , (2.9) 
10 

and substitution into Eq. (2.5) then yields 

i :tP(t) = (Ls + LR )p(t) + LIe - i(Ls+LR)(I- (0)p(tO) 

_ iLl f.' dt' e - i(Ls+ LR)(I- I') LIP(t ') , 
10 

(2.10) 

which is an exact integral of the equation of motion. If we 
subsequently take the trace over the reservoir states, the left
hand side becomes i dps (t)/dt, which equals the rate of 
change of the system density operator due to the free evolu
tion [the term LsPs (t) on the right-hand side] and the cou
pling to the reservoir (terms proportional to L I ). Hence the 
integral in Eq. (2.10) accounts for the relaxation of Ps (t), 
and its value is proportional to the coupling strength. There
fore we can adopt the reservoir assumption, Eq. (1.4), on 
p (t ') in the integrand. We then find the equation of motion 
for Ps (t) to be 

i :tPs(t) = LsPs(t) +TrR Lle-i(Ls+LR)(I-lo)p(to) 

'T L f.'dt ' -i(Ls+LR)(I-I') - I rR I e 
10 

(2.11 ) 

for (~to. It is important to note that the initial value p(to) of 
the density operator (not the system part) remains present 
in the equation of motion for Ps (t), in general. Equation 
(2.5) determines the time evolution ofp(t) for (~to, and the 
solution ofEq. (2.5) is fixed as soon as an initial value p(to) 
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is prescribed. Since p (to) is not determined by the equation 
of motion, a further specification of the initial state p (to) is 
necessary. 

III. DENSITY OPERATOR 

For finite memory-time reservoirs the choice ofp(to) is 
more than a matter of convenience. If the system has been in 
contact with the reservoir prior to to, then pCto) is deter
mined by its time evolution in the recent past t < to, and con
sequently the value ofpCto) is no longer arbitrary. As a solu
tion, we simply define the instant oftime to as the time point 
at which the interaction L I is switched on. We can then 
always take to to be arbitrarily far into the past. For t<.to the 
reservoir is in its thermal-equilibrium state ,oR' and the sys
tem density operator p s (t) evolves independently of the res
ervoir. Therefore, we have for t<Jo 

p(t) = Ps (t)pR' (3.1 ) 

Substitution into Eq. (2.11) and applying Eqs. (2.7) and 
(2.8) then shows that the term withp Cto) vanishes identical
ly, due to the shift of the interaction Hamiltonian over its 
average. Then the equation of motion for Ps Ct) becomes 

i~Ps(t) = LsPs(t) -iTrRLJ 
dt 

x f' dt'e-i(Ls+LR)(t-t')LJ(ps(t')pR) ' 
1r. 

(3.2) 

for t';;>to' 
Solving Eq. (3.2) is most easily done in the Laplace 

domain. If we define 

Ps(OJ) = (00 dteio>(t-to)ps(t) , 
1r. 

then the transformed equation of motion reads 

(OJ -Ls)Ps(OJ) = ips (to) - iTrR L J 

X[i/(OJ-Ls-LR )] 

XLI(Ps(OJ)pR) , 

with solution 

Ps(OJ) = [i/(OJ -Ls + if'(OJ»)]PsCto). 

(3.3 ) 

(3.4 ) 

(3.5) 

Here we introduced the relaxation operator r (OJ) as 

r(OJ)O"s =TrR Ldi/(OJ -Ls -LR)]LJ(O"SpR) ' 

(3.6) 

which can equivalently be written as 

r-() T L (00 d i(w-Ls-LR)TL ( -) 
OJ 0" s = r R I Jo r e J 0" sP R . 

(3.7) 

From Eq. (3.5) we see thatps(OJ), and thereby Ps(t) for 
t';;>to, is determined by Ps (to) only, and not by Ps (t) for t<;;;;to. 
This is of course a result of assumption (3.1). The memory 
in the time evolution of Ps (t) is displayed in the frequency 
dependence of r (OJ). In the Appendix we show that r (OJ ) 
acquires a constant value (OJ independent) in the Markov 
approximation. 
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From Eq. (3.7) we notice that r (OJ) has the form of a 
Laplace transform 

reOJ) = Loo dreiO>T(r) , 

where r( r) is given by 

(3.8) 

r() T L -i(Ls+LR)TL ( -) (3.9) r O"s = r R Ie I O"SPR , 

for r,;;>O. Rewriting the equation of motion (3.2) in terms of 
r( r) gives 

i~Ps(t) = LsPsCt) -i f'dt'r(t-t')ps(t') ' 
dt 1r. 

(3.10) 

which reveals that the time width of r ( r) (its decay time for 
r';;>O) equals the memory time of the reservoir-interaction 
term. It is the width of r( r) which is usually termed the 
reservoir correlation time rc. Then it follows from Eq. (3.8) 
that the frequency width ofr(OJ) is of the order of lire, and 
for re --+0, r(OJ) becomes independent of OJ. 

The time evolution ofps (t) for r~to will have little sig
nificance in general, which is partially due to the factoriza
tion at t = to' Due to the coupling to the reservoir, the den
sity operator Ps (t) will relax to a steady state (thermal 
equilibrium) 

,os = lim Ps (t) (3.11 ) 
t_ 00 

on a time scale lIr, as mentioned in the Introduction. Here, 
r denotes a typical matrix element of r (OJ) [not of r( r) ] . 
From the identity 

,os = lim - iOJps (OJ) 
0>-0 

and Eq. (3.5), we find the equation for ,os to be 

(Ls - ir(O»)ps = O. 

(3.12) 

(3.13) 

This shows that the long-time solution of Ps (t) is deter
mined by r(OJ) at OJ = O. Furthermore, we notice that the 
dependence on the initial value Ps (to) has disappeared in 
Eq. (3.13), which reflects that the memory of the prepara
tion of the system at to is erased. 

IV. CORRELATION FUNCTION 

Measurement of the steady-state density operator ,os of 
a physical system is tantamount to the determination of its 
relaxation constants, which are the matrix elements of r (0), 
as displayed in Eq. (3.13). Dynamical properties of the sys
tem in contact with the reservoir, however, are reflected in 
the time evolution of Ps (t) before it reaches its steady state 
,os. In view ofEq. (3.5), this transient behavior ofps (t) is 
governed by the frequency dependence of the relaxation op
erator r (OJ). Besides the fact that a density operator is not 
amenable to direct observation, we also see from Eq. (3.5) 
that the details of Ps (t) depend on the preparation of the 
system at t = to. Obviously, it is impossible to fix Ps (to) 
(say, the wave function of an atom) at a single instant of 
time, and subsequently measure its evolution for t> to' 

A standard method of obtaining dynamical information 
about a system is by observation of steady-state correlation 
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functions of system operators, say X and Y. If we take arbi
trarily to as the instant of time at which the Schrodinger and 
Heisenberg pictures coincide, then the time dependence of X 
is given by 

X(t) =eiLlt-to)X, (4.1 ) 

where L indicates the Liouvillian Ls + LR + LI of the en
tire system. Then X(to) = X is an operator in S space only, 
but for t> to, X(t) is an operator inS + R space, due toLf' 
Hence the time evolution of X(t) carries information on the 
interaction with the reservoir. The correlation function of 
two operators X and Y is defined as the expectation value 

«X(t')Y(t») Trp(to)X(t')Y(t). (4.2) 

The double-bracket notation indicates an average with the 
fulldensityoperatorofS + R, rather than withpR only [Eq. 
(1.5)]. Transformation ofEq. (4.2) to the Schrodinger pic
ture gives 

«X(t')Y(t») Tr Ye-iL(t-t'){p(f')Xj, 

or equivalently 

«XU') Y(t») Tr Xe - iL(t' - tJ(Yp(t») . 

(4.3) 

(4.4) 

We notice that the initial time to has disappeared in Eqs. 
(4.3) and (4.4), which already removes the ambiguities as
sociated with the preparation of Ps (to)' A steady-state cor
relation function is now defined as «XU ') Y(t») witht~to, 
t '~to, and t - t' fixed. Then the system is in state Ps, which 
is time independent and a solution of Eq. (3.13). The time 
regression of the correlation functions (their t - t' depend
ence) is governed by the same exponential that determines 
the time evolution of p (t), and therefore we can extract dy
namical properties of the system by an observation of the 
steady-state correlation functions. 

Commonly, time regressions are not measured directly. 
For atoms or molecules on a solid substrate, for instance, one 
determines the spectral profile for the absorption of low
intensity monochromatic laser radiation with frequency w. 
The spectral distribution as a function of wand in the steady 
state is then given by expressions of the form 

l(w) = !~~ f'" dt' eiw(t' t)«X(t')Y(t»), (4.5) 

which will further be referred to as the spectrum. It is the 
goal of this paper to evaluate l(w) for a system in interaction 
with a finite memory-time reservoir, 

V.SPECTRUM 

From Eq. (4.5) we observe that we need the correlation 
function for t '>t, and therefore the representation (4.4) is 
most suitable. Then the occurring exponential is the same as 
for the time evolution of p (t). If we introduce the Hilbert
space operator (Liouville-space vector) 

A (t ',t) = e -iLU' - n( Yp(t»), (5.1) 

then the correlation function can be represented by 

«X(t')Y(t») = Trs XAs(t',t), (5.2) 

which only involves the system part As (t , ,t) = Tr R A (t , ,t). 

In terms of the Laplace transform with respect to t', 

(5.3 ) 

the spectrum attains the form 

l(w) = lim Trs XAs (W,f) . (5.4 ) 
t_ '" 

Differentiating Eq. (5.1) with respect to t' yields the 
equation of motion for A (t ' ,t), 

(5,5) 

which has to be solved for t '>t, with initial value 

A(t,t) = Yp(t). (5.6) 

Equation (5.5) is identical to Eq. (2.5) for p(t), and inte
grals can be found in the same way. The difference between a 
density operator and a correlation function is that for p(t) 
we can choose the initial value p (to) arbitrarily, whereas for 
A (t ',t) the initial value is unambiguously given by Eq. (5.6). 
This reflects the fact that A (t ' ,t) is essentially a two-time 
quantity. Its regression from t to t' is governed by Eq. (5.5) 
and its dependence on t enters through the initial condition, 
Eq. (5.6). The memory in the time regression, due to the 
finite reservoir correlation time, is of course the same as for 
the density operator and can be accounted for by the fre
quency-dependent relaxation operator few), as we shall 
show below. As a second effect of a finite 1"c the density 
operator p(t) in the initial value will carry a memory of its 
time evolution in the recent past. It is tempting to argue that 
we consider the steady state t -+ 00 , so that the density opera
tor p(t) is constant in time. By the large-reservoir assump
tion we know that the reservoir remains in the state P R , 

whereas the system is in state P s for t -+ 00 • This would imply 
the replacement p(t) -PSPR in Eq. (5.6), which in tum 
would eliminate the explicit t dependence of A (t ',t), making 
the limit t -+ 00 in Eq. (5.4) trivial. We shall show that this 
procedure cannot be justified if 1"c is finite. 

Since Eq. (5.5) is identical to Eq. (2.5) for Ps (f), we 
can derive the appropriate integral along the same lines. The 
analog of Eq. (2.11) is 

. d, , -i(Ls+LR)(t'-t) . ft
'". L 

1 A (t f) LA (t t)+T L (V (t») T L d l(s+LR)(t'-r")LI(As(t",t)P-R)' dt' s , = s s' rR Ie .lp -1 rR Itt e 

(5.7) 

which contains p (t) explicitly. Now we can substitute the right-hand side of Eq. (2.9) for p (t) and take for p (to) the value of 
Ps (to)PR' Then Eq. (5.7) becomes 
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'T L f"dt" -i(Ls+LR)(I'-I")L (A (t" t)p- ) 
- 1 rR J e J S , R' 

I 

(5.8) 

where we introduced the Liouvillian Ly by 

Lyus = Yus ' (5.9) 

in order to avoid notations with too many brackets. In the 
second term on the right-hand side ofEq. (5.8), the expo
nentials withLR act only onpR' becauseLR commutes with 
Ls and Ly. Therefore they cancel, according to Eq. (2.7). 
The remaining two exponentials and Ly affect only Ps (to), 
and the result is some operator Us in S space. With Eq. (2.8) 
we then find that the whole term is identically zero. Consid
ering the third term on the right-hand side, we notice that it 
has the form ofa reservoir integral, as in Eq, (2.10), which 
implies that we can factorize P (t ") here. Then we define a 
"density operator" PSR (t) of S + R space by 

PSR (t) = r dt' e-i(Ls+LR)(t-t')LJ(Ps(t')PR) ' 
l 

which allows us to write Eq. (5.8) as 

i~As(t',t) = LsAs(t',t) 
dt' 

(5.10) 

I' 

'T L f dt" -i(Ls+LR)(I'-I") 
- 1 rR J e 

I 

(5.11 ) 

Next we take the Laplace transform ofEq. (5.11), recalling 
that 

( 5.12) 

as follows from Eq. (5.6), and rearrange the terms. We then 
obtain 

- i { As (w,t) = .- Lyps (t) 
w - Ls + lnW) 

- TrR L/ LyPSR (t) . i } 
w-Ls-LR 

(5.13 ) 

The factor in front of the curly brackets is the same as in Eq. 
(3.5), and it represents the time regression from t to t' of 
As (t ',t) . The first term inside the curly brackets, Lyps (t) , 
corresponds to a factorized initial state. If we would have 
replaced A (t,t) = Yp(t) by Y(PS(t)PR) ' then it is easy to 
see that the second term on the right-hand side ofEq. (5.7) 
would have disappeared, and thereby the second term in 
curly brackets in Eq. (5.13). Conversely, the term with 
PSR (t) in Eq. (5.13) accounts for the correlations between S 
and R in P (t), which are present at the initial time for the 
time evolution of A (t ',t) from t to t '. 
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The explicit time dependence of As (w,t) enters through 
Ps(t) andpsR (t). If we denote their steady-state values by 
an overbar, then the spectrum, Eq. (5.4), becomes 

i 
l(w) = Trs Lx _ 

w-Ls+tr(w) 

X {LYPS - TrR L J i LYPSR} , 
w-Ls-LR 

(5.14 ) 

with 

Lxus =Xus ' (5.15) 

Expression (5.14) involves the system-reservoir state 
PSR' which might seem cumbersome. From Eq. (5.10) we 
find the Laplace transform of PSR (t) to be 

PSR (w) = [i/(w - Ls - LR )]LA,os(W)PR) ' (5.16) 

in terms of Psw from Eq. (3.5). Then the steady-stae PSR 
follows from the identity (3.12), which gives 

PSR = [i/UO+ -Ls -LR)]L/(PSPR)' (5.17) 

Here, the notation iO+ indicates a small positive imaginary 
part, which is necessary to assure the convergence of La
place-transform integrals, or equivalently, the existence of 
the inverse of iO+ - Ls - L R. In the next section we show 
how to evaluate the right-hand side ofEq. (5.17). Ifwe de
fine an operator Y (w) by 

- i 
Y(w)us = TrR L/ -----

w-Ls-LR 

1 
XLy L/(USPR) , 

iO+ -Ls -LR 
(5.18 ) 

then the spectrum attains the form 

l(w) = Trs Lx [i/(w - Ls + ir(w»)] (L y - i Y(w )}.os' 
(5.19) 

Equation (5.19) is the most condensed and general repre
sentation of the result of this paper. The finite memory time 
of the reservoir appears as a frequency dependence of the 
relaxation operator r (w ), and as a non vanishing initial-cor
relation operator Y (w ). 

VI. Y f/lINTERACTION 

Although the result (5.19) is appealing and explicit, the 
occurring operators r(w) and Yew), which represent the 
interaction of the system with reservoir, might look awk
ward in their definitions, Eqs. (3.6) and (5.18). Especially 
the reservoir Liouvillian LR in denominators and the ap
pearance ofiO+ in Eq. (5.18) might seem to make an explicit 
evaluation of r'(w) and Y(w) intractable. Such is, however, 
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not the case, as we shall show in this section. 
Obviously, an elaboration of f( lU) and Y (lU) requires 

additional specifications of the interaction Hamiltonian HI' 
lt will turn out to be sufficient to assume the form 

(6.1 ) 

with J' k (:JlI k ) a pure S (R) operator. The form (6.1) per
tains to most practical situations we have encountered. In 
the case of fluorescence, J' k signifies the k th Cartesian com
ponent of the atomic dipole moment, and for adsorbates on a 
substrate the subscript k takes on two values, corresponding 
to the two terms in the binding (Morse) potential. In fact, 
the form (6.1) for HI can always be enforced by an expan
sion in matrix elements. 

Evaluation of the relaxation operator f(lU) starts from 
its representation (3.9) in the time domain. We expand the 
two L/s as commutators, which gives rise to four terms. 
Then we insert HI from Eq. (6.1), and we notice that every 
factor is an operator in S or R space only. Combining the R 
operators and taking the trace over the reservoir states then 
shows that the R contribution can be accounted for by a 
single complex-valued function 

fkl(7) = (:JlIke-iLRT:JlII)' (6.2) 

which will be called the reservoir correlation function. We 
find 

rc 7)O"s = ILle - iLST(hk (7)J' kO"S - f~ (7)O"sJ' d , 
kl 

(6.3 ) 

with 

LIO"s = [J'I'O"S] . (6.4 ) 

Expression (6.3) only involves the system operators J' k and 
the Liouvillian Ls for the free evolution of the system. The 
reservoir enters via the parameter functions fkl ( 7), which 
can be found as soon as a particular reservoir is prescribed. 
For a harmonic crystal, for instance, the reservoir correla
tion functions are given analytically in Ref. 17. 

The initial correlation operatorY(lU) from Eq. (5.18) is 
the Laplace transform of 

Y(7)O"s = TrR LIe-i(Ls+LR)T 

XLy [1/(iO+ - Ls - LR )]LI (O"SPR) . 
(6.5) 

First we recall that the notation iO+ should be read as 

1 L ( -) 
'0+ L L I O"SPR 
I - S - R 

- . l' Loo d I i(w-Ls-LR)T'L ( -) 
- - I 1m 7 e I 0" sP R • 

w-iO+ 0 

(6.6) 

Then we insert the form (6.1) for the interaction and rear
range the Sand R terms. We then obtain for Y( 7) 

""() -' ~L -iLsrL loo d I -iLsr' 
J. 7 O"s - I £.. Ie y t e 

kl 0 
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X(hk(7+7')J'kO"S -f~(7+7')O"sJ'd, 
(6.7) 
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where the reservoir is again entirely incorporated in the 
functionsfkl ( 7) . Since thehk ( 7) 's decay to zero sufficiently 
fast for 7 --+ 00, we omitted at this stage the iO + in the right
most exponential. 

VII. LAPLACE TRANSFORM 

Before we can take the Laplace transform of Egs. (6.3) 
and (6.7), we must work out the exponentials. Eigenstates of 
the system Hamiltonian will be denoted by la,a), where a 
indicates the energy and a any degeneracy. By definition 
they obey 

Hsla,a) =wala,a). (7.1) 

With respect to its own eigenstates we can write Hs as 

(7.2) 
a,a a 

with 

Pa = I la,a)(a,al, (7.3 ) 
a 

the projector on the subspace with energy wa' From the 
orthonormality of the states la,a) we have 

(7.4) 

and from the completeness of the set la,a) we find the clo
sure relation 

(7.5 ) 
a 

Then it is an easy matter to expand the exponential 
exp( - iLs 7) in projectors, which gives 

in terms of the level separations 

l1ab = lUa - lUb' 

(7.6) 

(7.7) 

Next we substitute Eq. (7.6) intoEq. (6.3) and evaluate 
the Laplace transform. We obtain 

f(lU)O"s = ILl IPa(.t;d l1ba +lU)J'kO"s 
kl ab 

(7.8) 

in terms of the Laplace transform!kl (lu) offkl (7) . Because 
L J equals the commutator with J' J, the right-hand side only 
involves operators J'I and projectors. If we insert the clo
sure relation (7.5) in various places in Eq. (7.8), we imme
diately find the matrix representation of f(lU) in terms of 
matrix elements of J'I' The result (7.8) is the most compact 
representation of the explicit form of f (lu ). 

In the very same way we find the Laplace transform of 
Y ( 7) from Eq. (6.7), although with considerably more ef
fort, which is due to the double integral (over 7 and 7'). The 
result is 
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Y(w)CTS=LL1L 1 PcYPa 
kl abc !lac + w 

X {(};k (!lha) - };d!lbC + W»)Y kCT s 

- (Y/~ ( -!lba) 

-Y/~( -!lbc -W»)CTsYk}Pb, (7.9) 

which has a striki?g resemblance with Eq. (7.8). Most re
markable is that Y(w) can again be expressed in the reser
~oir correlation function ikl (w) which also determines 
r(w), and, as shown in the Appendix, the relaxation opera
tor in the Markov approximation. The distinction is that the 
functionsikl (w) occur with different arguments. 

If w equals a level separation !lea = - !lac, then the 
denominator of the first factor under the triple summation in 
Eq. (7.9) becomes zero. For w = !lea we have 
!lbc + w = !lba' and hence the difference of the two func
tions!;k in curly brackets also approaches zero. In the pro
cess of deriving Eq. (7.9) we found that this feature does not 
constitute a problem. The limit is simply 

1 - -
",~i~ac!lac +)hk(!lba) -hk(!lbc +w») 

d -
= - dw hk (w), in w = !lba' (7.10) 

and there is no singularity or discontinuity if w passes across 
a resonance. 

VIII. CONCLUSIONS 

If the decay time 'Tc of the reservoir correlation function 
Ikl ('T) for 'T-+ OCJ is not small in comparison with the relaxa
tion times l/r, which are determined by the same function 
[see Eq. (7.8)], then a Markov approximation cannot be 
correct. In this paper we imposed no limits on 'Tc' We only 
assumed that the system S is small in comparison with the 
reservoir R. The finite value of'Tc amounts to a memory in 
the time evolution of the density operator, which is reflected 
in a frequency dependence of the relaxation operator f (w ). 
Correlation functions of system operators depend on two 
times, t ' and t. The regression from t to t ' exhibits the same 
memory effect as the time evolution of the density operator. 
Additionally, the equal-time correlation function, which is 
the initial value for the time regression, carries a memory to 
the recent past. It appears that this second phenomenon 
':,ould be accounted for by an initial correlation operator 
Y (w) in the expression for the spectrum I (w ) . 

Frequency-dependent relaxation operators are widely 
applied in the literature. Their Laplace inverse r ( 'T) is some
times called a memory kernel, because it is the finite time 
width of r( 'T) which brings about the memory in the time 
evolution, as is most obvious from Eq. (3.10). Initial-corre
lation operators, however, are rare. 18 Despite the fact that 
the frequency dependence of f (w) originates from the same 
Temory mechanism which amounts to a nonvanishing 
Y (w ), the latter is usually not found. As pointed out in the 
derivation of Y (w ), the disappearance of Y (w) is a conse
quence of a factorization of the initial value or state, which 
cannot be justified in general. 
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APPENDIX: MARKOV APPROXIMATION 

It is illuminating to compare the results of the present 
paper with their equivalents under the Markov approxima
tion. Since we already have Eq. (2.11) we can start here. 
First, we state that we are not interested in a time evolution 
ofps (t) on a time scale 'Tc' which implies that we can factor
ize p ( to) as p s (to) P R • In this fashion we discard the memory 
?! the initial state to its past, which immediately gives 
Y(w) =0, or equivalently, the second term on the right
handsideofEq. (2.11) is zero. Second, we know that if we 
work out the integral in Eq. (2.11), we find reservoir corre
lation functions Ikl (t - t '), which decay to zero on a time 
scale 'Tc' Therefore, the major contribution to the integral 
comes from t - 'Tc ::;;; t ' <t. Because we impose the condition 
r'Tc ~ 1, the density operator Ps (t') in the integrand is not 
affected significantly by the relaxation process on this small 
time interval. Then we can replace Ps (t ') by its free evolu
tion 

Ps(t') =e-iLs(t'-tJps(t), (AI) 

and subsequently take Ps (t) outside the integral. Third, ac
cording to the first assumption we can take t - to ~ 'T c , which 
gives in combination with the fact that the integrand is only 
nonzero on a time interval 'Tc that we can replace to by minus 
infinity. Combining everything then yields 

i!!... Ps (t) = (Ls - ir M )Ps (t) , (A2) 
dt 

with 

r 0" = Tr L Sa'" d""e-i(Ls+LRlTL iLsT( -) 
M SRI' Ie CTsPR' 

o 

The Laplace transform ofEq, (A3) reads 

Ps(w) = [i/(w -Ls + ir M) ]Ps(to) , 

(A3) 

(A4) 

and comparison with Eq. (3.5) then shows that r M is the 
Markovian equivalent of f (w ), and indeed, the frequency 
dependence has disappeared. 
_ There exists an interesting relation between r M and 
r(w), which can be found as follows. InEq. (3.9) wesubsti
tute exp(iLs'T)CTs for as and integrate the result over 'T. 
With Eq. (A3) we then obtain 

r M = Sa'" d'Tr('T)e
iLsT

, (AS) 

as an operator identity. Then we notice that Eq. (3.8) can be 
inverted as 

r('T)=- dwe-·lUTr(w) , 1 f'" . -
21T _ '" 

(A6) 

for 'T>O, Substitution into Eq. (AS) and performing the 'T 
integration then leads to 
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(A7) 

With the projectors of Sec. VII we can write Ls - w as 

(Ls -w)us = I<aab -w)PausPb, (A8) 
ab 

and taking matrix elements of both sides gives 

(a,al(Ls -w)usllb,p > = (aab -w)(a,aluslb,p >. 
(A9) 

This shows that the Liouvillian Ls - w is diagonal with re
spect to the eigenstates of Hs , and that its matrix elements 
are aab - w. Therefore, its inverse 1I(Ls - w) has corre
sponding matrix elements 11 (aab - w), which gives the ex
pansion of 11 (Ls - w) in projectors as 

(AW) 

If we insert this into Eq. (A7) and remember the general 
property 

(All) 

for any Laplace transform g (w ), we finally obtain 

r MUS = I I'(aab) (PaUSPb ) . (A12) 
ab 

Another way to derive Eq. (A12) is by substituting the ex
pansion (7.6) for exp(iLs'T) into Eq. (A5) and performing 
the 'T integration. Equation (A 12) reveals that the relaxation 
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operator in the Markov approximation effectively filters out 
these w values in I'(w) which are in exact resonance with the 
system frequencies. 
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The claim of Phares and Wunderlich [J. Math. Phys. 26, 2491 (1985)] to have obtained the 
exact closed form analytic solution to the problem of dimers on infinite two- and three
dimensional lattices is shown to be incorrect. Their expressions do not agree with exact 
expansions obtained by virial and lattice counting methods. 

Recently Phares and Wunderlich! (PW) have claimed 
to obtain "the exact closed-form analytic solution to the 
problem of dimers on infinite two-dimensional and three
dimensional lattices." They express their results in Eqs. 
(59 )-( 64) which give various thermodynamic properties as 
functions of the activity of a dimer x or the coverage fraction 
e and a quantity t/J (L,M), the "molecular freedom per dimer 
at close packing," that approaches a well-defined limiting 
value in the thermodynamic limit. Phares and Wunderlich 
assert in their abstract, introduction, and conclusion that 
this result becomes exact for infinite two- and three-dimen
sionallattices. Nowhere in their paper do they give rigorous 
or compelling arguments for this assertion. Still more recent
ly2 PW have expressed the expectation that the scheme de
veloped in Ref. 1 should become exact for triangular lattices 
as well. 

We point out here that their formulas do not agree with 
exact series expansions for the thermodynamic potential ob
tained by standard elementary counting methods even to 
second order in the activity x and so can not be exact. More
over, their results do not agree with series estimates3 for the 
asymptotic behavior at high coverage, and so are likely to be 
seriously in error in this limit. A comparison with the series 
results at intermediate densities suggests that their results 
are not particularly accurate, even as approximations, com
pared with fitting functions constructed from the known se
ries. 

In the limit that the activity x is small, Eq. (59) ofPW 
can be expanded to give 

rex) = (2IQ)(t/Jx - (3/2) (t/Jx) 2 + O(t/JX)3), (1) 

where t/J is the molecular freedom per dimer at close packing 
in the thermodynamic limit and is equal to 1.0 in one dimen
sion (linear chain) d = 1, and is given according to PW, by 
their Eqs. (54) and (55) for two and three dimensions 
(d = 2, 3), respectively, and where Q = 2, 4, 6 for d = 1, 2, 
3, respectively. In contrast, the low activity expansion on a 
d-dimensional hypercubic lattice is readily found to second 
order in activity by standard cluster integral4

,5 or lattice 
counting 3,6,7 methods to be 

r=x- [(3+4(d-1))/2]x 2 +0(X3
). (2) 

The numerator in the coefficient of x 2 is simply the number 
of ways that a second dimer can overlap with a fixed first 
dimer on the interior of the lattice; 3 if the dimers are paral
lel, and 22 = 4 for each of the d - 1 perpendicular direc-

tions. The existence, uniqueness, and nonzero radius of con
vergence of this expansion are all rigorously provable.8 

The result in Eq. (2) is in agreement with that ofPW in 
Eq. (1) ford = 1, whereQ = 2 and ¢' = 1, but disagrees with 
the result ofPW for d = 2 and 3 for any choice of the constant 
t/J. Consequently, it must be concluded that, whatever the 
merits of PW's expression as an approximation it cannot be 
the exact expression for rex) in d = 2 or 3 in the thermody
namic limit. It follows also, by elementary thermodynamic 
manipulation that PW's Eqs. (60)-(64) are also not the 
solution of the d = 2, 3 dimer problem in the thermodynam
ic limit, contrary to the claims of the authors in their Sec. 
VII. From the proven analyticity9 of the free energy in the 
density of dimers, it follows that Eqs. (59 )-( 64) ofPW can
not be the exact solution at any finite activity. Additional 
terms have been calculated in Refs. 3, 5, and 7 and confirm 
that Eqs. (59 )-( 64) ofPW are not correct for d = 2, 3 in the 
thermodynamic limit, For example, Eq. (61) of PW for the 
activity x can be expanded at lowe to give 

x = e(2 - e)/4<I> (L,M) (I - e)2 

=_1 [f (~)en]. 
2t/J n~! 2 

(3) 

Gaunt has presented exact series expansions for this quanti
ty for several lattices. In Table II of Ref. 3 he gives 15 terms 
for the square (sq) lattice, 10 terms for the triangular (pt) 
lattice, and 12 terms for the simple cubic (sc) lattices, 
among others, Gaunt's variable z corresponds with PW's 
variable x, while Gaunt'sp is the same as PW's and is related 
to e by e = Qp. Making these identifications one readily 
verifies that Eq. (61) of Ref. 1 and Eq, (6,3) of Ref. 2 do not 
agree with the series of Gaunt for any value of e. 

Gaunt has analyzed his series and finds that the diver
gence of the activity as e -+ 1 is governed by a nonclassical 
critical exponent r. That is, 

x(O) ~A( 1 - e) - Y, (4) 

with r~ 1.75 for the square lattice and r~ 1.95 for the sim
ple cubic lattice. Equation (61) of PW implies that r = 2.0, 
in disagreement with the series results. This means that Eq. 
(61) will almost certainly give results that are much too 
large for x(e) near close packing. [In this regard it is inter
esting to note that Gaunt estimates r~2.0 for close packed 
lattices like the triangular lattice, so that Eq. (59) ofPW is at 
least consistent for that lattice in this regard. However, the 
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value of coefficient A in Eq. (4) implied by PW is 0.106, 
while that estimated by Gaunt is 0.149. Here the result of 
PW is likely to be much too small near B = 1.] 

Finally, it is possible to use the exact series expansion of 
Gaunt to assess the reliability of Eq. (61) of PW as an ap
proximation at intermediate densities in the thermodynamic 
limit. The series in Table II of Ref. 3 allows the accurate 
determination of x (() for B up to 0.5 for the sq and sclattices 
and for B up to 0.3 for the pt lattice. For large B they can be 
reliably determined by reexpressing Gaunt's series for z(p) 

as 

z(p) =A(p)(1- Qp)-y (5) 

with y = 1.75 for the sq lattice, y = 1.95 for the sc, and 
y = 2.0 for the pt lattice. The resulting series for A (p) has 
much smaller coefficients than those for z(p), and when 
truncated even atp = Po = l/Q give accurate estimates for A 
in Eq. (5), namely A = 0.3037, 0.1496, O. 1464 for the sq, pt, 
and sc lattices, respectively, compared with Gaunt's esti
mates ofO.3030( ±4), 0.149( ± 1), and 0.1457( ± 1) by 
different methods. By examining the consistency among 
partial sums and Pade approximants6 to the series for A (p) 
and the variation with small changes in the exponent y, we 
estimate that the truncated partial sum to A (p) gives z (p ) 

through Eq. (5) to better than 1 % at B = 0.9 for the sq, pt, sc 
lattices and rapidly become much more accurate as B de
creases. Using the approximation to A (p) as well as the par
tial sums to z(p) we have examined the accuracy ofEq. (61) 

2740 J. Math. Phys., Vol. 28, No. 11, November 1987 

ofPW. For the sq lattice the percentage errors in Eq. (61) of 
PWat B=O.I, 0.3, 0.5, 0.7, and 0.9 are 8.8%, 2.7%, 
- 3.5%, - 9.1 %, and - 5.8%, with the percentage error 

diverging to + 00 as B .... 1. For the pt they are 22.9%, 
13.3%,2.4%, - 9.4%, and - 22.3% while for the sclattice 
they are 18.7%, 10.0%, 0.9%, - 9.2%, and - 13.8%. 
While the values of z(p) used here are also, of necessity, 
approximate they are almost surely accurate to better than a 
few parts per thousand even at B = 0.9 and are surely far 
more accurate for small values of B. 

In summary, Eqs. (59)-(64) of Ref. 1 do not become 
exact in the thermodynamic limit and do not have the cor
rect behavior at either low or high coverage; Eq. (61) is not 
particularly accurate even at intermediate densities as an ap
proximation to the limiting thermodynamic behavior. 
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For the stationary case the canonical formalism of thermally dissipative fields with both 
positive- and negative-frequency parts is constructed. This formulation enables one to follow 
the self-consistent renormalization scheme which creates the dissipation spontaneously. The 
self-interacting qJ 3 model is examined as an example of the spontaneous creation of dissipation. 
The parameter a appearing in the thermal state conditions as well as observables independent 
of the choice of a are discussed. 

I. INTRODUCTION 

The quantum field theory provides us with a useful for
malism for quantum systems with infinite degrees of free
dom. A program of reformulating the nonequilibrium quan
tum statistical mechanics with infinite degrees offreedom in 
the terminology of quantum field theory has been developed 
by extending thermo field dynamics (TFD) which is quan
tum field theory with thermal degrees of freedom. l

-8 This 
extended TFD was shown to be equivalent to the density 
matrix formalism with the Liouville equation. I The ex
tended TFD has so far been formulated in terms of harmonic 
oscillators. The purpose of this paper is to reformulate the 
extended TFD as a formalism for quantum field theory. 

As is now widely known, TFD is built on the concepts of 
thermal doublets, the thermal vacuum, and the Hamilto
nian.9

•
10 Thus with any operator A there is associated an

other operator A which is called the tilde conjugate of A. The 
doublet A f' with A I = A and A 2 = A t is called the thermal 
doublet. The tilde conjugation rules are summarized as 

[AB]- = A-B- , (1.1a) 

[cIA + c2B] = ctA + cfB, (1.1b) 

[A t]- = At, (1.1c) 

[A]-=(7A, (1.1d) 

[0) - = [0) , (1.1e) 

(0[- = (O[ , (1.1f) 

where [0) and (0 [ are the thermal vacua, (7 = + 1 ( - 1) for 
bosonic (fermionic) A and the cj's are c numbers. 

The Hamiltonian is constructed as follows. When a sys
tem of quantum fields is given, we write the Lagrangian den
sity .Cf [t/J] from which the canonical Hamiltonian H[ t/J] 
follows through the well-known route. Then we construct iI 
by applying the tilde conjugation rules to H. The Hamilto
nian is then given by 

H=H-iI. ( 1.2) 

This statement is quite general. It covers all thermal situa
tions, both equilibrium and nonequilibrium. 

To make our consideration explicit, let us consider a 
nonequilibrium transition from a situation of normal con-

ductivity to one of superconductivity. The initial situation is 
described by the normal quasielectron field, while the final 
situation is described by the superconducting quasielectron 
field. The intermediate situation is described by a time-de
pendent quasiparticle field (or a renormalized field). Thus a 
reasonable computational method may be the perturbative 
calculation in which the unperturbed representation corre
sponds to the quasiparticle field. Since the key mechanism in 
nonequilibrium phenomena is thermal dissipation, the qua
siparticle field under consideration should be dissipative. In 
the sense that the field equations of the quasi particles are 
linear and homogeneous differential equations, they can be 
said to be free. However, since they are dissipative, they are 
not really free. We have therefore called them semifree. Us
ing this terminology we use semifree fields for the unper
turbed representation. 

It may be important to note that the dissipative effect is 
important even in a stationary case. Consider a situation in 
which the ground state is an equilibrium state. Even in such a 
case the excited states approach the ground state dissipative
ly. Then although the thermal averages of observables are 
independent of time, the two-point functions such as the 
Green's functions or correlation functions exhibit dissipa
tive effects caused by the contributions due to the excited 
states. This means that the Hamiltonian for the semifree 
fields should contain thermally dissipative terms. 

It is obvious from the above consideration that the per
turbative calculation formalism requires knowledge of the 
general structure of the semifree field theory as its beginning. 
Once we know the Hamiltonian say (HO) of the semifree 
field, then crudely speaking H - H ° acts as the interaction 
Hamiltonian. Then the Feynman diagram method tells us 
how to proceed in the perturbative computation. Just as the 
physical mass is determined by the self-consistent renormal
ization method that leads to mass equations, the dissipative 
constant is to be determined by the self-consistent renormal
ization method that leads to equations for dissipative coeffi
cients. When the latter equations give rise to a non vanishing 
dissipative coefficient the phenomenon is called the sponta
neous creation of dissipation.5

-
7 In the framework of TFD 

this phenomenon is expected to happen in almost all cases. 
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In a simple example it was shown by an exact solution. 7 

Since the Hamiltonian of a semifree system consists of 
the thermal doublets, the dissipative term has the form of a 
2X2 thermal matrix like ejiLA I'va v

• At first glance it may 
seem that the structure of the matrix A is quite arbitrary, but 
in fact the matrix A was found to have a very particular form. 
In particular, the existence of the off-diagonal elements of A, 
which combine tilde and non tilde operators, indicates that 
this dissipation is a thermal effect. 

So far the study of the structure of semifree systems has 
been made only for harmonic oscillator-type operators. One 
purpose of this paper is to formulate the theory in terms of 
semifree fields instead of in terms of harmonic oscillator
type operators. 

It is worth commenting on the dynamical map in TFD 
(Le., the expression of Heisenberg fields in terms of certain 
free fields). The thermal instability giving rise to the imagi
nary terms in the self-energy forces us to abandon the dy
namical map in terms of the usual asymptotic free fields 
based on the stable particle picture. In fact a no go theorem II 
states that the S matrix is trivial when the dynamical maps 
are expressed in terms of asymptotic free fields in TFD. In
stead we express the dynamical map in TFD in terms of the 
semifree fields: 

(1.3 ) 

where tP and cp are the Heisenberg field and the semifree field, 
respectively.8 The symbol ~ is the weak equality (Le., the 
equality of matrix elements in reference to the Fock space of 
the semifree field cp). We feel that the reasons why (1.3) is 
possible are the negative energy of the tilde quantum and the 
infinite number of degrees of freedom. The creation or anni
hilation of a tilde quantum describes a change in the ther
mally excited background field and is therefore not observed 
as particle creation or annihilation. Intuitively speaking, the 
nontilde particles are acting under the influence of the ther
mally excited background field. This is the reason for the 
thermal instability of particles; they become unstable 
through communication with the thermal background field. 
The eigenvalues of HO with imaginary ~issipative part max 
have nothing to do with eigenvalues of H and furthermore H 
itself has no eigenstate in the present realization space (Le., 
the Fock space of cp). The latter statement reminds us of the 
fact that a generator G has no eigenstates in the representa
tion space in which the symmetry generated by G is spontan
eously broken in quantum field theory. 

It has been shown that there is a parameter a in TFD 
with the property that the physical results are independent 
of a. The Keldysh-Schwinger formalism l2 corresponds to 
the choice a = 1, while the so-called equilibrium TFD uses 
a = !.9,lO In modern TFD for operators of harmonic oscilla
tors the choice of a has been left undetermined. In Sec. III 
the structure of a transformations will be presented. 

In Sec. IV the structure of the semifree fields will be 
presented. Here we restrict our consideration to stationary 
situations only, and we choose a = ~. The semifree field is 
expressed in terms of an orthonormalized complete set of 
wave functions which satisfy the canonical sum rule8

; this 
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situation is exactly the same as the one for the usual free field 
theory. In this way the semifree fields acquire the usual ca
nonicalformalism. The semifree field theory with arbitrary 
choice of a in both stationary and time-dependent situations 
will be presented in a separate paper. 

In Sec. V we analyze a self-interacting scalar field in a 
stationary situation. It will be explicitly shown how the self
consistent equation for the dissipative coefficient emerges 
from the renormalization calculation. Althought this renor
malization method has been presented only in consideration 
of a very simple model, the general method for choosing the 
renormalization point in stationary situations will be illus
trated. 

As a preparation for the analysis in this paper, in Sec. II, 
there will be given a very brief summary of the semifree oscil
lator theory.5 

II. TFD IN TERMS OF SEMIFREE OSCILLATOR 

We consider the oscillator variables classified by the 
"momentum" k, i.e., a(k) and a(k). The thermal doublets 
are 

al'(k): al(k) = a(k), a2 = at(k) , 

al'(k): al(k) = at(k) , a2 = - (Ta(k) . 

(2.1a) 

(2.1b) 

The thermal vacuum is denoted by 10) and (0 I. We can write 

al'(k) = at(k)'T" (2.2a) 

with 

We have 

[alL (k),aV (I)]" = Dl'vD(k -1) 

with (T = ± 1. 

(2.2b) 

(2.3 ) 

In this section and Sec. III, we include both the station
ary and time-dependent situations in our considerations. 
The time evolution of operator is given by 

a (t,k)1' = S -I (t)a(k)I'S(t) , (2.4a) 

a (t,k)1' = S -I (t)a (k)I'S(t) , 

with S(t = 0) = 1 and 

a/set) = - iH?S(t) . 

(2.4b) 

(2.5) 

The relations in (2.4) are consistent with the tilde conjuga
tion rules (1.1) when and only when the semifree Hamilto
nian H? is til dian, 

(2.6) 

In the quantum field theory without thermal freedom 
the vacuum is empty of physical particles, implying 
a(k) 10) = O. When we have the thermal degree of freedom, 
the vacuum contains thermally excited particles. Thus 
a(k) 10) #0. It has been shown l that the vacuum is condi
tioned by the thermal state conditions which read as 

a(t,k) 110) = f a (t,k)a(t,k)210) , 

(Ola(t,k) 1= _ (Tfl - a(t,k) (0Ia(t,k)2 , 

(2.7a) 

(2.7b) 

with a real and positive function f(t,k) and O<;a<; 1. The 
parameter a may depend on time. 
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Considering the tilde conjugation rules (1.1) we have 
from (2.7) 

a(t,k)210) = - ja(t,k)a(t,k)IIO) , 

(0Ia(t,k)2 = ajl - a(t,k) (Ola(t,k) I. 

(2.8a) 

(2.8b) 

The relations (2.7) and (2.8) give the complete set of [a]
representation thermal state conditions for the semifree os
cillators. In deriving (2.8) we have used the assumption that 
j(t,k) is real which is equivalent to considering only systems 
with real particle number 

n(t,k) = (Ola(t,k)la(t,k)IIO) 

= j(t,k)/[ 1 - aj(t,k)] , (2.9) 

where (2.7) and (2.8) have been used. When j(t,k) is inde
pendent of t [i.e., j(t,k) = j(k)], we state that the situation 
is stationary. 

Since S ( t) is not necessarily unitary, we used the symbol 
I 

tt instead oft· Note that the nonequilibrium TFD presented 
in Refs. 1 and 2 used the [a = 1] representation, while the 
equilibrium TFD in Refs. 9 and 10 employed the [a =!] 
representation. The [a = 0] representation corresponds to 
the mirror space. I The physical quantities, the detailed defi
nition of which will be given in the next section, are indepen
dent of the choice of a. 

"'-
It follows from the thermal state conditions that H~ has 

the following structure: 

H~ = f d 3k a(k)IL[cu(t,k)8"v - iK(t,k)A (t,k)ILV 

+ a{ atn (t,k) }r(t,k)ILV 

+ {at Inj(t,k)(l-a)/2}r~r]a(k)v. (2.10) 

Here K(t,k) is the dissipative coefficient. The matrices A and 
l' are 

A(t,k) = [ 
1 + 2an (t,k) 

2ajl-a(t,k)[1 +un(t,k)] 

- 2ja-I(t,k)n(t,k)] , 

- [1 + 2an(t,k)] 
(2.11 ) 

- aja-I(t,k)] 

-1 ' 

(2.12) 

and the 1';'S (i = 1,2,3) are Pauli matrices. 
The thermal state conditions (2.7) and (2.8) have the 

form 

r(t,k) 110) =r(t,k)210) =0, 

(0Ir(t,k)2 = (Olr(t,k)1 = 0, 

where 

with 

r(t,k)IL = B(t,k)ILVa (t,k)V , 

r(t,k)IL = a(t,k)VB -1(t,k)VIL, 

B(t,k) = [1 - aj(t,k)] -1/2 

[ 
1 - jal(t,k)] . 

X _ ajl-a(t,k) 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

(2.15 ) 

In defining yP and ~, we have imposed the condition that 
det B = 1. Equations (2.14) lead to 

[yP(t,k),YV(t,I)]u =oILvo(k-l). (2.16) 

The equations in (2.13) indicate that r(t,k) I and r(t,k)2 are 
the annihilation operators while r(t,k)2 and r(t,k) I are the 
creation operators. We can prove 

B- 1 (t,k) = 1'3B(t,k)1'3 . (2.17) 

It has been shown that r(t,k)IL and r(t,k)IL are the eigen
functions of the form 

r(t,k)IL = [ W(t,O,k)exp f d1'{ - iCU(7,k) 

- 73K( 1',k)} rVr(t = O,k)V, (2.18a) 
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r(t,k)IL = ret = O,k)v[ exp f d7{icu( 7,k) 

(2.18b) 

with 

W(t,s,k) = [ZO(t,s,k) 0 ] 
Z-I (t,s,k) , 

(2.19) 

where 

z(t,s,k) = [n(S,k) ](1-a)!2[ 1 + an (s,k) ]a/2 
n(t,k) 1 + an (t,k) 

(2.20) 

= Z-I (s,t,k) . (2.21 ) 

This leads to the commutation relation for arbitrary times as 

[r(t,k)IL,r(s,I)V] u 

= [W(t,s,k)eXp f dr{ - icu( 7,k) 

(2.22) 

The representation space in TFD (called the thermal 
space) is the vector space spanned by the set of bra and ket 
state vectors which are generated, respectively, by cyclic 
operations of the annihilation operators rl and r on (01, 
and of the creation operators rand 1'1 on 10). 

Rewriting physical operators a(t,k)IL and a(t,k)IL in 
terms of the operators r(t,k)IL and r(t,k)IL, and using the 
commutation relation (2.22), we can rewrite any product as 
a sum of normal products, with rl, r to the right ofr, 1'1. 
This leads to a Wick-type formula, which in tum leads to 
Feynman-type diagrams for multipoint functions in the re
normalized interaction representation. The internal line in 
the Feynman-type diagrams is the unperturbed two-point 
function, the calculation of which will be given in the follow
ing. 

Arimitsu, Umezawa, and Yamanaka 2743 



                                                                                                                                    

The calculation of the unperturbed causal two-point 
function, 

G(t,s,k)~V8(k -I) = - i(OIT [a(t,k)~a(s,I)Y] 10) , 

(2.23) 

can be made by means of the method of the Wick-type for
mula. The result has been obtained. It is 

G(t,s,k)~V = [B(t,k} ~ (t,s,k)B 1 (s,k) ]~V , 

where 

(2.24) 

~ (t,s,k)~1I8(k -I) = - ;(01 T [r(t,k)~r(s,/) V] 10) , 

(2.25) 

whose elements are explicitly given by 

~(t,s,k)ll =z(t,s,k)Gr(t,s,k) , 

~ (t,s,k) 22 = z(s,t,k)Ga(t,s,k) , 

and ~ (t,s,k) 12 = ~ (t,s,k) 21 = 0, with 

G r(t,s,k) = - ifJ(t - s)exp [1' dr 

X{ jm(r,k) - K(r,k)}] , 

GO(t,s,k) = to(s t)exp [1' d1" 

(2.26a) 

(2.26b) 

(2.27a) 

X { jm( 1",k) + K( 1",k)}] . (2.27b) 

III. THE a TRANSFORMATION AND OBSERVABLES 

As is seen from the arguments in the previous section, 
we have infinite ways of representing a thermal situation 
through the thermal state conditions. This freedom was indi
cated by a in the thermal state conditions (2.7) and (2.8). 
(In the density operator formalism 13 the a freedom arises 
from the trace formula Tr [pA ] = Tr[p I - a Apa] with any 
operator A and the Liouville equation of the form 
pa = j[pa,H ].) According to (2.4), (2.5), and (2.10), 
the parameters and operators appearing in the free dissipa
tive Hamiltonian also depend on a, and therefore HO(t), 

H°(t) =S-I(t)Hr;S(t) (3.1a) 

should be denoted by H~ (t): 
........ 0 AO -
H a(t) =H (aa (t),aa (t);a) . (3.lb) 

Thus both the thermal state conditions and the free dissipa
tive Hamiltonian depend on a. The fact that the thermal 
state conditions depend on a implies that the thermal vacu
um also depends on a. Thus we should write lOa) and (Oa I. 
However, in the following sections, the suffix a in the Hamil
tonian and the thermal vacua will be mostly omitted. 

The observable results, however, should be independent 
of a. Therefore it is convenient to find the transformation 
which changes a as a .... a' in order to identify the observable 
operators. 

Let T(O) denote the operator inducing the following 
transformation: 

lOa') = T-I(O)IOa) ' {Oa' I = (OaIT(O). (3.2) 

Without loss of generality we can prepare all of the operators 
in such a way that they become independent of a at t = 0: 
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a(O)~=aa (O)~ = aa' (O)~ , 

a(O)~==aa (0)1' = aa' (O)~ . (3.3 ) 

Then T(O) can be easily obtained from the thermal state 
conditions at t = 0 as 

T(O) exp[ !8a(0)lnf(0)a(0)r3a (0)] , 

with8a(t) =a'(t) -a(t). 
Since 

A ;:)(t)~Y 

== {Oa laa (t)~aa (t)vIOa) 

[
1 +an(t) 

= ufl-a(t)[l +un(t)] 

- fa l(t)n(t)] , 

- un(t) 

we can relate A ~) (t) to A ;:) (t) as follows: 

(3.4 ) 

(3.5a) 

(3.5b) 

A ~)(t) = W(t)A ;:)(t) W-l(t) . (3.6) 

Here 
W(t) exp[!1"3Da(t)lnf(t)]. 

This shows that 

aa' (t)1' = T -I (0) W(t)l'vaa (t)vT(O) , 

aa' (t)1' = T-I(O)aa (t)VW I (t)VI'T(O) , 

which become 

aa' (t)~ = Y(t)aa (t)1' y- l (t) , 

aa' (t)1' = YU)aa (t)1' y- I (t) . 

Here 

Yet) = T-1(0)T(t) 

with 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

T(l) exp [ !Da(t)lnf(t)aa (t)1"3aa (t)]. (3.11) 

In deriving (3.9), use was made of the relations 

T(t)aa(t)~T let) = W(t)~Vaa(t)V, 

T(t)aa(t)~T I(t) =aa(t)"W-l(t)VI'. 

Note that 

YeO) = 1 . 

(3,12) 

(3.13 ) 

The Yet) transformation changes the Hamiltonian as 

H~, (t) = Y(t)H~ (t)y-l(t) - iY(t)Y-'I(t) . 

(3.14 ) 

A calculation shows that this changes only the explicit a in 
H~ (I) in (2.10) asa .... a'. ThusDm andK are independent of 
a. 

An operator Qa is said to be an observable, when and 
only when its vacuum expectation value is independent of a: 

(3.15 ) 

For our purpose it is sufficient to consider the Qa of the form 

QaU1,· .. ,tm) Qal(tI)Qa2(12)'''Qam(tm)' (3.16) 

where each of Qai (i = 1 , ... ,m) stands for anyone of aa' a~t, 
aa, and a~t. This is because the most general form of opera
tors is a linear combination of the terms of the form in 
(3.16). 

It follows from (3.9) that 

( 3.17) 
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with 

1 m {/(t; )c5a(t
j
)} 

X=- L €.ln :.....-:.....--
2 ;= I' 1(0)8a(o) ' 

{
I, for aa and iia , 

€; = - 1, for alt and iilt . 

Comparing (3.17) and (3.15), we see that 

x=O 

(3.18 ) 

(3.19) 

(3.20) 

is necessary and sufficient for Qa to be an observable. In 
using (3.20), it is very important that a can vary in time. 

As is seen from (3.18) and (3.20), any observable Qa is 
a linear sum of products of the following operators: 

Na (t) = alt(t)aa (t), Na (t) = iilt(t)iia (t) , 

Ma (t) = alt(t)iia (t), Ma (t) = uiilt(t)aa (t) . 
(3.21 ) 

Note that the operators such as alt(tl )aa (t2) with tl =/=t2 do 
not satisfy condition (3.20) and, therefore, are not observa
bles. 

We can summarize the above results by the statement 
that the observables are represented by the operators which 
are invariant under the following time-local dilatation: 

a (t) -->e(J(t)a (t) ii (t) -->e(J(t)ii (t) 
a a' a a' (3.22) 

alt(t)-->e-(J(t)alt(t) , iilt(t)-->e-(J(t)iilt(t). 

IV. GENERAL FORMALISM FOR SEMIFREE FIELD 
DIVISOR 

In this section, we will consider properties of the semi
free field for type II in the stationary case. This time-inde
pendent situation corresponds to the long time limit in the 
statistical mechanical argument. We will use the fa = j J rep
resentation because the general formalism for type II semi
free fields is most easily constructed in this representation. 
Here the type II field means those fields which carry both the 
particle (i.e., positive-frequency wave function) and anti
particles (i.e., negative-frequency wave functions). The type 
I semifree field consisting of the particle only is discussed in 
Ref. 4. 

According to (2.10) with a =!, the Hamiltonian for 
the type II semifree field in a stationary situation is 

ifo = f d 3k {a(k)l'[w(k)8"v - iK(k)A(k)I'V]a(k)V 

+ ub t(k)l'[w(k)8"v - iK(k)A T(k)I'V]b t(k)v}, 

(4.1 ) 
J 

A (a) (k)I'V = (Ola(k) Va (k)I'IO) = [ un (k) 
u~ n (k) [1 + un (k) ] 

and has characteristics 
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[A (r) (k) F = A (r) (k) , 

[A(a)(k)F= _A(a)(k), 

A (r) (k)A (a) (k) = A (a) (k)A (r) (k) = 0 , 
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( 4.11a) 

(4.11b) 

(4.11c) 

where the matrix A is defined by (2.11). We have used the 
thermal doublet notations both for particle (a!' ,a!') [cf. 
(2.1)] and antiparticle (btl',btl'), 

b t (k)l': bt(k)l=b(k), b t (k)2= -ubt(k). 
(4.2b) 

Note that the Hamiltonian and the thermal state conditions 
for antiparticle are obtained by the replacement a (k) --> b (k) 
together with k --> - k in those for particle. 

In writing (4.1), we have assumed the symmetry of the 
particle and antiparticle (i.e., they have the same energy 
spectrum w, damping parameter K, and particle distribution 
n), and the isotropy of the system (i.e., the quantities w, K, 

and n are dependent on only the magnitude ofk). Note the 
property of the matrix A, 

(4.3 ) 

when a = !, where A T indicates the transpose of A and 'TO' is 
given in (2.2b). 

The Hamiltonian if ° leads to the following equations of 
motion for the particle and antiparticle: 

and 

[i a ,::; (k)I'V -w(k)8"V]a(t,k)V = 0, 

a(t,k)l'[ -iat_K(k)VI'-w(k)8VI'] =0, 

[i a ,; (k)I'V + w(k)8"V]b tt(t,k)V = 0, 

b tt(t,k)V[ - i a ,:-_ K (k)VI' + w(k)8VI'] = 0 , 

respectively, where 

a t~ (k)I'V = a,8"v ± K(k)A (k)I'V . 

Equations (4.5) and (4.6) are solved to give 

a(t,k)1' = e-;w(k)tu
K 

(t,k)I'Va(k)V , 

a(t,k)1' = a(k)VU _ K (t,k) Vl'e;w(k) , , 

and 

b tt(t,k)1' = e;w(k)tU -K (t,k)I'Vb t(k)V, 

b tt(t,k)1' = b t (k) vU
K 

(t,k) Vl'e - ;w(k), , 

respectively, where 

UK (t,k) =exp[ -K(k)A(k)t] 

(4.4a) 

( 4.4b) 

(4.5a) 

(4.5b) 

(4.6) 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

=A (r)(k)e-K(k)' -A (a)(k)eK(k)', (4.9) 

where the matrix A (r) is defined in (3.5) andA (a) is given by 

_ ~n(k) [1 + un(k)] ]I'V, 

- [1 +un(k)] 

A (r) (k)I'V _ A (a) (k)I'V = 8"v , 

A (r) (k)I'V + A (a) (k)I'V = A (k)I'V . 

From (4.4) and (4.5), we see that 
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- {a; + [cu(k) - iK(k)A(k) ]2}Jl"a(t,k)" = 0, 

(4.12 ) 

- {a; + [cu(k) - iK(k)A(k) ]2}Jl"b tt(t,k)" = O. 

(4.13 ) 

A. The semifree field equation for a physical field 

We consider a semifree field q;(x) of type II which satis
fies the field equation 

(4.14 ) 

where a = (V,at ). The field equation is called a type II equa
tion when it can be reduced to the eigenvalue equation 

{a;+ [cu( -iV) -iKe -iV)A( -iV)]2}Jl"q;(X)"=0. 

(4.15 ) 

This dissipative free field equation (the equation for a semi
free field) is the extension of the nondissipative free field 
[ a; + cu2 

( - IV) ] q; = O. Note that the form of the dissipa
tive term is not arbitrary; it should be proportional to the 
matrixA. 

B. The divisor 

For the semifree field, the divisor dK (a) is defined by 

AK (a)Jlli dK (a)li" 

= dK (a)Jlli AK (a)li" 

= - {a; + [cu( -IV) - iKe -/V)A( -IV) ]2}Jl". 

(4.16 ) 

If we denote by .:lG (x, y) any Green's functions of (4.15), 

-{a;+ [cu( -IV) -iKe -/V)A( _/V)]2}Jlli.:lG(x,y)li" 

=8tv8(x-y)8(t-s), (4.17) 

with y= (y,s) and V=Vx , dK (a).:lG (x,y) is a Green's 
function for (4.14), 

AK (a)Jlli[ dK (a).:lG (x, y)] li" = 8Il"8(x - y)8(t - s) . 

(4.18 ) 

C. The wave equation 

In the usual quantum field theory without thermal de
grees of freedom, the consideration of free fields begins with 
finding u(x,k)a(k) for particles and v(x,k)b t(k) for anti
particles. Here U (x,k) and v(x,k) are the wave functions of 
positive and negative frequencies, respectively, and x means 
(x,t). These wave functions are usually determined by the 
free field equations. On the other hand, when the unper
turbed Hamiltonian is known, they can also be obtained 
from the Hamiltonian. The Hamiltonian determines a(t,k) 
and b(t,k), and then the wave functions u(x,k) and v(x,k) 
are obtained through relations such as a(t,k)u(x,k) 

= a(k)u(x,k), etc. In the case under consideration, we fol-
low the latter method because the unperturbed Hamiltonian 
AD 
H , (4.1), is known. 

Through the relations 

u(x,k)Jl"a(t,k)" = u(x,k)Jl"a(k)", 
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(4.19a) 

(4.19b) 

with 

u(x,k)Jl" = u(k)Jl"e,k
'x , 

v(x,k)Jl" = v(k)Jl"e -Ik·x , 

we have 

u(x,k)Jl" = e - i<u(k)t+ Ik'XUK (t,k)JlliU(k)li" , 

v(x,k)Jl" = eiw(k)t-lk.xU _ K (t,k)JlliV(k)li" . 

( 4.20a) 

(4.20b) 

(4.21a) 

(4.21b) 

Here (4.7) and (4.8) have been used. We see that u(x,k) 
and v(x,k) satisfy 

[i a t~ ( _/V)Jlli -cu( -/V)8Illi ]U(x,k)li" = 0, 

[i a t~ ( - IV)Jlli + cu( - IV)8Illi ] V(x,k)li" = O. 

The physical field q;(x) is expressed as 

(4.22a) 

(4.22b) 

q;(x)Jl= J d 3k[u(x,k)Jl"a(k)"+v(x,k)Jl"b t (k)"]. 

(4.23 ) 

Then substitution of (4.23) into the field equation (4.14) 
gives us wave equations 

AK (a)Jlliu(x,k)li" = 0, 

AK (a)Jlliv (x,k) li" = 0 . 

D. The Hermitization matrix 

(4.24a) 

(4.24b) 

As we have assumed that the differential operator AK (a) 

depends on the thermal degrees offreedom (i.e., the super
scripts) only through iKe - IV)A ( - IV), we can easily see 
that it has the property 

AK ( - a)T! = T0K (a) . (4.25) 

In deriving (4.25), we have used the characteristic 

A T( -IV) = - T~( -/V)T2-
1

• (4.26) 

In the following, we drop the superscript unless it is needed. 
Equation (4.25) tells us that the matrix T 2 is the Hermitiza
tion matrix with respect to the thermal degrees of freedom. 

The property (4.25) and the wave equations ( 4.24) give 
us 

U(X,k)AK ( - J) = 0, 

V(X,k)AK ( - J) = 0 , 

where 

u(x,k) = T2Ut(x,k)T2-1 , 

v(x,k) = T2Vt (x,k)T2- 1. 

Substituting (4.21) into (4.28), we have 

U (x,k)Jl" = U (k)JlliU _ K (t,k)li"eiw(k)t -Ik·x , 

v(x,k)JlV = v(k)JlliUK (t,k)li"e - iw(k)t + Ik·x , 

where we have used the relation 

U;(t,k) = T2U _ K (t,k)T2-
1 

, 

(4.27a) 

(4.27b) 

(4.28a) 

(4.28b) 

(4.29a) 

(4.29b) 

(4.30) 

which can be obtained from (4.26). Note that the relations 

a(t,k)u(x,k) = a(k)u(x,k) , 

b tt(t,k)v(x,k) = b t(k)v(x,k) , 

are consistent with (4.7b) and (4.8b). 
We then define 
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q5(x)'" = J d 3k [a(k)'U(x,k)"'" + jjt(k)"v(x,k)""'] , 

(4.32) 

which satisfies 

q5(X)"AK ( - a)V'" = o. (4.33) 

The property of the divisor defined by (4.16) gives us 

q5(x){a; + [a>(iV) - iK(iV)A(iV)]Z} = O. (4.34) 

E. The inner product of wave functions 

Let us assume 

AI( (a)"''' = A (0)( - IV)"'Y + a (1)( - IV)8'" 

xar +A (Z)( -IV)8'v a:. ( 4.35) 

The inner product of two wave functions, say I(x) andg(x), 
is defined by 

(fg)fV = J d 3xl(x)"'Vr(a, a)y6g (x)6v, (4.36) 

where we have introduced 

rca, - a)"'V = [A (1)( -IV) fA (2)( - IV)at ] 8'v , 

(4.37) 

with 

at = at - at. (4.38) 

When I andg satisfy AK (a)/(x) = AK (a)g(x) = 0, we 
can show that (f g) t is independent of t as follows: 

~(fg)t = Jd 3XI (X) [A (1)( -IV)(at +at ) 
dt 

- fA (Z)( - IV)(at + at )(at - at )]g(x) 

= -i J d 3xl(x) [AK(a) -AK( -a)]g(x) 

=0, (4.39) 

where we have performed integration by parts with respect 
to the space integration. 

J d 3x u(x,k)"'YrK (a, - a)y6u(x,I)6V = 8'V8(k -I) , 

( 4.41a) 

J d 3X v(x,k)"'YrK (a, - a) y6V(X,I)6v = - p8'V8(k -I) . 

(4.41b) 

In (4.41a) wechosethesignofA(a) (which determines the 
signofrK ) in such a way that the left-hand side of (4.41a) is 
positive. Since this does not determine the sign of the quanti
ty in (4.41 b), we put the sign factor p = ± 1 in the condi
tion (4.41b). 

Introducing 

r[ko,k] A (J)(k) - 2koA (Z)(k) = a~o:A [ko,k] , 

(4.42a) 
with 

A [ko,k] = A (O)(k) + A (J)(k)ko - A (Z)(k)k ~ , (4.42b) 

for the case given by (4. 35), we see that (4.41) give 

{u(k)r[w(k) - iK(k)A(k),k]u(k)}"'v 

= (21T) -38'v , ( 4.43a) 

{v(k)r[ - a>(k) + iK(k)A (k), - k]v{k)Yv 

= _p(21T)-38'v. (4.43b) 

G. The canonical sum rules 

Let us define the following two functions: 

'J d
3

k 1 
aK±(x) +1 (21T)3 2[w(k) -iK(k)A(k)] 

x U ±K(t,k)e=Fi(w(k)t-k'x1 . (4.44) 

We then have 

a
K
+ (x,t) = a

K
- (x, - t) , ( 4.45) 

8(t)at a K
± (x) = - !o(x)o(t) , (4.46) 

{a;+ [w( -IV) -iKe -IV)A{ -lv)F}a±(x) =0. 

(4.47) 

The last property implies that dK (a)al(± (x) satisfies the 

F. An orthonormalized complete set of solutions of the equation 
semifree field equation (4.14) AK (a) [d

K 
(a)a

K
± (x)] = 0 . (4.48) 

Being equipped with the above definition of inner prod
uct we now construct an orthonormalized complete set of 
solutions ofthe semifree field equation (4.14). 

When we use u(x,k) and v(x,k) for I(x) and g(x) in 
(4.36), respectively, we have the following orthogonality 
theorem: 

J d 3x u(x,k)rK (a, - a)v(x,l) = 0, 

J d 3X v(x,k) rK (a, - a)u(x,l) = 0, 

(4.40a) 

(4.40b) 

because of the time independence of the quantities proved by 
(4.39). 

We choose u(x,k) and v(x,k) to satisfy the following 
orthonormalization condition: 
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The following sum rules can be proved: 

J d 3k u(x,k)"''''u( y,k)6v = i d
K 

(a)"''''a/ (x _ y)6v, 

(4.49a) 

J d 3kv(x,k)"'1:;(y,k)6v= ipdKca)"''''al( (x-y)"''', 

(4.49b) 

the detailed derivation of which is given in the Appendix. 
Since this sum rule is the basis of the equal-time canonical 
commutation relations, this is called the canonical sum 
rule. s 

Introducing 

( 4.50) 
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we seefrom (4.45) and (4.46) that 

I::.K (x,t)o(t) = 0 , 

o(t)atI::.K (x,t) = - o(x)o(t) . 

(4.51 ) 

(4.52) 

Since I::.K satisfies the linear homogeneous differential equa
tion of the form (4.47) which is the second order in time 
derivative, we have 

[(at )2n1::.K (x,t) loU) = 0, 

[(a,)2n+ II::.K(X,t)]oU) = 0 for x~O, 

when n is an integer. Thus we have 

[F(a)I::.K (x,t)]o(t) = ° for x~o, 

(4.53 ) 

(4.54) 

(4.55) 

where F(a) stands for a sum of products of derivatives with 
finite powers. The combination (I::.K+ - I::.K- ) does not have 
this property. 

H. The commutation relation and statistics 

Using (4.23) and (4.32) with (4.49), we obtain 

[tp(x)l',qJ( y)vJu 

= i{dK(a) [1::./ (x - y) + apl::.K- (x - y) ]yv. 
(4.56) 

We now require the causality condition which states that the 
operators of observables should commute with each other 
when they refer to different points in space at a common 
time. Then, it follows from (4.55) and (4.56) that 

ap = 1 . (4.57) 

In this way, p determines the statistics. 

I. Projection of creation and annihilation operators 

When we are given the semifree field tp(x) of the form 
(4.23), we can project out the creation and annihilation op
erators by means of the formulas: 

a(k)l'= J d 3xu(x,k)l'.5r(a,-a).5vtp(x)V, (4.58a) 

-pbt(k)l'= J d 3xv(x,k)l'.5r(a,_a).5vtp(x)v. 

(4.58b) 

In deriving (4.58), we have used (4.40) and (4.41). 

J. The two-point Green's function 

The internal line in the Feynman-type diagrams is the 
causal two-point Green's function I::.c (x - y) defined by 
[see (4.18)] 

I::.c (x - y)r = dK (a)~.5l::.c (x _ y).5v 

= -i(OIT[tp(x)fqJ(y)j] 10) . (4.59) 

Introducing the Fourier transform of I::.c (x - y) with 
respect to the space variable by 

I::. (X-y)~v=J d
3
k I::. (t_sk)~ve'k'(x-y) (4.60) 

c IJ (21T)3 c 'IJ ' 

we have 
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+ aGes - t,k)l'.5 L [v, (k) iV, (k)j ].5V , 

(4.61) 

where 

GU - s,k) = G(t,s,k) (4.62) 

with (2.23)-(2.27). Note the time independence of B, cu, 
andK. 

Fourier transforming (4.61) further with respect to 
time, we have 

I::.c (ko,k)r 

= f'" dt I::. (t k)~Veik,,' 
C , IJ 

- '" 

[
1 _ ]I'V 

= ko-cu(k) +iK(k)A(k) ~U,(k)iU,(k)j 

[ 
1 _ ]I'V 

-0' ko+cu(k) -iK(k)A(k) ~V,(k)iV,(k)j . 

In deriving (4.63), we have used the property 

A (k) = B- 1 (k)1"3B(k) . 

(4.63 ) 

(4.64 ) 

Note that the existence of iKA in I::.c means that the Feynman 
line is a dissipative wave even though no physical quantities 
dissipate in the stationary situation. 

K. Some examples 

A simple example of an equation of type II is given by 

AK(a) = -a;- [cu( -iV) -iKe -zV)A( _iV)]2. 

In this case, 

dK (a)I'V = t5JLv , 

r
K 

(a, - a)I'V = t5JLvi a, , 
p=a=l. 

Thus (4.43) leads to 

u(k) = u(k) = v(k) = v(k) 

= (21T)-3/2{2[cu(k) _ iK(k)A(k) ]}-1/2. 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

From (4.49), the commutation relation becomes 

(4.70) 

where I::.K (x - y) is defined by (4.50). Ifwe use the property 
(4.52), (4.70) reduces to 

[tp(x)I',1f( y)vJ +IO(t - s) = iO(x - y)oU - s) , 
(4.71) 

where 

1f(x) = a,qJ(x) . (4.72) 

This shows that tp(x) and 1f(x) are canonical conjugates of 
each other. Note that the canonical commutation relation is 
based on the canonical sum rule. 

The propagator I::.c (ko,k) is given by 
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(4.73) 

A more complicated example is provided by the semi
free field equation of physical electrons in superconductors: 

A.K (a)~1' = i at 8ij 8"1' - [E( - iV)'T3ij - t::.'T1ij ] 

X m( - iV)8"1' - iKe - iV)A ( - iV)P,1' 

m( - iV) 

with 

E( -iV) = (1I2m)[( _iV)2_k}] , 

m( - iV)2 = E( - iV)2 + t::.2 , 

(4.74) 

(4.75) 

(4.76) 

where kF is the Fermi momentum. It is easy to show that 

dK (a)~1' = i a t8ij8"1' + [E( - iV)'T3ij - t::.'T1ij ] 

X m( - iV)8"1' - iKe -/V)A( _/V)P,1' 

m( -IV) 

From (4.37), we have 

rK (a, - a)~1' = 8ij8"1' , 

and 

p=u=-l. 

Thus (4.43) leads to 

u (k)~1' = 1 (COS B(k) )l1'V 
I (21T)3/2 _ sin B(k); , 

v(k)~1' = 1 (Sin B(k) )l1'V , 
I (21T)3/2 cos B(k) ; 

with 

cos B(k) = {[m(k) + E(k) ]l2m(k)}1/2, 

sin B(k) = {[m(k) - E(k) ]l2m(k)}1/2 . 

(4.77) 

(4.78) 

( 4.79) 

(4.80a) 

(4.80b) 

(4.81a) 

(4.81b) 

The commutation relation is given by (4.56) with (4.44) 
and (4.76). Furthermore, we have 

[tp(x)f,qJ(Y)j] -18(t - s) = 8"1'8ij8(x - y)8(t - s) , 
( 4.82) 

which indicates that tp(x) and qJ(x) form a pair of canoni
cally conjugate fields. The propagator is given by (4.63) 
with (4.80). 

A dissipative Dirac field satisfies the semifree field equa-
tion 

A.K (a) = i'f at - ( - iy·V + m) 

X m( -IV) - iKe -IV)A( -IV), (4.83) 
m( - IV) 

with the Dirac y matrices 

",0 =/3, Y =/30.. (4.84) 

The m ( - IV) is defined by 

m( - IV)2 = ( - IV)2 + m2 
• 

It is easy to show that 
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(4.85 ) 

dK (a) = i'f at + ( - iy·V + m) 

X m( -IV) - iKe -IV)A( -IV), (4.86) 
m( - IV) 

so we have from (4.37) 

rK (a, - a)~1' = ('f) ij8"1' (i,j = 1 - 4) (4.87) 

and 

p=u=-l. ( 4.88) 

From (4.43) we can construct the wave function as 

u(k)f1' = u(k);8"1', 

v(k)f" = v(k);8"1', 

(4.89a) 

(4.89b) 

where u(r)(k); and v(r)(k); (r = 1,2) are four-component 
Dirac free spinors with the condition 

u(r)t(k)You(S)(k) = 8rsl(21T) 3 , 

v(rlt(k)Yov(S)(k) = 8rsl(21T) 3 , (4.90) 

u(r)t(k)Yov(S)(k) = v(r)(k)tYou(S)(k) = O. 

Again the commutation relation is given by (4.56) with 
( 4.44) and (4.86). It leads to 

[tp(x)f,qJ( Y)j] -18(t - s) 

= 8P-1'(Yo)ij8(x - y)8(t - s) , (4.91) 

which indicates II' and qJyo are canonical conjugates of each 
other. 

In this section we used the particular choice, a = ~, in 
constructing the canonical formalism of the semifree fields. 
The construction is tremendously simplified by the relation 
'TzA T'T2 = - A, which holds if and only if a =!. The con
struction of the semifree field with arbitrary a requires a 
more complex consideration. This will be presented else
where. 

V. SELF-CONSISTENT EQUATIONS OF tfJ3 MODEL 

In this section we present an example of tfJ3 self-interact
ing real scalar in order to show how a dissipative effect can be 
created spontaneously in such an isolated system in TFD. 
(This system is assumed to be stationary below.) 

In a recent paper7 we have already seen spontaneous 
creation of dissipation in a reservoir model, a simple solvable 
one, which is a system of a single harmonic oscillator bilin
early coupled to a reservoir consisting of an infinite number 
N of harmonic oscillators. At the limit of N -> 00 with fixed 
gz, 

(5.1) 

g being a coupling constant between the system and reser
voir, our self-consistent renormalization scheme leads us to a 
solution in which K is nonvanishing and the number density 
of the system is determined to be at the temperature of the 
reservoir. The infiniteness of degrees offreedom in the reser
voir, allowing the system to dissipate in it, is an essential 
ingredient for this. This analysis also tells us that the dissipa
tion effect shows up as a result of the communication among 
the tilde and nontilde fields and, consequently, it can really 
be called thermal dissipation. 

When we consider a nonlinear self-interacting case 
which is being dealt with in what follows, we should take 
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account of the self-energy diagrams due to the self-interac
tion in the self-consistent equations. Although the system is 
no longer coupled to any reservoir we still have an infinite 
number of communication channels among the tilde and 
nontilde field operators due to transitions from one state to 
another by self-interaction. In this case as well as general 
nonlinearly interacting cases we may expect the thermal in
stability, i.e., that nontilde particles decay into multiparti
cles including tilde particles through many channels, be
cause tilde particles have negative energies. So the thermal 
dissipation inevitably appears in nonlinearly interacting 
cases. 

The formulation of the semifree field of type II in a sta
tionary system has been given in Sec. IV with the choice of 
a = !. We start from the model Lagrangian density for a real 
scalar field, 

2' = H ¢ ~ - CPcPJ~ ( - iV)cpo] - (gol3!)cp ~ , (5.2) 

where wo, go, and CPo are bare quantities. Deriving H from the 
canonical formula and constructing its tilde conjugate N, we 

have our basic total Hamiltonian H = H -N. The semifree 
(unperturbed renormalized) Hamiltonian HO

, which speci
fies the state vector space for realization of the field operator, 
should have the following form: 

A fl .. H O = d3X2[~f.tCPf.t+~f.t{(w-iKA)2}f.tVcpV], (5.3 ) 

where cp is the semifree (unperturbed renormalized) field 
[see (4.23) ] and w is a renormalized energy. Then the inter
action Hamiltonian HI is unambiguously given by 
A A AO A A 

HI =H -H = Hint +Hc' (S.4a) 

H. =~fdx[{mIP-{m2P] 
mt 3! T T , 

(S.4b) 

(S.4c) 

where g is a renormalized coupling constant and an energy 
counterterm Dw2 is defined by 

w~ = w 2 - Dw2 . 

In writing Eq. (S.4c), we used the relation 

A 2 = I, 

(S.4d) 

(S.4e) 

and suppressed the counterterms of wave function renor
malization and the coupling constant renormalization since 
we are interested only in the two-point Green's functions in 
the one-loop approximation. 

In order to apply the self-consistent renormalization 
scheme to this system, we now calculate the connected full 
propagator Llc,full' 

Llc,full (x - y)f.tV = - i(OI T [cp(X)f.t~( y)v 

X exp{ - i J dt HI(t)}] 10)conn (5.5) 

where the suffix conn means a connected part of the dia
grams. From graphical considerations just as in the ordinary 
quantum field theory, Llc~u~l can be expressed by the proper 
self-energy ~ as 

(5.6) 
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the free propagator Llc being given in (4.72) and k = (ko,k). 
At the level of one-loop approximation, ~(k) is a sum of the 
contribution from a one-loop diagram ~l (k) and that from 
counterterms, 

~(k)f.tV = ~l (k)f.tV + { - Dw2 + K2 + 2iKWA }(k)f.tv , 

(S.7a) 

~ (k)f.t v =g2J d
4
q 

I 2 (211')4 

[
Ll(q+)IILl(q_)11 

X Ll(q+)21Ll(q_)21 

_ Ll(q+)12Ll (q_)12] 

_ Ll(q + )22Ll(q _ )22 ' 

q± =q±k/2. (S.7b) 

For a real value of ko, the integrations over qo can be per
formed in (S.7b), and ~, has the matrix form of 

~1(k)=[LI~iL2 iL3] (S.8a) 
- lL3 LI + iL2 ' 

whose elements are further expressed as 

~J d
3
q 

Ll = - 2 (211')3 

X{(1 + 2n+)K('+) + (1 + 2n_)K('_)}, 

(S.8b) 

~f d
3
q 

L2 = - 2 (211')3 

X{K(+) + (1 +2n+)(1 +2n_)K(_)}, (S.8c) 

~J d
3
q 

L3 = - 2 (211')3 

X{4n+(1+n+)n_(1+n_)K;_J, (S.8d) 

with the notation of n ± = n (q ± k/2). The real valued 
functions K ( ±) and K t ±) are defined through the follow
ing relations: 

K;±) +iK;'±) =!U1 ±12 ) , 

where 

12 = 2.0. .0.* [k2 _ (.0. _ .0. )2] , 
+ - 0 + -

O,± =w± -iK±, 

with w ± = w(q ± k/2) and K ± = K(q ± k/2). 

( S.9a) 

. (S.9b) 

(S.9c) 

At this stage, we require the renormalization condition 
that the total self-energy should vanish on the energy shell, 
ko = w(k), 

~(ko = w(k)) = 0 (S.lOa) 

or 

- ~l(ko = w(k)) = {- Dw2 + K2 + 2iKWA } (k)f.tV . 

(S.lOb) 

The last equation is the 2 X 2 matrix self-consistent equation. 
In deriving (5.10), the "on shell" is defined by the real part 
of the pole of propagator. It is remarkable that this matrix 
equation brings us only three independent real equations be
cause the two off-diagonal elements give the same equation, 
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(5.11a) 

The real and imaginary part of the two diagonal elements of 
(5.lOb) imply 

(5.11b) 

and 

2nw( 1 + 2n) = L2(ko = w,k) , (5.11c) 

respectively. In Eqs. (5.11), we used the notations 
n = n(k), w = w(k), K = K(k), and Dw = Dw(k). 

The set of three equations (5.11) are the self-consistent 
equations for three unknown functions w(k), n(k), and 
K(k). Their solution is expressed in terms of go and mo, 
where 

(5.12) 

We have been unable so far to obtain analytic solutions 
except for K(k) = 0, because the forms of the functions 
w(k), K(k), and n(k) are not given but should be deter
mined self-consistently. However, we expect that there are 
many solutions withK#O, each having differentw(k), K(k), 
and n(k). The n(k) thus obtained is determined by dynam
ics which includes the interaction with the thermal back
ground fields (Le., the tilde quanta). 

The origin of K = 0 solution in our calculation can be 
understood in the following way. Suppose that we start our 
perturbation calculation with the free fields without dissipa
tion and consider the self-energy at one-loop level. Then the 
decay of a nontilde particle into two nontilde particles is 
obviously forbidden. At first glance, we might feel that the 
decay of a nontilde particle into another non tilde particle 
and a tilde particle might be possible because the tilde parti
cle we consider has a negative energy. The energy and mo
mentum conservation laws read as 

w(P) = w(k l ) - w(k2) , 

P=k l -k2 , 

with 

w(P) = ~p2 + m2 
. 

(5.13a) 

(5.13b) 

(5.13c) 

However, further inspection of (5.13) shows that there is no 
solution of (5.13). This means that the K =0 solution in the 
self-consistent equation can be interpreted as the result ofthe 
lowest-order perturbation expressed in terms of the usual free 
field without dissipation. When we consider higher orders, a 
non tilde particle is allowed to decay into many particle states 
with at least one tilde particle and, consequently, K=O is no 
longer a solution of the self-consistent equation. 

VI. A SHORT SUMMARY 

It was shown that TFD offers a systematic and unified 
treatment of any thermal situations including nonequilibri
um situations. Given a dynamics, i.e., a Hamiltonian, H 
characterizing a system under study, one associates with it 
the total Hamiltonian ii as ii = H -iI. Each thermal situa
tion corresponds to one of various realizations of ii and is 
characterized by thermal state conditions at an initial time. 
With such initial thermal state conditions we proceed to 
make an interaction picture associated with it and follow a 
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self-consistent renormalization program to determine the 
time evolution of n as well as wand K. In other words, all the 
quantities n, w, and K are determined dynamically and self
consistently. Note that here the dynamics include the com
munication between the nontilde particles and the thermal 
background fields (the tilde fields). 

In the course of practical calculations we can exploit all 
the techniques developed in the usual field theory, because 
TFD is formulated as an operator field theory. Thus the use 
of TFD will be useful in describing the nonequilibrium sys
tem with an infinite number of degrees of freedom like in 
cases of quantum field systems. 

Since TFD is equivalent to the other methods such as 
the density matrix formalism 13 and the path-ordering meth
Od,12 we expect that a formulation of self-consistent renor
malization for the dissipation coefficient may be needed also 
in other methods. 

One particular flexibility in TFD can be found in the 
arbitrariness of the parameter a discussed in Sec. III. The 
specific choice of a sometimes simplifies a problem in a way 
similar to the choice of gauge in gauge theories. 

We pointed out in Sec. I how the thermal instabili!y in 
TFD is closely related to the lower unboundedness of H. It 
indicates that the dynamical map in terms of the asymptotic 
free fields is inadequate in TFD. Therefore, we have formu
lated the semifree fields in [a = !] representation for unper
turbed ones, taking account of such a thermal instability 
from the beginning. There it is remarkable that the semifree 
fields has a canonical formalism. This enables us to follow a 
self-consistent renormalization, since the renormalization 
transformation is a kind of canonical transformation. 

In this paper we give only the semifree fields of type II in 
the [a =!] representation. The semifree field formulation 
in any [a] representation is possible, which is explicitly 
shown, e.g., in Ref. 8. We think that practical calculations 
are performed most elegantly in the present formulation of 
the [a = U representation because of its symmetric nature. 

The infinite number of degrees of freedom combined 
with the lower unboundedness of ii plays a central role in the 
present formulation of TFD and gives us a much richer 
structure of theory than the quantum field theory without 
thermal degrees of freedom. First, the fact that all thermal 
situations should be covered by a single Hamiltonian ii is 
justified by the existence of inequivalent representations in
herent to quantum theory with infinite degrees of freedom. 
Second, the nonvanishing K really appears as a result ofinfi
nite decay channels due to the negative energy of tilde parti
cles. We call it spontaneous creation of dissipation, since its 
mechanism is analogous to the spontaneous breakdown of 
symmetry in quantum field theory. Third, although the 
complex eigenvalues of iio seem to contradict the Hermiti
city of ii, this controversy may be explained by the spontane
ous breakdown of symmetry generated by the generator H in 
whichH has no eigenstates and eigenvalues in the realization 
Fock space. 

The theory developed in this paper still has many prob
lems to be studied in the future. Above all, its application to 
the explicitly time-dependent case is of particular interest. 
There the physical content of the theory will manifest itself 
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most clearly. After its accomplishment, the theory is appli
cable to the problem of the universe as well as various non
equilibrium problems in solid state physics. To this end, we 
need the formalisms of both canonical semifree fields and 
renormalization in time-dependent cases, on which we are 
preparing another paper. 

APPENDIX: DERIVATION OF (4.49) 

Since dK (a)I:::..K± (x - y) are solutions of field equation 
( 4.14) [see (4.48)], they can be expanded in terms of the 
orthornormalized solutions u(x,k) and v(x,k) as 

d
K 

(a)I:::..K+ (x - y) = f d 3k u(x,k)C + (y,k) , (Ala) 

dK(a)I:::..;;(x-y) = f d 3kv(x,k)C-(y,k). (Alb) 

When we consider the orthonormalization condition 
(4.41), the matrices C ± (y,k) can be determined as fol
lows: 

C + (y,k) = f d 3k u(x,k) rCa, - a)d(a) 1:::../ (x - y) , 

(A2a) 

C - (y,k) = f d 3k v(x,k)r(a, - a)d(a)I:::..K- (x - y) . 

(A2b) 

Substituting (4.44) into (A2a), we obtain 

C + ( k) _. 1 
y, - - I 2 [w (k) - iK(k)A (k)] 

xu( y,k)r[w(k) - iK(k)A(k),k] 

Xd [w(k) - iK(k)A (k),k] . (A3) 

On the other hand, we see from (4.42a) that 

a 
r[ko,k]d [ko,k] +.A, [ko,k]- d [ko,k] = 2ko , 

ako 
(A4a) 

where d[ko,k] is defined by 

.A, [ko,k]d[ko,k] = d[ko,k].A, [ko,k] 

= k 6 - [w(k) - iK(k)A (k)]2 . 

(A4b) 

This leads to 

u( y,k)r[w(k) - iK(k)A (k),k]d [w(k) - iK(k)A (k),k] 

= 2[w(k) - iK(k)A (k)]u( y,k) , (A5) 
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Thus (A3) gives 

C+(y,k) = -iu(y,k). (A6a) 

Similarly we have 

C - (y,k) = ipv( y,k) . (A6b) 

Substituting (A6) into (AI), we obtain the sum rule 
(4.49) . 
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Grassmannian u models are reexamined in the light of a new geometrical result. Namely, the 
Cartan immersion of a Riemannian symmetric space G IH into its isometry group G is not 
always a diffeomorphism onto the set Ma introduced by Eichenherr and Forger [Nucl. Phys. B 
164,528 (1980)]. This is the case, in particular, for Grassmann manifolds of all types: their set 
Ma is shown to be disconnected and its structure is completely analyzed. As a consequence, a 
new constraint must be introduced in the Backlund transformation (BT) method proposed by 
Hamad, Saint-Aubin, and Shnider [Commun. Math. Phys. 92, 329 (1984) ]. It is shown, 
however, to always be satisfied for Grassmann manifolds of compact type (i.e., G compact), 
but the problem remains open in most other cases. On the other hand, the BT method is 
extended to the Euclidean regime. 

I. INTRODUCTION 

Classical two-dimensional nonlinear u models have 
been around for many years. They still remain popular, be
cause they are nice examples of integrable systems, with 
many interesting properties: dual symmetry,I-3 infinitely 
many conservation laws4 with corresponding generators,5.6 
striking resemblance to four-dimensional Yang-Mills sys
tems, etc. 

The original impetus was the discovery by Pohlmeyer l 

that the S" model possesses the so-called dual symmetry; the 
model describes a two-dimensional massless field con
strained to live on a sphere S" , but otherwise free. The ob
vious generalization is to replace the sphere 
sn = SO(n + l)/SO(n) by an arbitrary homogeneous 
space M = G I H, where G is a Lie group and H a closed 
subgroup of G. However, and this is the key point of the 
theory, Eichenherr and Forger2

•
3 have shown that dual sym

metry holds iff G I H is a Riemannian symmetric space 
(RSS). For convenience, we repeat here the definition of a 
(irreducible) symmetric space7: G is a classical Lie group, u 
an involutive automorphism of G, and H a closed subgroup 
of G such that 

(1.1 ) 

where G a is the set of fixed points of u and (G a) 0 its identity 
component. The relation (1.1) implies the canonical, u.
invariant, decomposition of g, the Lie algebra of G, 

g=f)ffim, 

where f) is the Lie algebra of H and one has 

[f),f)] Cf), [f),m] Cm, [m,m] Cf), 

( 1.2) 

(1.3 ) 

i.e., 9 is reductive. The symmetric space G I H is Riemannian 
if its canonical G-invariant metric, induced by the Killing 
form of g, is positive definite, pseudo-Riemannian if the met
ric is indefinite. 

Then, given a symmetric space M = G I H, the nonlinear 
u model on M is the "free" field theory of a massless field t/J: 
R2 -+M, where R2 may have either a Minkowskian or a Eu-

0) Chercheur IISN (Belgium). 

clidean metric (we reproduce here the bare essentials only, 
referring the reader to the many existing reviews for further 
details, e.g., Ref. 4). The u models come in two types. 

(i) Principal models, in the case where M is itself a Lie 
group, M ~ G = G X GIG diag' With the field denoted g: 
R2 -+ G, the model is defined by the action 

s=~ r d2xTr(g-lall-g)(g-lall-g), ,u=0,1, 
2 JR' 

and the equation of motion reads 

all- (g-I all-g) = O. 

(1.4) 

( 1.5) 

(ii) Nonprincipa/ models, in the other cases. Then the 
field may be taken as g(x) E G as before, but subject to some 
additional constraints, and similarly for the equation of mo
tion (1.5). Alternatively, one may also introduce the covar
iant derivative D Il-g as the horizontal part of a Il-g in the bun-

H 
dIe G-+G IH, and transform Eq. (1.5) accordingly (for 
Grassmannian u models, a more convenient parametriza
tion will be used in Sec. V). 

The crucial fact linking the two types of models is the so
called Cartan immersion3

•
8
-

1O
: 

i,,: GIH-+G, 

( 1.6) 

by which the symmetric space G I H is mapped into its iso
metry group G; moreover the image ia (G I H) is a closed 
totally geodesic submanifold of G. Then, as shown by Ei
chenherr and Forger,3 the solutions of the G IH model are 
exactly those solutions of the principal G model that belong 
to the image i" (G I H). The main tool in their analysis is the 
following set: 

Ma = {gEG iu(g)g = 1}, (1.7) 

which satisfies the obvious inclusions 

( 1.8) 

However, contrary to the claim of Ref. 3 G I H is in general 
not globally diffeomorphic to Ma' In all classical cases,7 
G IHis a connected manifold, but in many of them, M" is not 
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connected, and not even a manifold! Actually each connect
ed component of Mo- is a sub manifold of G, but different 
components may have different dimensions. With a slight 
abuse of language, we may still call M u the EF submanifold. 
Then the result of Eichenherr and Forger3 if that the Cartan 
immersion ia is a local diffeomorphism onto the identity 
component (Mu)o of the EF submanifold Ma· 

The argument of Ref. 3 rests on the fact that the map'll: 
G-Ggivenby'll(Q) = O'(Q)Q has constant rank. However 
this is incorrect. Indeed the kernel of the tangent map'll. at 
Q is given by Q fQ' where fQ is the set of XEm that verify the 
equation 

0'. (X) + Ad(Q)X = o. ( 1.9) 

For Q = 1, (1.9) means XEm and thus rank '1111 = dim f). 
But this is not true for all QEG. Indeed, for each classical 
symmetric space, as listed, e.g., in Refs. 7 and 11, we can find 
QoEG such that rank 'IIIQ" #dim f). More precisely, we have 
the following. 

(i) If the automorphism 0' is a simple conjugation, 
O'(g) = LgL -I, then for Qo = L, Eq. (1.9) has the only solu
tionX = 0 and rank 'IIIL = dim g. This is true for all Grass
mannian spaces, i.e., the series AlII, BDI, and Cll, and also 
for the compact series DIll and CI. In each case, L indeed 
belongs to G, except maybe for the fact that det L = - 1 for 
some dimensions; in that case, it is easy to find a modified L ' 
that will do the job and yield rank 'III L' # dim f). 

(ii) In all other cases, one may choose Qo = J, or more 
generally, Qo = J', where, for appropriate values of m and k, 

(1.10) 

The conclusion is that rank'll is never constant, and the 
constant rank theorem does not apply! We may also notice 
that Qo belongs to Main the Grassmannian case, but not for 
the other ones; for instance O'(J)J = - 1 in all cases. 

In addition, the Cartan immersion is not always one-to
one. Indeed for H # Gain Eq. ( 1.1 ), G 1 H is not simply con
nected, but a finite covering of G IGa, and then (Ma)o is 
globally diffeomorphic to G IGa rather than to G IH itself. 
This point is discussed in the Erratum to Ref. 3, and will not 
occupy us any longer. We will encounter an example in Sec. 
IV below, namely the case of oriented real Grassmann mani
folds. 

To summarize, the reasoning of Ref. 3 effectively shows 
that each connected component of Ma is a closed totally 
geodesic submanifold of G and the Cartan immersion ia is a 
diffeomorphism of G IGa onto the identity component 
(Mo-)o· 

Unfortunately, the result originally stated by Eichen
herr and Forger is the cornerstone of most of the later devel
opments of the theory of 0' models, in particular the method 
of construction of multisoliton solutions introduced by 
Saint-Aubin9

.
10 and Hamad, Saint-Aubin, and Shnider, II 

and extended by the same authors to general integrable sys
tems using the so-called soliton correlation matrix. 12 Thus it 
is urgent to reexamine the validity of those methods in the 
light of the geometrical complications discussed above. 
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The aim of the present paper is double. 
(i) First we want to clarify the geometrical setup. A 

complete analysis seems difficult for a general symmetric 
space, but we will perform it when M is a Grassmann mani
fold, complex, real, or quatemionic, of compact or noncom
pact type (in this second case, the space may be pseudo
Riemannian). This is the content ofSecs. II-IV. 

(ii) Then we reexamine in Sec. VI the Backlund trans
formation (BT) method of Hamad, Saint-Aubin, and 
Shnider I 1.12 (those papers will be denoted HSS in the sequel) 
in the light of those results. The outcome is that the method 
is valid for Grassmannian (T models of compact type, and 
also for the 0' models on the Riemannian spaces SU (n ) 1 
SO(n) and SU(2n)/Sp(n), for which Ma is connected. In 
all other cases, the question remains open. 

In addition to those crucial points, we present in Sec. Va 
unified formulation of all types of Grassmannian models, 
compact or not, in terms of projection valued fields, as ori
ginally introduced by Zakharov and Mikhailov,13 Corrigan 
et al., 14 and Dubois-Violette and Georgelin. 15 In Sec. VI we 
also establish the validity of the HSS method for Euclidean 
models (only the Minkowskian case is considered in Refs. 11 
and 12); this was taken for granted by Sasaki, 16 but the result 
is far from obvious. Incidentally the same paper contains 
some remarks about noncom pact Grassmannian 0' models, 
but the discussion is very sketchy and offers no proof what
soever. 

Of course the most popular approach for solving Euclid
ean (T models is the "holomorphic" method introduced by 
Borchers and Garber I 7 and developed systematically by Din 
and Zakrzewski (see Refs. 18 and 19 for a review), and by 
Sasaki.20 It turns out that this method also may be extended 
to noncompact models and their supersymmetric exten
sions. We will report on this elsewhere. 

II. GEOMETRY OF THE EF SUBMANIFOLD: COMPACT 
GRASSMANNIANS 

We begin with the simplest case, the complex Grass
mann manifold of compact type, 

Gpq (C) = U(p + q)!U(p) XU(q) (2.1) 

= SU(p + q)/S(U(p) XU(q»). (2.2) 

In the sequel we will consider mainly the realization (2.1) of 
Gpq ' despite the fact that U(p + q) does not act effectively 
on it (see the discussion of Forger4 on this point). At the end 
of the section we will indicate the changes required by (2.2). 

The involution O'pq ofGpq is given7
•
11 by 

(Tpq (g) = Ipqglpq, (2.3) 

wheregEU(p+q)andlpq = [lp _lq].AccordinglytheEF 
submanifold Mpq takes the following form: 

Mpq = {QEU(p + q) IIpqQlpqQ = n. (2.4) 

In order to analyze the structure of Mpq ' we parametrize G pq 

in terms of projections. A point of Gpq (C) is, by definition, a 
q-dimensional subspace of CP + q, and the latter is uniquely 
characterized by a Hermitian projection P of rank q, i.e., 
Tr P = q. Our first observation is trivial. 
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Lemma 2.1: The relations 

Q = Ipq (I - 2P), 

P=! (I-IpqQ), 

(2.5a) 

(2.5b) 

define a bijection between the points QEMpq and projections 
P on arbitrary subspaces of CP + q. 0 

The proof is a straightforward verification of the equiv
alence between the relations Q t Q = I, Ipq QIpq Q = 1 on one 
hand, and the relations P 2 = pt = P, on the other. Notice 
that P = ° corresponds to Q = Ipq , P = lL to Q = - Ipq. 

It follows from Lemma 2.1 that the manifold ipq (Gpq ), 
identified with the set of all projections of rank q (the immer
sion i is one-to-one in this case), cannot be identical to pq 
Mpq ' which corresponds to projections of all ranks q'. But 
there is more. 

Lemma 2.2: Let p' + q' = P + q and define the map <P: 
U(p + q) ..... U(p + q) by 

(2.6) 

Then <P is a diffeomorphism from Mpq onto Mp'q' and the 
points QEMpq' <P(Q)EMp'q' correspond by (2.5) to the same 
projection P. 0 

This lemma, also straightforward, shows that Mpq can
not always be isomorphic to G pq' since 
dim Gpq = 2pq#2p'q' = dim Gp'q' (unless {p',q'} = {p,q}). 
Let us come back to the discussion of Sec. I, setting 
9 = u(p + q), f) = u(p) e u(q). Equation (1.9) for Ker '11. 
becomes 

(2.7) 

From this follows, as announced, that rank '1111 = dim f) and 
rank '111 Ipq = dim g. More generally, we can compute the 
rank of '11 for each Q = ± Ip'q' (p' + q' = P + q), and the 
result does vary withp', q'. Notice that in all cases Ip'q,EMpq : 
the rank of '11 is not constant on M a' So the question remains: 
what is the structure of M pq , and what are the properties of 
the Cartan immersion l~ ? 

First we characterize the connected components M ~;) 
of Mpq. As in Ref. 3, we start from a point QEM J,;) and take a 
geodesic starting at Q, namely: 

Q, = Qe'x, tE[O,I], XEQfQ' (2.8) 

This geodesic is entirely contained in M J,;), since the latter is 
totally geodesic. Correspondingly we get a one-parameter 
family of Hermitian projections 

P,=!(I_IpqQe'x), tE[O,I]. (2.9) 

Since Tr P, is an integer and depends continuously on t, we 
get 

Tr P, = Tr P, V tE[O,I], (2.10) 

i.e., all projections corresponding to the points of the geodes
ic have the same rank. On the other hand, two projections of 
the same rank P, P are conjugated under U (p + q): 

(2.11) 

Since U (p + q) is connected and acts transitively on the sub
spaces ofCP + q of fixed dimensions, any two such projections 
are linked by a continuous family of projections, all of the 
same rank, and thus the corresponding points Q, Q of Mpq 
are connected by a continuous path in Mpq (broken geodes
ic) and in fact within the same connected component M J,;). 

Thus each connected component M ~;) corresponds by 
(2.5) to all projections ofa given rank q' (0<4 <p + q), i.e., 
it is the image of some Grassmann manifold Gp'q' under the 
corresponding Cartan immersion ip'q" Combining this result 
with those of the general discussion above, we get the follow
ing theorem. 

Theorem 2.3: We consider the complex Grassmann 
manifold Gpq (C) ~ U(p + q)!U(p) XU(q). The corre
sponding EF submanifold Mpq consists of the two isolated 
points {± Ipq} and (p + q - 1) connected components 
M J,;>, k = 1, 2, ... , P + q - 1, such that the following condi
tions hold. 

(i) For each k, M ~;) is a totally geodesic submanifold of 
U(p + q); it consists of all elements of the form 
Q=IpqgIp+q_k,kg-l, gEU(p+q), which correspond by 
the relations (2.5) to all projections of rank k in CP + q. 

(ii) The Cartan immersion ipq is a diffeomorphism of 
Gpq onto the identity component (Mpq)o = M~:). 

(iii) More generally, each component M J,;) is the image 
of the Grassmann manifold Gp + q _ k,k under the diffeomor
phism <P(k)oip+q_k,k' where the map <P(k): U(p+q) 
..... U(p + q), defined by <P(k)(Q) = IpqIp+ q-k,kQ, is a dif
feomorphism of Mp + q _ k,k onto M pq' 

(iv) Finally, the components MJ,;) and M ~+q- k) are 
diffeomorphic to each other, under the map Q~ - Q, equiv
alenttoP~I-Punder(2.5). 0 

To give an example, take G31 = U(4)!U(3) XU(1) 
and G22 = U(4)!U(2) XU(2). The corresponding Cartan 
immersions i31 and i22 map both manifolds into U(4), and 
one has i31 (G31 ) = (M31)0=M~:>' i22 (G22 ) = (Mzz}o 
= M g). The respective EF submanifolds M 31, M22 have the 

following structure, where the connected components corre
spond to each other via the diffeomorphism <P: U (4) --+ U ( 4 ) 
given by <P(Q) = I 22I 31 Q, as indicated in Lemma 2.2, 

M 31 = {I31 }U [(M 31 )0=Mj:)]U M~i) UMWU {-I31 } 

Mn~ J:} u J:, u [(M):Mg'lJ~,u J:,} (2.12) 

For k = 1, 2, 3, the components M j~) and M g) are diffeo
morphic to the set P (k) of k planes in C4

• For instance, the 
unit matrix 14E(M31 )o and its image <PO) =I22I 31EMg) 
correspond to the rank 1 projection [0, 1 ], whereas the same 
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~nit matrix 14 taken in (M22 )oand its image <p- 1 (1), corre
spond to the rank 2 projection [02 12 ], each time according 
to Eq. (2.5b). 

The conclusion of the analysis is that the constraints 
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Q t Q = I (subgroup) and I pq QIpq Q = I (quotient) are not 
sufficient to guarantee that the point QEU (p + q) belongs to 
the image of the Cartan immersion ipq: Gpq .... U (p + q). 
One needs the additional constraint rank P = q, where P is 
the projection corresponding to Q, i.e., P = !(1 - IpqQ). 
Obviously this fact has important consequences for the anal
ysis of nonprincipal u models, which is mostly based on the 
result of Eichenherr and Forger3 described in Sec. 1. We will 
analyze in Sec. VI the implications of the additional con
straint for the HSS method. !l.12 

Before proceeding to the noncom pact case, let us de
scribe briefly the alternative parametrization (2.2): 
Gpq (C) = SU(p + q)/S(U(p) XU(q». The involution 
(2.3) remains the same, but we have a new Cartan immer-
sion 

Ipq: Gpq(C) .... SU(p+q) 

and a new EF submanifold 

Mpq = Mpq nSU(p + q) = {QEMpq Idet Q = n. 
According to (2.5a), we have 

det Q = det Ipq det( 1- 2P) = ( - 1 )q+ rank P, 

since det(1- 2P) = det(l- 2Pdiag ), where 

Pdiag = UtpU= [0 I ]. 
rank P 

(2.13 ) 

(2.14 ) 

(2.15) 

(2.16) 

Then the whole analysis may be repeated, with the following 
modifications: (i) the map cI> of Lemma 2.2 is a diffeomor
phism from Mpq onto Mp'q' only if p' + q' = P + q and 
I q - q' I is even; (ii) Ipq ESU (p + q) iff q is e~en and 
- Ip + q ESU (p + q) iff p is even; and (iii) the set Mpq con

tains only those componentsM;~) for which k=.q (mod 2), 
corresponding to projections of rank k. Combining these re
marks with Theorem 2.3, we get the following structure for 
Mpq: 

Mpq = UM;~)U(Mpq)iSOl' (2.17) 
k 

where 

( 1 ) for q even: M~) "'" G p + k Zk, 2k' 

P even: k = 1,2, ... ,!(p + q) 1, 

(Mpq);sol = {Ipq, -Ipq}, 

podd:k= 1,2, ... ,!(p+q-l), (Mpq)isol = {Ipq}; 
- (k) (2)for q odd: Mpq =Gp +k 2k+I,2k-11 

P even: k = 1, 2, ... ,!(p + q - 1), 

(Mpq);so! = {-Ipq }, 

p odd: k = 1,2, ... ,!(p + q), (Mpq )isol = 0, 

Taking again the example of G31 as above, we get 

M31 = [(M 31)0 = i31 (G31 )] U M~il, 

M,,= L:, U [(M) ~"(G")], 
M22 = {I22}U [(MZ2 )0 = i22 ( G22 ) J U{ - I 22}, 

(2.18) 

so that indeed M3! is diffeomorphic to M 13, but not to M22• 
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III. GEOMETRY OF THE EF SUBMANIFOLD: 
NONCOM PACT GRASSMANNIANS 

We tum now to the noncompact case, following closely 
the previous analysis. Again the relevant Grassmann mani
fold may be realized in two different ways, 

Gpi;qj (C) U(p,q)lU(p - i,q - j) XU(i,j) (3.1) 

SU(p,q)/S(U(p - i,q - j) XU(i,j»). (3.2) 

In the sequel we will use mostly the first realization. 
The noncompact unitary group U (p,q) consists of com

plex matrices g of order (p + q) such that 

gttg= t, 

where 

(3.3) 

(3.4) 

Correspondingly the involution defining Gpi;qj (C), reads 

u(g) IgI, (3.5) 

where 

i-j 
_ I ] =.Ip+q- i- J, i+j' 

i+j 
(3.6) 

This choice of t and I differs from the familiar one7 used by 
HSS (by appropriate permutations of rows and columns) 
but is more convenient for our purposes in that it yields the 
same involution ufor all Grassmann manifolds (see Sec. V). 

The manifold Gpi;qj (C) consists of all vector subspaces 
ofCP + q of dimension i + j and signature (i,j). The last con
dition means that only nondegenerate subspaces occur. As it 
is well known,21 these subspaces are precisely those that cor
respond to orthogonal projections (with respect to the inde
finite metric t ofCP + q). Thus here too the natural parametri
zation of Gpi;qj is in terms of projections (see Sec. V below). 

There are two types of noncompact Grassmann mani
folds: (i) for i = O,j = q, Gpo;qj (C) = U(p,q)lU(p) XU(q) 
is a Riemannian symmetric space of noncompact type, dual 
to the compact RSS Gpq (C) (it is in fact Hermitian and 
Kiihlerian), and (ii) for all other values of i, j, Gpi;qj is a 
pseudo-Riemannian symmetric space (also pseudo-Hermi
tian, pseudo-Kiiblerian). The symmetric spaces of the sec
ond class have been classified by Berger22 at the local level 
and by Shapiro23 at the global level (the two are equivalent, 
for they are all simply connected). The complete list may be 
found in the monograph of Gilmore.24 Nonlinear 0' models 
on such pseudo-Riemannian symmetric spaces have been 
considered recently in the context of nonlinear dynamical 
systems25 and in the reduction of Kaluza-Klein or supergra
vity theories.26 

We proceed exactly as in the compact case. With the 
involution u given in (3.5), the EF submanifold is 

Mpi;qj {QEU(p,q)IIgIg= n. (3.7) 

Lemma 2.1 is now replaced by the following lemma. 
Lemma 3.1: The two relations 
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Q =1(1- 2P), 

P=!(1-1Q), 

(3.8a) 

(3.8b) 

where 1=.lpi;qj, define a bijection between the points 
QE Mpi;q j and the projections P on nondegenerate subspaces 
of CP + q of arbitrary dimension and signature. 0 

Again the proof is an immediate verification: the rela
tions Q t tQ = t, 1Q1Q = 1 are equivalent to P 2 = P, 
pt = tPt. 

The result corresponding to Lemma 2.2 is slightly dif
ferent, in that both p and q are fixed, only i,j may vary. 

Lemma 3.2: For any O<i' <p, 0<)' <q, the map <1>: 
U(p,q) --> U(p,q) defined by 

(3.9) 

is a diffeomorphism from M. -onto M ., 0 pl;V pI ;q I . 
Again Lemmas 3.1 and 3.2 show that M· . is discon-pl;q] 

nected (except for very low dimensions) and its connected 
components are closed submanifolds, of different dimen
sions in general (however we still callM .. the EF submani-pl;q] 
fold, as before). To characterize the connected components 
of ~pi;q j' we proceed as in the compact case. Two projections 
P, Pin Cp

+
q are conjugated under U(p,q), 

-_ t P - U PU, UEU(p,q) , (3.10) 

iff they project on (nondegenerate) subspaces of the same 
dimension and the same signature, by Witt's theorem.27 
Since U (p,q) is connected and its action on CP + q has pre
cisely for orbits the manifold of all subspaces of fixed dimen
sion i + j and signature (i, j), two such projections P, P may 
be linked by a continuous string of projections of the same 
type, and the corresponding points Q, Q are linked by a con
tinuous path within a fixed connected component of M· . pl;V' 
Theref~re .each connected component M ~;;~j corresponds to 
all proJectlOns of fixed rank i' + j' and signature (i',j') , i.e., 
it is the image of the Grassmann manifold G·, "under the . pl;V 
correspondmg Cartan immersion i., ., and the map <I> of pl;V 
Lemma 3.2. In summary we state the following theorem. 

Theorem 3.3: We consider the noncompact Grassmann 
manifold Gpi;qj(C) ~U(p,q)/U(p - i,q - j) XUU,j), O<i 
<p, O<)<q. The corresponding EF submanifold M. . con
sists of two isolated points {+ I· .} and P("pq] + 1) - pl;V 
X (q + 1) - 2 connected components M (i',/> [0<:1 "p pl;V ~ ~, 

0<)' <q, (i',j') # (O,O),(p,q)]. Each component M (i'.l) is a . pl;q] 
totally geodesIc submanifold of U(p,q), diffeomorphic to 
the Grassmann manifold Gpi',ql via the corresponding Car
tan immersion ipi';ql' composed with the map <I> of Lemma 
3.2. In particular the identity component (M. ')0 = M (i,j) , . pl;V pl;V 
IS dIffeomorphic to Gpi;qj itself. Furthertnore, the compo-
nents M ~;;t? and M ~f;/,q - j') are diffeomorphic to each 
other under the map Q~ - Q, equivalent to P~ 1 - P for 
the corresponding projections in CP + q. 0 

Obviously the conclusions of the analysis are the same as 
in the compact case. For ensuring that a point QEU(p,q) 
belongs to the image of the Cartan immersion ['. . . pl;q)' 
Gpi;qj --> U(p,q), one needs the two conditions specifying the 
EF manifold, namely QttQ = t (subgroup) and 
1pi;qjQ1pi;qjQ = 1 (quotient), and in addition the two geo
metric constraints selecting the identity component of the 
EF submanifold Mpi;qp namely rank P = i + j, 
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sgnP= (i,j), where P= !(l-IQ) is the projection in 
CP + q corresponding to Q. As we will see in Sec. VI below this 
has dramatic consequences for u models. 

We conclude this section by examining briefly the alter
native realization (3.2) of Gpi;qj' With an analysis entirely 
parallel to the one made in Sec. II, one gets the following 
modifications: (i) in Lemma 3.1, the condition det Q = 1 is 
equivalent to rank P=. (i + j) mod 2; (ii) the map <I> of 
I:~~ma 3.2 is a diffeomorphism iff i' + j' =. (i + j) mod 2; 
(m) 1pi;qj ESU(p,q) iff i + j is even, - 1pi;qj ESU(p,q) iff 

p + q - i - jis even; and (iv) the connected components of 
Mpi;qj in SU(p,q) are indexed by i',j' as in Theorem 3.3, with 
the additional restriction i' + j' =. (i + j) mod 2. 

To give an example, take G31'21 = SU(3,2)/ 
S(U(2,1) XU(1,I»). Its EF submanifold M31 ;21 CSU(3,2) 
consists .of (i) the isol~~ed point Q = 131 ;21 = [1, _ I, ], cor
respondmg to P = 0; (n) three connected components with 
rank P = 2, and signature (i',j') = (2,0), (1,1), (0,2), re
~pectively (among these M ~Ul is the identity component, 
Image of G31 ;21 ); and (iii) two connected components with 
rank P = 4 and signature (i', j') = (2,2) and (3, 1 ), respec
tively. The component M ~~:~l is diffeomorphic to 
G30;32 = SU(3,2)/S(U(3) XU(2») and it is the only RSS 
that occurs. 

IV. OTHER SYMMETRIC SPACES 

The geometrical analysis of Secs. II and III applies to a 
variety of other symmetric spaces, with similar results. The 
EF submanifold Mu is in general not connected and, more
over, the map iu is not always injective. We describe briefly 
several cases, compact or not. 

A. Real Grassmann manifolds 

Restricting the analysis of Sec. II from en to Rn
, one gets 

two different symmetric spaces of compact type, corre
sponding to the involution upq given in (2.3) (see Refs. 9 or 
28 for more details): 
the real Grassmann manifold, 

Gpq (R) = O(p + q)/O(p) XO(q) 

= SO(p + q)/S(O(p) XO(q»); (4.1) 

the oriented real Grassmann manifold, 

Gpq (R) = SO(p + q)/SO(p) XSO(q). (4.2) 

As it is well known Gpq is a twofold c?,veriE-g ofGpq , and, as a 
consequence, the Cartan immersion ipq: Gpq -->SO(p + q) is 
two-to-one for (p + q) even, whereas i : G -.SO(p + q) . ... . - pq pq 
IS ~nJectlve (obVIously ipq factorizes through Gpq ). Again 
pomts of Gpq are represented by orthogonal projections of 
rank q in.RP+ q and SO(p + q) acts transitively on Gpq . Ex
a~tly as m t~e complex case discussed in Sec. II, ipq is a 
dIffeomorphIsm from G pq onto the identity component 

(Mpq )0' but ipq is only a local diffeomorphism onto (Mpq)o 
(see Sec. I and the Erratum to Ref. 3). We omit the details. 

In the noncompact case, one gets only one kind of sym
metric space, namely, 

Gpi;qj(R) = SOo(p,q)/SOo(p - i,q - j) X SOo(i,j) , 
(4.3) 
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and the analysis proceeds exactly as in Sec. III. Notice that 
none of those spaces is (semi) Kiihlerian, except for 
p + q = 3 because of the isomorphisms 

G21 (lR)=Gll (C), G20;1I (lR)=GlO;lI (C). (4.4) 

B. Symplectic or quaternionic Grassmann manifolds 

A third type of Grassmann manifold is obtained if one 
replace the unitary groups in Sees. II and III by their sym
plectic subgroup, namely, the following cases. 

(i) In the compact case, 

Gpq (lIll) = Sp(p + q)/Sp(p) XSp(q) 

with the involution U2p,2q given by Eq. (2.3). 
(ii) In the noncompact case, 

( 4.5) 

Gpi;qj (0) = Sp(p,q)/Sp(p - i,q - j) X Sp(i,j) (4.6) 

with the involution U2P.2i;2q.2j of Eq. (3.5). The important 
point is that Sp(p + q) [resp. Sp(p,q)], is a subgroup of 
SU(2p + 2q) [resp. SU(2p,2q)], defined by an additional 
constraint. Indeed a matrix of order (2p + 2q) belongs to 
Sp(2p + 2q) [resp. Sp(2p,2q)], if it verifies the relations 

gttg = t, (4.7a) 

gT Jg = J. ( 4. 7b) 

The metric t in (4.7 a) equals 1. in the compact case and 
t2p,2i;2q,2j as given by Eq. (3.4), in the noncompact one. In 
both cases, J denotes the matrix 

J 
(4.8) 

where one takes i = 0, j = q for the compact case, i.e., 

Jpq=[JPJq] . 
The connections (2.7) and (3.9) between points of the 

Grassmannian and projections are still valid, because the 
additional constraint (4. 7b), rewritten as Q = - tJQJt, is 
equivalent to the relation P = - tJPJt. Then the whole 
analysis goes through, because the involutions in the sym
plectic case are exactly those of the complex case. Indeed, let 
M 2P;2q denote the complex EF submanifold given in Eq. 
(2.4) and define the symplectic one as follows: 

M;q = {QESp(p + q) II2P.2qQI2P.2qQ = n. (4.9) 

Then one has 

M;q = M 2P,2q nsp(p + q). (4.10) 

Since the action of Sp(p + q) on Gpq (0) is transitive, the 
same relation holds between the connected components of 
the corresponding EF submanifolds 

(M~ )(k) = Mi;.iq nSp(p + q), (4.11 ) 

and so the analysis of Sec. II may be repeated word for word. 
The same is true in the noncompact case. Here again, the 
Cartan immersion is a diffeomorphism between the sym
plectic Grassmann manifold and the identity component of 

2758 J. Math. Phys., Vol. 28, No. 11, November 1987 

the corresponding EF submanifold, and each connected 
component of the latter is diffeomorphic to some symplectic 
Grassmann manifold. 

C. Other examples 

Thus, in all cases, a (connected) Grassmann manifold is 
not diffeomorphic to the corresponding EF submanifold, but 
only to the identity component of the latter (except for tri
vial, low-dimensional examples). Does this property extend 
to arbitrary symmetric spaces? Going through the table, 1 1,24 

no further instances are found of isomorphisms between the 
EF submanifolds of two different symmetric spaces with the 
same group ofisometries, such as the maps ct> of Lemmas 2.2 
and 3.2, so we have to proceed differently. 

Comparing Eqs. (1.6) and (1.7), we see that the EF 
submanifold M u of the space G / H is connected if, for every 
QEMu' there existsgEG such that Q = U(g)g-I. 

We take first the AI space of noncompact type SL (n,lR) / 
SO(n), for which u(g) = (gT)-I. Thus QEMu is a real 
symmetric matrix of determinant I, and QE(Mu)o if 
Q = ggT for some g E SL(n,lR), i.e., if it is strictly positive 
definite. However, if QE Mu' - QE Mu also (for n even), 
but - Q is not positive definite; hence for n even, Mu con
tains at least two disjoint components (diffeomorphic to 
each other). Exactly the same argument applies to all re
maining spaces of type III, namely SU*(2n)/Sp(n) (All), 
SO*(2n)!U(n) (DIll), and Sp (n,lR)!U(n) (CI), for all n, 
and also to the spaces of type IV, for n even. In each case, the 
EF submanifold has at least two disjoint components, diffeo
morphic to each other by the relation Q++ - Q, whereas 
(Mu)o consists of strictly positive definite matrices. 

For the compact spaces of type 1, however, the situation 
is different. First of all, the argument above fails. Take for 
instance the (AI) space SU(n)/SO(n) for n even. Then 
QE(Mu)o means Q = ggT, with Q,g E SU(n); such a matrix 
Q is not positive definite and indeed - Q is of the same type, 
since - Q = g'g,T, with g' = ig [1 1 ] E SU (n). Similarly for 
the remaining spaces of type I, namely the series All, DIll, 
and CI. But there is more. For the space SU(n)/SO(n), it 
can be shown explicitly29 that a matrix Q E SU(n) is sym
metric iff it is of the form Q = ggT, with g E SU (n). So this 
symmetric space is diffeomorphic to its EF submanifold [al
though rank 'I' is not constant over SU (n), it is constant over 
the submanifold M u = 'I' -I (1.) ]. The same is true29 for the 
compact All space SU(2n)/Sp(n). For the remaining 
spaces, DIll and CI, the question is open, but we conjecture 
that these too are diffeomorphic to their EF submanifold. 

In conclusion there remains a number of symmetric 
spaces for which the complete structure of the EF submani
fold is unknown, the compact spaces DIll and CI, and the 
noncompact, non-Grassmannian spaces (type III and IV). 
This problem seems difficult; it is easy to characterize M u by 
the quotient constraints listed in Ref. II, but usually not 
iu(M). 

V. PARAMETRIZATION OF GRASSMANN IAN C1 MODELS 
IN TERMS OF PROJECTIONS 

In view of the geometrical interpretation of Grassmann 
manifolds, it is natural to parametrize the corresponding u 
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models in terms of projections, with the appropriate rank 
and signature. Indeed this is by now the standard proce
dure.2-4,13-16.19 We will give in this section a unified presen
tation of this formulation, valid for all models, compact or 
not, i.e., leading to the same equations of motion. As recalled 
in the Introduction, the action (1.4) for the u model valued 
in M = G / H and the equation of motion may be reformulat
ed in terms of a covariant derivative DI-'g. For each Grass
mannian model, D I-'g in turn may be expressed in terms of 
projections, as we will now see. 

A. Complex Grassmannian models 

We take first the compact case Gpq (C). Writing the ma
trix gE SU (p + q) as g = [Y;Z], where Y, Z have p and q 
columns, respectively, we see from the constraint gtg = 1 
that the q columns of Z constitute an orthogonal basis of a q
dimensional subspace of cP + q, with associated projection 

p=zzt. (5.1) 

Thus the projection P corresponds to a unique point of 
G pq ( C), and will be taken as basic field. 

In the noncompact case Gpi;qj (C), we writeg E SU(p,q) 
as g = [Y;Z] where Z contains the last (i + j) columns of g. 
The constraint gttg = t, where t = tpi;qj' Eq. (3.4), then 
shows that the columns of Z are an orthogonal (with respect 
to the metric t) basis of a (i + j)-dimensional subspace of 
CP + q, with signature (i,j). The corresponding projection is 

P=ZtzZtt, (5.2) 

where t z is the metric in the (i + j)-dimensional subspace 

tz =ZttZ=Iij' (5.3) 

Indeed, it is straightforward to verify the relations 
P 2 = P = tP t t. The projection P thus corresponds uniquely 
to a point of Gpi;qj' and will henceforth be taken as the basic 
field of the u model. Finally notice that replacing t by 1 in 
(5.2) and (5.3) yields tz = 1 and P = ZZt, i.e., the formu
las for the compact case. So it is enough to write the noncom
pact case. In terms of P, the covariant derivative reads l8

•
19 

DI-'Z = (1- Ztzztt)JI-'Z = (1- P)JI-'Z, (5.4) 

the Lagrangian becomes 

!£' = ~ Tr{(DI-'Z)tt(DI-'Z)tz } = Tr(JI-'P) (JI-'P) (5.5) 

and the equation of motion 

DI-'DI-'Z - Ztz (DI-'Z)tt(DI-'Z) = 0 

is equivalent to 

[OP,P] = 0, 0 = J I-' J I-' = J ~ ± J i . 

B. Real Grassmannian models 

(5.6) 

All the previous formulas remain valid in the real case, 
just by taking restrictions from CP + q to lRP + q everywhere. 

C. Symplectic Grassmannian models 

In the symplectic case, the projections must verify the 
additional constraint 

P= - tJPJt (5.7) 
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as shown in Sec. IV B. To construct such a projection, we 
proceed exactly as in Sec. V A above. Given g E SU (2p,2q), 
we write it again as g = [Y,Z], where Z consists of the last 
2 (i + j) columns of g. We further decompose it as 
Z = [Z++;Z+_;Z_+;Z __ l. where the blocks Z + ± and 
Z _ ± have, respectively, i andj columns, according to the 
block decomposition of t and J. The constraints (4. 7b) 
[resp. (4.7a)] imply the following relations on the matrices 
ZaP (a,/3 = ± ): 

Za_ = -Jt Za+ , 

z1ptZaP = ta' where t+ = Ii> t_ = - lj. 

Then the matrices 

( 5.8a) 

(5.8b) 

Pap = zaptaZ1pt (a,fl = ± ) (5.9) 

are four, mutually orthogonal, Hermitian projections, 

PapPa'p' = oaa'opp,pap = tP 1pt. (5.10) 

Defining further P p = P + P + P _ p, we get two projections 
of rank (i + j) and signature (i,j) , whose images are mutu
ally conjugate subspaces. They also verify the following rela
tion: 

P ± = - tJ P Of' Jt. (5.11 ) 

Consider now the projection 

P=P+ +P- = L PaP' (5.12) 
a.f3= ± 

This is the field of the noncom pact symplectic Grassman
nian model. It projects on the appropriate subspace and veri
fies all the constraints, in particular (5.7), which follows 
trivially from (5.11). To get the corresponding result for the 
compact case, it suffices again to replace everywhere t by 1, 
which yields t ± = lq as before. Finally, as in the previous 
cases, the equation of motion reduces to Eq. (5.6). 

VI. THE BACKLUND TRANSFORMATION METHOD 
REVISITED 

The Backlund transformation method introduced by 
Hamad, Saint-Aubin, and Shniderll

•
12 is an elegant and 

powerful technique for constructing multisoliton solutions 
of (1 + 1) -dimensional integrable systems, in particular 
Minkowskian RSS-valued u models. 

In this section, we will show that the HSS method ap
plies to Euclidean models as well, with minor modifications. 
On the other hand, we shall also reexamine its validity in the 
light of the previous discussion. 

The systems considered are of the Zakharov-Mikhai
lov-Shabat13

•
30,31 (ZMS) type, namely 

t/Js = Ut/J, t/J'1 = Vt/J, (6.1 ) 

where U(A,5,'T]) , V(A,5,T]), and t/J(A,5,'T]) are n X n matrix 
functions of 5, 'T] E C, depending on a complex parameter A, 
with t/J invertible and U, V meromorphic. The ZMS "dress
ing method" consists in obtaining a new solution (fi, V,¢) of 
(6.1) from a given one (U, V,t/J) with help of a "dressing 
matrix" X(A,5,'T]) E SL(n,C); in particular, 

¢=xt/J· (6.2) 
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The matrix X and its inverse X -I are assumed to be mero
morphic in A, with simple poles {AJj= I ..... K' 

{,u)j= I ..... K' respectively, and normalized to 1 atA = 00, so 
that 

K Q. 
X(A) = 1 + L -'-, 

j=1 A-A j 

K R 
X-I(A)=I+ L--1 -. 

j=1 A -J-lj 

(6.3 ) 

The idea of HSS is to determine the dressing matrix X in 
terms of a (nK X nK) matrix M (S, 'T/), called the soliton cor
relation matrix, which satisfies a system ofRiccati equations 
[Ref. 12, Eq. (2.7)]. The integrability condition of that sys
tem is that the following gI(2nK,C)-valued one-form have 
zero curvature: 

0) ds _ (P-
s+ r_ 

(6.4) 

where p ± ' r ± ,s ± ' the coefficients in the Riccati system, are 
given in terms of the values of U and Vat the poles {Aj>J-lj}. 
For the particular case of the principallT model on SL (n,C ), 
one has 

U=gsg-l/(1 +A), V=g1/g-I/(1-A), (6.5) 

where 

g(s,'T/) = ¢(O,S,'T/)· (6.6) 

Thus the BT transformation (6.2) reads in this case 

- (I ~ Qj) g= -~- g. 
i=1 Ai 

(6.7) 

Up to this point, the treatment is valid for arbitrary 
complex S, 'T/EC, in particular for Minkowskian models (with 
light cone coordinates S = x + t, 'T/ = x - t) and Euclidean 
models (with complex coordinates S = x + it, 
'T/ = t = x - it). But a distinction enters when one performs 
the reduction from SL(n,C) to various subgroups and quo
tients. Following HSS, such a reduction is defined by a linear 
fractional transformation 

S.' ,~aA + b, (a b) SL(2 "') /L~ d E ,'U , 
CA +d C 

( 6.8) 

and an automorphism IT of GL(n,C). The particular reduc
tion chosen is expressed by a set of invariance conditions on 
¢, U, V [Ref. 12, Eq. (3.9)]. When the map IT. is linear 
(IT = lTI or lT3 in the notations of HSS), those conditions 
remain unchanged for a Euclidean model. But since sand 
'T/ = t are interchanged under complex conjugation, the ma
trices U and V must be interchanged too when IT. is antilin
ear (IT = lT2 or lT4), i.e., the invariance conditions become 

¢(s(':i») =/U¢(A), 

U(s(A») =/IT. [V(A)] /-1 + /5/- 1, 
V(s(A») =/IT. [U(A) ]/-1 +/,.,/-1, 

( 6.9a) 

(6.9b) 

(6.9c) 

where the gauge function/is fixed by evaluating (6.9a) at 
A = 00 as in HSS. 

However the constraint on the dressing matrix remains 
the same as in the Minkowskian case, namely Eq. (3.13) of 
Ref. 12, 
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(6.10) 

and therefore the constraints on the correlation matrix 
M(S,'T/) [Eq. (3.14) of Ref. 12], which are equivalent to 
(6.10), remain the same too. Thus the only point to check is 
whether those constraints on M(S,'T/) are compatible with 
the Riccati system, i.e., whether a solution M(S,'T/) satisfies 
the constraints at all points (S, 'T/) if the initial condition 
M(So,'T/o) does. The compatibility is expressed in terms of 
the one-form UJ defined in (6.4), namely, 

for IT = IT 2' di + UJI - Iw = 0, 

for IT = lT4' dS - UJts - SUJ = 0, 
(6.11 ) 

where I, S are matrices depending on s and the positions of 
the poles {Aj>J-lj} of X ± 1 (A), given in Eqs. (3.16) and (3.18) 
of Ref. 12. Using the fact that complex conjugation ex
changes Sand 'T/ in UJ, it is straightforward to show, as in Ref. 
12, Theorem 3.2, that condition (6.11) indeed holds. Thus 
the analysis of HSS goes through completely for Euclidean 
models too. 

An important consequence of the interchange between 
U and V in the constraints (6.9) is that the map s must 
interchange the poles of U and V. For instance, in the IT 
models, where U and V are given in (6.7), one must have 
s(1) = - 1, s( - 1) = 1. This fact entails a modification of 
the minimal set of poles that must be chosen for X in the 
reduction process. For the Euclidean complex Grassman
nian IT model for example, the minimal set of poles is (A, 
VA) forxand (-A, - VA) forx- I (this fact was already 
observed by Sasaki I6

). 

We may also notice that the HSS analysis is not limited 
to the case of Riemannian symmetric spaces G I H, it is appli
cable to pseudo-Riemannian ones as well. Indeed the metric 
on G I H is never used, only the constraints, and these we 
have discussed in the general case. 

After these considerations, however, there remains an 
important point. Namely, the HSS analysis, as widely appli
cable as it is, is not sufficient per se for the IT model on an 
arbitrary symmetric space M = G I H. Indeed, following 
Ref. 3, the HSS reduction technique for obtaining solutions 
ofthe G I H model consists in taking solutions of the principal 
SL(n,C) model and subjecting them to appropriate con
straints of subgroup and quotient type, where the latter guar
antees that the solution belongs to the EF submanifold Mer' 
But, as we know, this is not enough, an additional constraint 
is needed, forcing the solution to live in the identity compo
nent (Mer )0' diffeomorphic to G IH. Thus we have to check 
whether the HSS method verifies the topological constraint, 
i.e., whether the solutiong = x(O)gbelongs to (Mer)o when
ever the initial data g does. In its full generality, this problem 
seems difficult and we have been unable to solve it. However, 
for Grassmannian models, we can give an answer. In terms 
of projections the BT solution reads, taking (6.7) into ac
count (l is the matrix relevant for the model treated, see 
Secs. II-IV, 

P=!(l-Ig)=p+J.- 1 I Qig. (6.12) 
2 j=1 Ai 

First we check the rank, 
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Tr P = Tr P + .l Tr(I .l IQ;g) 
2 ; A; 

and show that the second term indeed vanishes. For this we 
need some more notation from HSS. Let q; = rank Q;, 
r; = rank R;. Then the residue Q; may be written as 

Q; = (£. HjYj;)Fi, 
~=I 

(6.13 ) 

h H ,ronxri F ,ronXq· l' f l' were ;E'U ,;E'U ' are so utlOns 0 a mear system. 
The matrix Y= (Yij)' i,j= 1, ... ,K, is an invertible matrix, 
whose inverse y- l = r = (r'l) consists of the following 
nXn blocks: 

(6.14 ) 

For A; = J..Lj' the diagonal elements r;; are defined appropri
ately (see Ref. 11, Theorem 4.2), and in thatcase,F;H; = O. 

For all three cases of Grassmannian (T models, the poles 
of X and X-I come in pairs (A;.Al==lIA;) [resp. 
(J..L;.J..Ll == 1IJ..L;)] and the reduction is associated to the quo
tient automorphism (T _ (g) = IgI, as explained in Secs. 11-
IV. Notice that (T _ does not distinguish between Euclidean 
and Minkowskian kinematics, and so the argument is valid 
for both types of models (the distinction between the two is 
given by the relation between the poles ofX and thoseofx- l

: 

J..L; = X; in the Minkowskian case, J..L; = - X; in the Euclid
ean one). Accordingly, the constraints imposed by the re
duction on the residues Q;. Rj read 

(gt) -IIF; = F;A;. ( 6.1Sa) 

( 6.1Sb) 

A;J..Ljr ij = - A;r'J2j' (6.1Sc) 

where A;E GL(q;,C), E;E GL(r;.C) are constant invertible 
matrices. 

Using these notations, we prove our statement 

= Tr( ~ 1; HJ 2 j Yj;F;) 

= Tr( ~ 1; (FiB; )2j Yj ;) 

by (6.1Sb) 

= Tr(~ A; ;J..LJ Yj;rij2j ) 

i#l-'j 

(the other terms vanish) 

= Tr ~ (Yj;rij2j + ,\ Yj;(Ai)-lrlj)' 
IJ /L i 

A.i#l-'j 

Reinstating the missing terms (i =], A; = J..LJ)' this yields 

... = Tr(~ Yjirij2j + ~ ,\ rljYji(A[)-I) 
lj ij ~ i 

-Tr ~ (YU r;;2;+ A\ rnYu(Ai)-I) 
A.i = I-'j 
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and this is indeed 0; each term on the first line vanishes, since 
l:;Yj;rij = 8.0 = 0, and so does each bracket on the second 
line, by (6.1Sc), with] = i, J..LJ = Aj • 

Thus the BT (6.9) preserves the rank of the projection. 
This means that, for all (T models on Grassmann manifolds 
of compact type, g lies in (Ma)o if g does, in other words the 
HSS method is complete. However we cannot conclude in 
the noncompact case: the BT does indeed conserve the rank 
of the projection, but it must also conserve the signature, and 
this is open to question. 

In conclusion the BT method of Hamad, Saint-Aubin, 
and Shniderll

•
12 is fully justified for the (T models, either 

Minkowskian or Euclidean, with values in the following 
symmetric spaces: (i) those for which the EF submanifold 
Ma is connected, equivalently for which the Cartan immer
sion maps G I H onto M a; for instance, the compact spaces of 
the series AI and All, namely SU(n)/SO(n) and SU(2n)1 
Sp(n); and (ii) all Grassmann manifolds of compact type 
(the AlII, BDI, and CII series, in their compact realiza
tion). For the other cases, the validity of the method remains 
in question. This applies, in particular, to the space 
SL(n,R)/SO(n), which is one of the examples treated by 
Hamad, Saint-Aubin, and Shnider12

: their "vacuum" solu
tion is manifestly positive definite, but it is not clear whether 
all their multisoliton solutions have the same property (they 
are only given implicitly in Ref. 12!). 
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Path-space representations in terms of Feynman gauge stochastic integrals are given for the 
free Maxwell field in all covariant gauges interpolating between the Feynman and Landau 
gauges. These are applied to quantum electrodynamics and Yang-Mills theories with spatial 
lattice cutoffs. 

I. INTRODUCTION 

Present techniques for rigorously constructing quan
tized theories of gauge fields begin with a regularized theory 
and then after renormalization study limiting processes by 
which the regularization is removed. The success of this pro
gram depends crucially on nonperturbative a priori bounds 
for the regularized theory and in this respect some regular
izations are better than others. Lattice regularizations of the 
type suggested by Wilson I provide a gauge-invariant cutoff 
theory and have been studied extensively in the Abelian case 
in Refs. 2-8 and in the non-Abelian case in Refs. 9-12. In 
Ref. 13, one of us considered a gauge-dependent regulariza
tion with a view to obtaining a theory of the gauge potential 
in an indefinite metric space and thereby a framework closer 
to that used in theoretical physics; for example, the 
electroweak interaction; and a Hilbert space which should 
contain nonzero charge superselection sectors. The inherent 
difficulty with a non-gauge-invariant regularization is the 
lack ofOsterwalder-Schrader positivity and the stability for 
the Hamiltonian which it implies. For indefinite metrics, it is 
shown in Ref. 11 that the Hamiltonian need not be bounded 
below, depending upon the choice of gauge. This is not sur
prising but it presents difficulties when studying the removal 
of cutoffs. For two-dimensional QED, the theory is known 
to be ultraviolet stable for the gauge potentiaC,8 but the con
struction was carried out in the Landau gauge which is not 
Osterwalder-Schrader (OS) positive. It is also ultraviolet 
stable in the Feynman gauge5 which is OS positive. The ob
vious question is now raised-how are the two theories relat
ed? For the Hamiltonians, the respective operators are secto
rial with the sector angle depending upon the choice of 
gauge. For a cutoff theory, this is proved here and for the 
case of the continuum limit a proof will be given elsewhere. 

The present paper concentrates on obtaining stochastic 
integral representations for the covariant Rideau gauges 14 

for the free Maxwell field in a Krein space. In Sec. II, these 
gauges are described in terms of the Feynman gauge poten
tial. Explicit gauge transformations interpolating from one 
gauge to the other are given by Krein unitary operators in 
Sec. III. We hope these examples will help to focus on a more 
specific notion of operator gauge transformation than we 
have found in the literature. In Sec. IV, path-space formulas 

a) Also in the Department of Mathematics, Indiana University, Blooming
ton, Indiana 47405. 

are given for the relevant semigroups for the interpolating 
gauges and these are applied in Sec. V to the case of QED and 
in Sec. VI to Yang-Mills, both with cutoffs. As a by-prod
duct, we obtain easy proofs of Krein essential self-adjoint
ness of the Hamiltonians in these cases. This reinforces our 
view that a complete theory for the gauge potential is now 
accessible in the Abelian case. 

II. KREIN SPACE FOR RIDEAU GAUGES 

Throughout this paper, we shall use the formalism of 
quantum field theory on a finite s-dimensional periodic lat
tice V with volume I V I and spacing 0 > O. The variables 
x = (t,x),k = (k o,k) have continuum variablest,k ° and lat
tice variables x = OnE V, where n is an integer s-tuple, kEr ° 
with r 0 the lattice dual to V in the Fourier transform 

f I" (x) = IV 1- 1
/

2 L f I" (k)e,k'x , 

with 
kEfo 

s 

k·x = L (1Tnj mjO!Lj ), 
j~1 

IVI = Ilj~1 (2Lj ), 

while 

f1 = 0,1,2,00.,s, 

L2(rO)~L2,O(V) = {fEL2(V) I I. fl"(x) =o}. 
xe two penod 

On the lattice, we use midpoint approximations to 
derivatives so either (k)j = 2 sin(k jo/2)/o, (j)(k)2 
= ~j~ 14 sin2(k j0!2)/o2 or (k)j = sin(kjo)/o, (j)(k)2 

= ~j~ I sin2(k jo)/o2. The lattice Maxwell field AI" (k,x) is 
realized on a Fock space H [infinite symmetric tensor prod-
uct space over L 2,o ( V) 1 appropriate for an irreducible cyclic 
representation of the canonical commutation relations 

(2.1) 

in the Feynman gauge; goo = - gjj = 1, gl"v = 0 if f1 =/=v. 
The Hilbert space H is a Krein space with respect to the 
Gupta-Bleuler indefinite metric 

{<I>,II'} = (<1>,'1/11'), '1/* = '1/, '1/2 = 1, 

and the annihilation-creation forms al" ' aZ satisfy 

[al" (k),a~ (k')] = - (j)(k)gl"vOk,k' 

with Fock vacuum al" (k),{lo = O. Hilbert adjoints are to be 
denoted by (*) and Krein adjoints by (t). With this nota
tion, the field operator with gauge parameter S is given as the 
formal expression 

2763 J. Math. Phys. 28 (11). November 1987 0022-2488/87/112763-12$02.50 @ 1987 American Institute of Physics 2763 



                                                                                                                                    

wherein k· x = k °xo - k·x. The Feynman gauge arises when 
S = 0 and the Landau gauge for S = !. These are the interpo
lating Rideau gauges that we wish to study. A straightfor
ward argument shows AI' (S) may be realized as a densely 
defined, Krein symmetric, linear operator on the subspace 
D F of vectors in H with finitely many particles. In fact, vec
tors in DF are analytic vectors for AI' whose closure 
A = A tt = A ** is then Krein self-adjoint. All relations in-I' I' I' 
volvingAI' are understood in this sense as relations between 
densely defined, closable, unbounded linear operators in H. 
Whenever possible we shall suppress variables when the con
text is clear. 

The two-point function for (2.2) is given by 

(00 , AI' (x;s)A" (y;S)!lo) 

= lVI-I L Jdko ()(ko)0'(k 2
) 

kero 

X [gl'"k 2 - 2Skl' k" ] e - ik(x - y) , 

whose Fourier transform has support on the positive energy 
shell. Time translation is implemented by the Hamiltonian 

which for O<S < 1 is realized as a sectorial operator with ver
tex zero and angle tan - 1 (S 1 ~). The group eitHo(s) is 
unbounded for S #0, t real, but is Krein unitary. However, 
e - tHoW for t>O is a Krein self-adjoint, Co semigroup. On 
appropriate domains, e.g., DF , it is true that 

AI' (t,x;S) = eitHo(s) AI' (x;s)e - itHoW 

for the time zero field AI' (x;S). Canonical momenta13 for AI' 
are given by 

1Tj (x;S) = - Aj (x;S) , 

1To(X;S) = - Ao(x;S) - 2SB(x) , 

B(x) = (1-2S)-laaAa(x;S), 

indicating that the singularity at S =! is canceled by 
a a Aa (x;!) = O. If Feynman gauge fields are indicated by 
AI' (x), 1T1' (x) then a little sorting out produces the follow
ing expressions for time-zero fields: 

Ao(x;S) = (1 - s 12)Ao(x) 

Aj (x;S) = [oj! + (S 12)( - ~s) -I ajatJAI (x) 

+ (S 12)( - ~s)-I aj1To(x) , 
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(2.3a) 

(2.3b) 

(2.3c) 

1Tj (x;S) = [OJ! - S 12( - ~s) -I aj atJ1T1 (x) 

+ (S 12) ajAo(x) . 

(2.2) 

(2.3d) 

Each of these expressions is Krein symmetric on DF while 
A o' 1T 0 are skew symmetric and A j' 1Tj symmetric with respect 
to the Hilbert metric. By an analytic vector argument using 
( 2.1 ), the closures of each expression in (2.3) are Krein self
adjoint but Hilbert normal operators. This is the decomposi
tion mentioned in Ref. 13 (p. 328). It is easily demonstrated 
that the s-dependent terms cancel in the time-zero commu
tators and the relations (2.1) are valid for all values of S. 
Notice further there is no singularity when S = ! in (2.3c). 

The relations (2.3) allow representation of all the Ri
deau gauges in a Krein space by normal operators. Even 
though Lorentz covariance is restored only in (2.2), the ex
pressions (2.3) are useful for constructing gauge transfor
mations taking AI' (S) to AI' (S ') and particularly for obtain
ing a martingale decomposition for their Euclidean (imagi
nary time) counterparts in terms of Feynman gauge 
stochastic integrals. 

III. GAUGE TRANSFORMATIONS 

The choice of a gauge S is determined by a mixture of 
nonphysical fields to be added to the Coulomb gauge. For 
the Feynman gauge, the lattice cutoff permits the decompo
sition 

H=Hi+)(fJHi-)(fJHT 

corresponding to S = 0 in 

A i± )(x;S) 

= 2- 1/2 [Ao(x;S) ± i( - ~s) -1/2 alAI (x;s)] , 

( 3.1a) 

(3.1b) 

for which ATo = ajA Tj = 0 with exactly similar relations de
fining 1Ti±) and 1TT . It is easy to verify the commutation 
relations 

[Ai±)(x),1Ti±)'(y)] =i{l( ±)( ± )'l}t5x,y/2, 

[A Tj (X),1TT1 (y)] = - i{oj! + ajal ( - ~s) -1}t5x,y ; 

all other commutators vanishing. From (2.3), we learn 

A i± )(x;S) = (1- s 12)A i± )(x) 

+i(s/2)( _~s)-1/21Ti±)(x), (3.2a) 

1Ti ±) (x;S) = (1 + S 12)1Ti ±) (x) 

+i(S/2)( _~s)-1/2Ai±)(x), (3.2b) 
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These relations show how the choice of gauge parameter S 
adjusts the appropriate mixture oflongitudinal modes A i ± ) 

relative to the subspace H T upon which the physical and 
Krein metrics agree. 

To implement gauge transformations between the un
physical modes consider operators 

S(±)= ± £.I8S[(-.!ls)-1/41Ti±)(x) 
4 xeV 

(3.3 ) 

U(t) = e - i~S' = exp [ - it I 8SA o alAI (X)] 
xeV 

defined initially on DF • With respect to adjoint operations 

Ai±)(x)CAi+)(x)t, 1Ti±)(X)C1Ti+)t(x), 

A i± ) (x) C - A i ± ) (x) *, 1Ti ± ) ( x) C - 1Ti ± ) (x) * , 

sothatS( ±)C - S(+ )tbutS( ±)et ± S (± ) •. We will now 
show that on suitable domains exp S = exp{S (+) + S (-)} 
is an operator gauge transformation in H which interpolates 
between the O<S <! gauges. A proof requires attention to the 
domains for these unbounded operators. 

Consider the operator introduced in Ref. 11, 

=exp[ - ~ ~8S{Ai+)( _.!ls) 1/2Ai+)(x) -Ai-)( -.!ls)1I2Ai-)(x)}] 

and let a = (a + ,a _ ,aT) be a multi-index. Let <P(a) denote a vector of the form 

<P(a) = peA) exp[I 8s {a+ Ai +)( -.!ls )1/2 Ai + lex) 
xeV 2 

+a_A(_)(_.!l )1/2A(-)(x)-~A(-.!l )1/2A (x)}]n 
2 L s L 2~ s ~ 0 

= constP(A) exp[~ 8sra + 2+ 1) Ai +)( - .!ls)1/2A i + lex) 

+ (a_+1) A(-)(-.!l ) 1/2A(-)(x)_ (aT +1) A(-.!l )1/2A (X)}] 
2 L s L 2 ~ s ~ , 

where P(A) is a polynomial in the time-zero field AI' . Clear
ly U(t)ct>(a)EH if a ± > ± t - 1, aT > - 1. 

Definition 3.1: Let D(a) denote all vectors of the form 
<P(a) for a given multi-index a. 

Where a> - 1, D(a) is a dense linear subspace in H 
consisting of vectors with exponential decrease of order 2 
and type a - 1. The vectors D(a) are very natural when 
dealing with U(t) as a multiplication operator. It is easily 
seen at the formal level 

(3.4 ) 

forM=M(+) +M(-) and 

Lemma 3.2: For any a> - 1, D(a) consists of entire 
vectors for A i ± ), 1Ti ± ) If t is real and 
a> ( - t - 1,t - 1, - 1) then 

U(t)AI' (x) U( - t)ct>(a) = AI' (x)ct>(a) , (3.6) 
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U(t)1Ti ±) (x) U( - t)ct>(a) 

={1Ti±)(x)+it( -.!ls) I12Ai±)(x)}ct>(a). (3.7) 

Proof To show that <P(a) is an analytic vector for AI' 

estimate IIAI' (x)nct>(a) II and notice that this is equivalent to 
the harmonic oscillator expression (see the Appendix) 

Ilqnp(q)e - (a + l)q'/2 112<Co(E) IIP(q)e - (a + 1 - E)q'/2 112 

as Iqne - Eq2121 < (nIE)nI2e - n'/2<Co(E) uniformly in n. Then 
~: = 01,1 Inll AI' (x)n<p(a) Il/n! converges for all finite A.. 

The momentum 7Ti ±) (x) is given in harmonic oscillator 
coordinates as a monomial in differential operators a I aq for 
the different modes, so 1TP )D(a) CD(a). Notice 
qke - (a+ l)q'12 

= 1 J"" dp eiPQQ(p)e-P'/(2(a+ I») 

y/21T(a + 1) - "" 

for Q(p) a polynomial of degree k. Under Fourier transform 
<P(a) is mapped into <P(f3) for f3 = - al(a + 1) > - 1 
when a > - 1. Hence by the Plancherel theorem, vectors in 
D(a) are entire for 1Ti±) as for Ai ±) above. 

Relation (3.6) is an identity between multiplication op
erators, while for (3.7) from the analyticity of the vectors 
<P(a), as 1Ti±) are closable, 
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= U( - ;)1Ti± )(x)<I>(a) 

+s-lim f nil U;S,,)m [1Ti±)(x),i;S,]u;s,)n-I- m<l>(a) 
N-oo n~O m~O n. 

= U( -;){1Ti±)(x) +i;( - As)I/2Ai±)(x)}<I>(a). 

The right-hand side is clearly in D (U(;») and (3.7) follows. o 
Lemma 3.3: The operator eM is essentially self-adjoint and ~ D(a) CD(a') where 

, (a ± + I) (1 =t= t /2) - I , 
a± = I±t(a+ +1)/2 ' aT=aT · 

Proof' In terms of harmonic oscillator coordinates, 

I 8S1Ti ±) (x)( - As) -1/21Ti ±) (x) = I lUCk) -l{pj,r) (k)2 + pi,t=) (k)2} , 
XEV kEro 

in whichp = - J /Jq. The result then follows from the calculation 

e(C/2) B2IBrfP(q)e-(a+ l)q212= Q(q) exp[- (a+1) q2], 
VI + c(a + I) 1+ c(a + I) 2 

for c(a + I) > - I with Q a polynomial having the same degree as P. o 
Proposition 3.4: For - 2 < t < 2, there exist a + > - 2, a _ > 0 such that for <I> (a) ED( a) 

eSAi±)(x)e-s<I>(a) =Ai±)(x;t)<I>(a), ~1Ti±)(x)e-s<I>(a) =1Ti±)(x;t)<I>(a). 

Proof: For any t in the range given, we will choose a so that all operator products are well-defined in the following 
relations. By Lemma 3.2, 

Ai ±) (x) U(1)e - MU( - I )<I>(a) 

= U(1)Ai±)(x)e- M<I>(a+ + I,a_ -1,aT ) 

N (_ 1)n 
= U(1) s-lim I ,A i± )(x)Mn<l>(a+ + I,a_ - l,aT ) 

N-oo n~O n. 
N (_M)n 

= U(1) + s-lim I A i± )(x)<I>(a+ + I,a_ - l,aT ) 
N-oo n~O n! 

N (_ M) n - I { t } 
+ U(1) s-lim I +i-( -As )-1I21Ti±)(x) <I>(a+ + I,a_ -1,aT ) 

N-oon~1 (n-I)! 2 

= U(1 )e- M {A i± lex) + i(t /2)( - As) -1/21Ti ± lex) }<I>(a+ + 1,a _ - 1,aT ) . 

Using Lemma 3.3 to choose appropriate a, eS may be applied to the right-hand side with the result 

~A i ± ) (x)e -s<I>(a) = U( 1) {A i ±) (x) + i(t /2)( - As) -1/21Ti ±) (x) }<I>(a+ + 1,a_ - 1,aT ) 

= [A i ± lex) + i(t /2)( - As) -1/2{1Ti± lex) + i( - As) 1/2A i± )(x)} ]<I>(a) 

= Ai ±) (x;t)<I>(a) . 

The second to last step uses Lemma 3.2 again. From Lemma 3.3 the indices a should be chosen so that e-sD(a) CD(a'), 

where a;" = aT' 

a'+ + 1 = [(a+ + 2)(1- t /2) -1]1[1 + (t 12)(a+ + 2)] , 

a'_ -I = [a_(1 +t/2) -I]I[1-ta_/2]. 

A direct calculation verifies that the range It I < 2 is allowed. 
For gauge transformations on the momenta, the same choice of indices a permit 

U(1 )~U( - 1 )1Ti ±) (x) U(1)e - MU( - 1 )<I>(a) 

2766 

= U(l)~[1Ti±)(x) ±i( -As)I12Ai±)(x)]e-MU( -1)<I>(a) 

= U(1 )1Ti ±) (x) U( - 1)<I>(a) ± i( - As) 1/2A i ± ) (x;t)<I>(a) 

= {1Ti± lex) +i( - As)I/2A i± lex) ± i( - b.s)I/2A i± )(x;t)}<I>(a) 

= 1Ti± ) (x;t)<I>(a) 
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in which repeated use is made of Lemmas 3.2 and 3.3 and, in 
the second step, the first part of the proposition. 0 

Proposition 3.5: The closure of eS is Krein unitary. 
Proof: On suitable D(a), eS is realized as a product of 

three essentially Krein unitary operators. For U( ± 1) this 
is obvious upon realizing them by multiplication operators. 
For eM notice that M is essentially self-adjoint and essential
ly Krein skew adjoint on allowed D(a). ClearlyeS has a 
densely defined adjoint so it is closable. The closure must be 
Krein unitary. 0 

From Propositions 3.4 and 3.5, there is a Krein unitary 
equivalence by unbounded operator gauge transformations 
between the covariant gauges for It I < 2. The Krein transfor
mations have a core consisting of analytic vectors for AI' ,TTl' 

and each gauge transformation leaves pointwise invariant 
the subspace H T and thus also pointwise invariant the free 
Maxwell equations in the Coulomb gauge. 

IV. PATH·SPACE FORMULAS 

In studying renormalization and other properties of 
gauge theories, it is a reformulation of the Minkowski quan
tum field theory in terms of a Euclidean framework that has 
proved profitable in recent years. The Euclidean framework 
is usually a symmetric stochastic process and complete de
tails are given for the Feynman gauge in Ref. 13. For the 
other Rideau gauges, a martingale decomposition for their 
Euclidean counterparts is not so immediate but is needed in 
the case of momentum dependent interactions such as ap
pear for the Yang-Mills theory. Equations (2.3) solve this 
problem in terms of the Feynman gauge fields in that for 
t #0, AI' (x;t) is momentum dependent and correspond
ingly given by a stochastic integral. It should be noted that 
the Hamiltonian for t #0 is not the Feynman gauge Hamil
tonian and this requires some care. 

Let B I' (t,x;t) denote a Gaussian process on R X V with 
mean zero and covariance 

a series oflengthy but straightforward calculations produces 
the following matrix elements: 

(Oo,Af' (x;t)e-lt-sIHo(s) Ay(y;t)Oo) 

= (i0f'O + of'j) (iovO + OY/) (Bf' (t,x;t)By (s,y;t» , 
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(Oo,Af' (x;t)e - It - slHoW 1T1 (y;t)Oo) 

= (iof'O + Of'j)( - i) (Bf' (t,x;t)BI (s,y;t» , 

(Oo,Af' (x;t)e -It - sIHo(s) 1To (y;t)Oo) 

= (iof'O + Of'j) (Bf' (t,y;t) {Bo(s,y;t) 

- [2t f(2t - 1) ] Jf'Bf' (s,y;t)}), for t #!, 

(Oo,1Tj (x;t)e -It- slHoW 1T1 (y;t)Oo) 

= ( - i)2(Bj (t,x;t)B, (s,y;t» + oj/o(t - s)OX,y , 

(Oo,1Tj(x;t)e-lt-sIHoW 1To (y;t) 0 0 ) 

= ( - i) (Bj (t,x;t) {Bo (s,y;t) 

- [2t f(2t - 1) ] Jf'Bf' (s,y;t)}) , for t #! ' 
(Oo,1To(x;t)e - It - slHoW 1To (y;t)Oo) 

= [1I(2t-1)]o(t-s)OX,y + ({Bo(t,x;t) 

- [2t f(2t - 1) ] Jf'Bf' (t,x;t)} 

X{Bo(s,y;t) - [2tf(2t-1)] JyBy(s,y;t)}), 

for t #!. (4.2) 

The covariances for the Landau gauge t = ! are not actually 
singular after combining terms for t #! and then taking the 
limit t --!. If It denotes the embedding map 

It: H--Ran (It)CL2(S~'J-ls) 

introduced in Eq. 2.9 of Ref. 13, with,us the measure asso
ciated with the covariance (4.1), then 

I;Is =e-lt-sIHo(s) =I;It 

as Ho(t) is Krein self-adjoint, but 

I~ Is = e-lt-sIHow#I: It. 

For example, 

(Oo,Ao(x,t)e - (t - S)HoW·Aj (y;t) 0 0 ) 

= - (Oo,Aj (y;t)e - (t - S)HoWAo(x;t)Oo) 

= i (Bj (t,y;t)Bo(s,x;t» 

(4.3) 

(4.4) 

= 2 II' V I Joo dpo L eiPo(t-s)+ip-(x- y
) COj ( -Po,p) 

1T - 00 pEro 

= - (Oo,Ao(x;t)e - (t-s)HoW Aj (y;t)Oo) 

since for t #0, Ho(t)*#Ho(t). In Feynman gauge, Ho is 
self-adjoint and the two-point function above vanishes iden
tically. 

The list in (4.2) establishes the following correspon
dence when t #0: 

Minkowski 
IsAo(x;t)I: 
Is 1To(x;t)I: 

Euclidean 
iBo(s,x;t) 
Bo(s,x;t) - [2t f(2t - 1) ] Jf'Bf' (s,x;t) 

with a term (2t - 1) -IO(t - s)OX,y for each 1To1To con
traction, t #! 

IsAj (x;t)I: Bj (s,x;t) 
Is 1Tj (x;t)I: - iBj (s,x;t) 

with a term oj/o(t - s)OX,y for each 1Tj1T1 contraction. 

These correspondences allow finding path-space formulas 
for AI' (t) by means of Wick's theorem and the Gaussian 
process B I' (t). The canonical quantization in Sec. II for the 
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Fermi Lagrangian density 

Y(S-) = -~a"Ava"Av- [S-/(2S--1)](a"A,,)2 
(4.5) 

is faithfully reflected in the Euclidean expressions with the 
same singularity at the Landau gauge. This singularity is not 
present in the Hamiltonian, the field operators, or the covar
Iance. 

Relations (4.2)-( 4.4) represent the semigroup genera
ted by Ho(S-) as a diffusion given by the Gaussian process 
with covaraince (4.1). The discussion in Sec. II, however, 
suggests a representation of this semigroup in terms of the 
Feynman gauge Gaussian process. From the Lagrangian 
density (4.5), the Hamiltonian is given by 

Ho(S-) = L 8s:[~ 1T[ (X;S-)2 + ~ (2S- - 1)1To(X;S-)2 
xeV 2 2 

+ {( - fl. s ) -1/2 a[1T[ (x ) 

- ( - fl. s ) l/2Ao(x) F]: 
where (2.3) have been used to express Ho(S-) in terms of 
Feynman gauge operators. To analyze Ho(S-) it is convenient 
to use the operators (3.1) for which Ho becomes a sum of 
three harmonic oscillators; namely, 

Ho(S-) = ~ L 8S[ 1TT(X)2 + A T( -fl.s )AT(x) 
2 xeV 

- 1TI ± ) (x) 2 - A I ± ) ( - fl.s )A I ± ) (x) 

+ S-{1TI - lex) + i( -fl.s) l/2A I -) (x)} 

x{1TI+)(x) -i( -fl.s)1/2AI+)(x)}] +const. 

= HO,T + Ho,L (S-) . (4.6) 

Now, exploiting once more the harmonic oscillator coordi
nates in the Appendix, the longitudinal part of Ho(S-) is uni
tarily equivalent to a differential operator 

Ho,L (S-) 

+ W(k)2 { (+)2 + (-)2 _ 2J;- (+) (-)} 
2 qj,L,k qj,L,k ""qj,L,k qj,L,k 

+S-W(k){ (_)_a _ _ (+)_a_}] qj,L,k a (+) qj,L,k a (-) 
qj,L,k qj,L,k 

+ const. (4.7) 

In order to obtain a martingale decomposition for A" (S-) 
and 1T" (S-) it is sufficient to examine (4,7) in two dimen
sions. The general case follows upon taking a direct sum. 

Example: Let Xl = Xl +), X2 = Xl -) for a givenj,k and 
consider the diffusion generated by the differential operator 

hO,L (S-) = - ~aijaiaj - biai + (w 2/2) (x,a2x) 
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with 

[aij] = (~S
[bd =/3t), 

-S-) 
1 ' 

for - 1<S-<1, a = a2, where 

1 ( Jf+I + ff=I 
u=2: -Jf+I +ff=I 

- 1) 
o ' 

-~1 +S- +ff=I). 
~1 +S- +ff=I 

The semigroup generated by hO,L (S-) is given by 

(fOo,e - tho.L(S)gOo) 

= (W/1T) 1, dx(O) J d/1w 

xexp[ - ~ IIX(O)11 2
] f(x(O») 

X exp [ - w/2llx(t) 112]g(X(t») 

xexp[ - ~2 L ds(x(s),a2X(S»)] (4.8) 

in which 0 0 is the Fock vacuum (harmonic oscillator 
ground state) and X (t) is a solution of the stochastic differ
ential equation 

dx(t) = u db(t) + /3x(t)dt, b(O) = 0, 

for b (t) a two-dimensional Brownian motion for the Wiener 
measure /1w' In fact, 

x(t) = ePtx(O) + L eP(t-S)udb(s) 

so by Ito's formula 

exp( - w/2[llx(t)11 2 -llx(O)11 2
]) 

= exp( - W L xes) 'dx(s) - 2w( 1 + S- 2)t ) . (4.9) 

The expression (4.8) is rearranged by combining (4.9) with 
a drift transformation conveniently made in two steps. The 
first step sets b' (t) = b(t) + f~U-1 /3x(s)ds, dx = u db', 
with b '( t) a new Brownian motion. The second drift change 
is b"(t)=b'(t)-f~(U-I/3-WU)x(s)ds, with dx 
= u db " + (/3 - wa2) dt and b" (t) a Brownian motion 

with respect to a Wiener measure /1:. Equation (4.8) then 
becomes 

(f Oo,e - thO,LW gOo) 

=.::: ( dx(O)e-wllx(O)II' 
1T JR' 
X J d/1: e - 2w(l H')t f(x(O) )g(x(t») . 

The paths are given by 

(4.10) 

x(t) = e(P-wa")tx(O) + L e(P-Wa")(t-S)udb "(s) . 

These paths are readily converted to a harmonic oscillator 
process q ( t) defined in terms of Brownian motion as 

q(t)=e-wtx(O) + Le-w(t-S)db"(S). 
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Finally if fi-o is the corresponding unique Gauss measure, 
then 

(/Oo,e-tho.LCSl gOo) 

= e- 2cu(\ +S')t f dfi-o(q) /(q(O») g(x(t») 

with paths found from 

x(t) = q(t) + e-
cut 

(Z:5't ~) q(O) 

+ e-cu(t-S) it [( 1 
o 25'w(t - s) 

X{dq(s) + wq(s)ds}. 

(4.11 ) 

The covariance matrix for this process is readily computed 
with the result E (x(t») = 0 and 

E (Xj (t)xj (s») = e - cult - sl/2UJ, j = 1,2; 

E(xl (t)X2(S») = 5' [s - tl\s] e-cult-sl. 

The results of this two-dimensional example carry over 
to the Hamiltonian (4.6), (4.7) by defining "Brownian lat
tice fields" 

bi±)(x,t) = (21V1)-1/2 L {cos(k-x)bLt)(k,t) 
kero 

+ sin(k-x)b U ) (k,t)} , 

bT(x,t) = (21V1)-1/2 L {cos(k-x)b1.T(k,t) 
kero 

+ sin(k-x)b2.T(k,t)} , 

wherein all Brownian motions start at zero and are mutually 
independent for each kEr o' The vector components may be 
found from 

b i± ) (x,t) 

= 2- 1/2 [bo(x,t) ± ( - as) -1/2 a/b/ (x,t)]. (4.12) 

From the harmonic oscillator expansions, the time-zero 
Fock space fieldA~ (x) evolves by the semigroup for H o(5') 

into the operator AI' (t,x) given by 

A _(_.6)1/2t 
AT(t,x)=AT(t,x)=e ' AT(x) 

+ i te -<-a,),/2(t-S)db
T

(x,s) , 

with matrices 

__ (5'-1 
f3 - i5' 

i5' ) __ (iF=I 
, (T-

-5'-1 0 ~1: 5'). 

A A 

Clearly when 5' = 0, AI' becomes the Feynman gauge operator AI' on H. The natural Euclidean field BI' for the Minkowski-
Euclidean correspondence must satisfy 

5'( - as) 1/2t 

1 - 5'( - as) 1/2t 

o 
5'( - a s )1/2(t-S) 

1-5'( -as )1/2(t-S) 

o 

These formulas simplify when expressed in terms of the Brownian fields defined by (4.12) for 

Bi±)(t,x) =2- 1/2 [Bo(t,x) ± (-as )- 1/2 a/B/(t,x)] 

which satisfy 

(~F::::~) = e- < _a,),,'t(25'( _las) 1/2 

BT(t,X) 0 

o O)(B i + )(O,X») 
1 0 B i - )(O,x) 

o 1 BT(O,x) 
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° 
° To write a path-space formula for the semigroup generated by Ho(S) in terms of the Feynman gauge Gauss measure!Lo let 

/3 p (x,t) be a Brownian field for this measure. By this we mean that for expectations taken with respect to!Lo (Eq. 4.6 of Ref. 
13) 

/3p (x,O) = ° , (/3p (x,t» = ° , (/3 p (x,t) /3v (y,s» = opv OX,y (t As) , 

for which the Feynman gauge Euclidean field satisfies 

Bp(t,x) =e-(-a,)"2t Bp(O,x) + it e-(-a,)'''(t-S) d/3p(x,s), t>O. 

A short calculation replaces (4.13) by 
/">. 

/">. (Bo(t,x») 
BT(t,x) =BT(t,x) (- a

s
)1/2JSi,(t,x) 

_ ( Bo(t,x») 1/2 _ ( _ a,)"2t (1 1) ( Bo(O,x) ) 
- (-as )I/2J,B,(t,x) +st( -as) e -1 -1 (-as )-1/2J,B,(0,x) 

f' e - (_a,)"2(t_s)(~{1 + S( - a s )I/2(t - s)} - 1 s ~( - a s)I/2(t - s) ) 

+ Jo -~I-SS(-as)I/2(t-s) ~{I-S(-as)1/2(t-s)}-1 

( 
d/3o(x,s) ) 

X (-as )I/2J,d/3,(x,s) . 

When S = 0, the last two terms vanish. For the path-space 
formula, let P(A) ,Q(A ) be two polynomials in the time-zero 
Feynman gauge field Ap (x), then using (4.14) we find 

(P(A)!1o,e-lt-sIHo(s)Q(A)!1o) 

= J d!LoP(iBo(t,·),Ej(t,·»)Q(iBo(s,),E,(s,·») 

(4.15 ) 

and the p'ositions of t and s may be reversed on the righ t -hand 
side as Ep (t,x) is a stationary process. The relations in 
(4,14) provide a stochastic integral representation for 
Ap (S) in terms ofa Feynman gauge Brownian field/3p (x,t). 
It is not difficult though rather tedious to use (4.15) to re
produce the expressions in (4.2). Many of the terms in 
( 4.15) actually vanish due to the martingale properties of 
stochastic integrals in (4.13). For these calculations using 
Wick's theorem it is expedient to use 1Tp (x)!1o 
= -i(-as )I/2Ap (x)!10' 

The restriction of e - tHoW to the Coulomb gauge sub
space H T follows immediately from (4.15) as 

(P(A)!1o,e - tHo(s)Q(A T )!10) 

= J d!LoP(iBo(O,),Bj(O,»)Q(BT(t,») (4.16) 

and as expected 

Ho(s)IH
T 
=~ I OS:[1TT(X)2 +A T ( - as)AT(x)]:. 

2 XEV 

(4.17 ) 

By techniques familiar to the boson field theories, (4.17) 
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(4.14 ) 

defines a positive self-adjoint operator and (4.16) leads to 
Osterwalder-Schrader positivity on H T • 

v. QUANTUM ELECTRODYNAMICS 

Let ¢(x), ¢t (x) = ¢*(x)yD denote Dirac spinors on 
the lattice torus V where yD, iyj,j= 1,2,oo.,s, are (s+ 1)
dimensional Hermitian matrices satisfying {yP,yv} = 2gw. 
The canonical anticommutation relations are realized in a 
fermion Fock space HI by 

{¢a (x), ¢f3 (y)} = ° = {¢~ (x)'¢b (y)}, 

{¢a (x), ¢b(y)} = oaf3ox,y 

with the consequence II¢a (x) II.,;; 1, II¢~ (x) II.,;; 1. The Hamil
tonian operator for QED is 

H(S) = Ho(S) + H g + VQED (S) = H b (S) + VQED (S) , 
( 5.1) 

where 

Hg = i I OS :¢t (x) [ - iy·V + m]¢(x):, 
XEV 

(5.2) 
VQED (s) = e I OS :¢t (x)yp¢(x): A P(x;S) . 

XEV 

The decomposition (2.3) shows the momentum dependence 
of the interaction for f;- ...... O in the form V. - velectric :. -r- QED - QED 

+ VQ~~etic in which 
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= e L DS:t/J*(X)t/J(X): 
XEV 

x [( 1 - ~) Ao(x) + ~ ( - I:1s ) -I az1Tz (x) ] , 

(5.3a) 

= - e L DS:t/J*(X)YoYjt/J(x): 
XEV 

X [{Dji + ~ (-l:1 s )-laj a z}A z(X) 

+ ~ (- I:1s )-1 aj 1TO(X)] . (5.3b) 

Each term in the potential is defined on HI ® D F as a pair of 
essentially normal operators which commute on a common 
core of analytic vectors. Even in the Feynman gauge, vg~~ric 
is skew symmetric so the closure of VQED is not self-adjoint. 
However, VQED is Krein symmetric so it is closable. As the 
Dirac operators are bounded on the lattice, it is expected that 
VQED is a "small" perturbation of Ho(t) + H g, only now 
these are sectorial rather than self-adjoint operators. 

From the representation (4.6) is it easy to see that 
Ho(t) is sectorial. By completing the square for t1Ti + )1Ti - ) 

and tA i + ) ( - I:1s )A i - ) then as a bilinear form on DF 

Re(ct>,Ho(t)ct» 

= (ct>,Hoct» + t L DS(ct>,{1Ti +) 1Ti - )(x) 
XEV 

+ Ai + ) ( - I:1s )A i - ) (x) }ct» + cllct>11 2 

;;. (1 - It I )( ct>,Hoct» + cllct>1I 2 , 

while by the Schwarz inequality and again completing the 
square 

I Im(ct>,Ho(t) ct» I 
< It I (ct>,HO.L ct» 

< [It II (1 - It I )] Re(ct>, {Ho(t) - y(t) }ct» 

when It I < 1. Thus Ho(t) IDF is quasi-m-sectorial for It I < 1 
and hence Krein self-adjoint (Lemma 2.2 of Ref. 11). In 
fact, for the one-particle operator with O<t < 1, the sector is 
smaller with semiangle tan -I t 1(1 - t 2) 1/2 (Proposition 
2.1 of Ref. 13). 

Useful bounds for the interaction in terms of the semi
group generated by Ho(t) may be obtained from the Fock 
annihilation and creation forms cl-"c: which satisfy 

[ci-' (k),c~(k')] = lU(k) Dl-'vDk,k' 

and al-' (k) = - ci-' (k), a! (k) = gl-'v c~ (k), whereupon 
Ho(t) becomes 

[ 
tk kV] I Ho(t) = L c: (k) DI-'v - -1-'-2 - a CI-' (k) . 

kEro lU k =cu 

(5.4 ) 

Using a standard representation of the canonical commuta
tion relations (CCR's), such as 

[ci-' (k)ct>n7~2"'l-'n (k l ,k2,···,kn ) 

= (n + 1) 1/2 ct>~~~.I~n (k,kl, ... ,kn ) , (5.5) 

then on the one-particle space 
- 2a>t 

lie - tHo(s)tfoIl 2 = L _e - tfoa (k) MaPtfop (k) 
kEro lU 

in which 

MaP =Dap + (ttllU)(kakP+kakp ) +2t 2t 2k ak P . 

The eigenvalues A. for M are A. = 1 with multiplicity s - 1 

and A.=(~1+t2t2lU2±ttlU)2. When Itl<l, clearly 

e - 'CU( ~1 + t 2t 2lU2 + ItltlU) < 1 so e - tHoW extends to a con
traction on H for t;;'O. 

Proposition 5.1: For - 1 <t < 1, the operator Ho(t) IDF 

generates a Krein self-adjoint, holomorphic, contraction se
migroup e - 'How. The operator CI-' (k)e - tHo(S) defined on 
DF extends uniquely to a bounded operator with 

IIcl-' (k)e - tHowct>1I < const t -1/2e -, [cu(k) - CUoJ 1Ict>1-' (k,·) II 
(5.6) 

for t> 0, lU(k) ;;'lUo > 0 for kEr o. 

Proof: To show the norm estimate, use (5.4) and (5.5) directly when ct>EDF to show 

IIcl-' (k)e - tHoWct> II 2 = f (n + 1) L exp( - 2t [lU(k l ) + ... + lU (kn )]) 
n = 0 kpro lU(k l ) .. 'lU(kn ) 

l<j<n 

As k,kjEr 0' for which the zero modes are removed, then 
lU (kj ) ;;'lUo > 0 and the bilinear form in the summation is 
dominated by 

(n + 1)e-2ncuot(~1 +t2t2lU~ + ItltlUo)2n 

<e2(cuot- (Jo)/2e(lUot - (}o) , 
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with ItllUot sinh (}o;;.(}o' The bound in (5.6) now follows 
with the constant chosen as [2e( 1 - It I )] -1/2 and extends 
by continuity to all of H. D 

The application of Proposition 5.1 to the QED Hamilto
nian is almost immediate. If we denote 
vI-' (x) = :t/Jt (x)yl-' t/J(x):, a bounded operator on HI' and its 
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Fourier transform (see Sec. II) by uJL (k),kEr 0' then VQEO is 
a sum of eight operators of the form 

L uJL (k) p(k)cJL (k) 
kEro 

or their adjoints. The functions p (k) are bounded. Suppose 
<PEll, \fIEllf , then a typical term in VQEO satisfies a bound 
given by (5.6) as 

II L CJL(k)e-tHoCS)<I>®P(k)UJL(k)e-tH&'\fI11 
kEro 

tH D 

<constt- l /2 L II<I>JL(k,')lIllp(k)uJL (k)e- ° \fill 
kEro 

<const t -1/2II<1>Ii(~ IluJL (k)p(k)e - tH&'\fI II 2 ) 1/2 

<const t - 1/21I<1>Ii(t.; 8sIIvJL (x)e - tH{;'\fI II 2 ) 1/2 

<const t -1/2(&:y 8sllvJL (x) 112) 1/211<1> ® \fill . 

In the third step, the vector-valued form of the Plancherel 
theorem is used. As each vJL (x) is a bounded operator on the 
fermion space, then 

IIV'QEoe-tHoCS)II<constt-I/2, 15'1<1. (5.7) 

This estimate leads directly to our result for the Hamiltonian 
(5.1 ). 

Theorem 5.2: For - 1 < 5' < 1, t> 0, 

Ran(e - tHaW) CDC VQED ) and VQED is a Phillips perturba

tion of H o(5'). Hence 'tiE> 0, 3C(E) such that 

IIV'QED <PII <EIIH ~ (5')<1>11 + C(E) 11<1>11, V<I>ED (H ~ (5')) 

and H <> (5') + VQED is the generator of a Krein self-adjoint, 

holomorphic semigroup with the same sector as for e - tH ow. 
Moreover, the semigroup is given by a norm convergent Du
hamel series 

e - t(Hi\'Cs) + YQED) 

=e- tHoW + f rt dS I r" ds2 '" rSn

-

1 

dSn 
n = 1 Jo Jo Jo 

X 
-(t-s,)HoCs) -v. -Cs,-s,)HoCs) 

e QED e 

- - - snH oW X VQED ... VQED e (5.8) 

which converges uniformly on compact subsets of the open 

sector for e - tHaW. The Hamiltonian H o(5') + H{i + VQED 
is then essentially Krein self-adjoint. 

Proof Estimate (5.7) establishes the statement about 
domains and shows V QED to be a Phillips perturbation of 
H ~ (5') = H o(5') + H {i. Moreover, as V QED has a normal 
closure and Ho(5') is sectorial, 

VQEDR (A,H ~ (5'») 

-lOO dt -At-v. - tHoW - e QED e , 
o 

or 
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- 100 

e-
bAt 

IIVQEoR (A,H~ (5'»)11< const dt-1-/2- <E 
o t 

when Re A;>Ao(E). Now if <l>ED (H ~ (5'») then 
<P = R (A,H ~ (5'»)\fI for some \fIEll ® Hf , hence 

IIV'QED <PII <EIIH ~ (5')<1>11 + C(E) 11<1>11 . 

The existence of a semigroup for H(5') given by a Duhamel 
series (5.8) is a well known result for Phillips perturbations 
(Theorem 13.7.2, p. 418 of Ref. 15). The generator is the 
closure of H(5') IDF which is then essentially quasi-m-accre
tive and so essentially Krein self-adjoint (Lemma 2.2 of Ref. 
11). 0 

From the Duhamel formula (5.8), a path-space formula 
for the semigroup e - tHCs) readily follows in exactly the same 
manner as for the case of the Yukawa model. I6 There are 
minor changes due to the y-matrices; for example, 

(!lo,e-tHW!lo) = f dJ.Ls det[l +K], 

(!lo,¢a(x)e- tHW ¢1(y)!l0) 

= f dJ.Ls det[ 1 + K]( [1 + K] -ISE) (t,x;O,y) , 

in which J.Ls is a Gauss measure for the process BJL (5';t,x) in 
(4.1) and SE is the Euclidean fermion propagator 

SE(XI -x2 ) 

= (21T1V I) -I foo dpo L eiPCX, - x,) (m - ir!PJL ) 
-00 PEro p2+m2 

with Euclidean variables XI' X 2 and n = Yo, rf = - iyj so 
{r!,r,;} = 28JLv' The operator K has matrix elements 

K(X I ,X2 ) 

= ieoSE(xl - x 2 )r! BJL (5';x2 )X(0.t I( 1 - 8x"x,) 

for XI = (t,x), X 2 = (O,y) and tr r! = ° implies tr K = 0. 
The diagonal terms for K are removed by the Wick ordering 
in VQED . 

On restricting H(5') to the Coulomb gauge subspace 
HT ®Hf as defined in (3.1) and (3.2), then 

H(5') IcoulombnDF 

= HO,T + H{i - e L 8s: ¢t (x) Yj¢(x): AT,j (x) . 
XEY 

This is essentially self-adjoint and bounded below with clo
sure the generator of a self-adjoint contraction semigroup on 
H T ® Hf . The path-space formula in this case now possesses 
Osterwalder-Schrader positivity. 

VI. ESSENTIAL SELF-ADJOINTNESS FOR YANG-MILLS 

To show (Ho(5') + V~~)IDF is essentially Krein self-ad
joint for 5' #0, we exploit the gauge transformation of Sec. 
III. The Yang-Mills interaction on the lattice V for a general 
covariant gauge is given (Eq. 3.3 of Ref. 13) as a sum of two 
operators 

v~~netic(5') = L 8s [A ajA/'Aj XA/ (x;5') 
XEV 

+ ~2 (Aj XA/ (X;5'»)2] , (6.1 ) 
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v~~triC(S) = A L /js ['TT/ (x;s) + a/Ao(x;S)] 
xeV 

(6.2) 

in which sums over color indices are suppressed. In Feyn
man gauge denote VYM (0) = VYM and consider the opera
tor 

(6.3 ) 

for 

Vo = L /js:{'TTo(x) + a/Ai (x) F: . (6.4 ) 
xeV 

The operator in (6.3) is readily seen to be defined on the 
domainsD(a) of Definition 3.1. From Proposition 3.4 for a 
suitable choice of a 

H YM = Ho(S) + VYM(S) =~HYMe-s 

as the expressions (6.1), (6.2), and (6.4) do not involve S 
explicitly. Recall ~ = U( 1 )eMU( - 1), one finds further 
that 

H YM = U(1)eMH~M e-MU( - 1), 

where [Eqs. (2.5), (2.6), (2.7) of Ref. 11] 

H ~M = H YM + S L /js:'TTO(X)2: 
xeV 

= L /js ['TT/ (X)2 _ (1 - 2S)'TTO(X)2 + Fj/ (X)2 
~V 2 2 4 

+ A'TT/ 'AoXA/ (x) + 'TTo a/Ai (x) - 'TT/ a/Ao(X)] 

(6.5) 

with 

Eo(S) =s+ l-s L w(p). 
2 pero 

By transforming to harmonic oscillator coordinates H ~M is 
realized as unitarily equivalent to an elliptic operator of the 
form (Eq. 2.8 of Ref. 11) 

H~M = - (aijI2)aA + a-V + V(q) , 

in which 

When S <!, the elliptic operator in (6.5) is only degenerate at 
the Landau gauge. However, even in this case the proof that 
if ~M I C ~ is quasi-m-accretive given in Theorem 2.4 of Ref. o _ 

11 is unch!-nged. Consequently, H ~M IDF is Krein self-ad
joint and H YM (S) is Krein self-adjoint by Proposition 3.5. 
We summarize this discussion in the following theorem. 

Theorem 6.1: The Yang-Mills Hamiltonian HYM (S) 
= Ho(S) + VYM (S) for - 2 <s<ps essentially Krein self

adjoint on D(a), for a chosen as in Proposition 3.4. 
Remark: While this last result allows definition of a 

unique Yang-Mills theory with cutoffs which interpolates 
between the Feynman and Landau gauges, the difficulty that 
H YM is bounded below and not HYM is still present in the 
Rideau gauges. The root of the trouble is that 
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now (U( ± 1)). RestrictingH YM (S) to the axial gauge sub
space, Ao(x;S) = 0, does in fact lead to an essentially self
adjoint operator which is bounded below. The same is true 
for restriction to the Coulomb subspace. Both restrictions 
forego covariance and locality which is the raison d 'etre for 
the indefinite metric. 

APPENDIX: HARMONIC OSCILLATOR COORDINATES 

By means of Fock annihilation and creation forms 
cp. (k),c:(k) for which 

[Cp. (k),c~(k')] = w(k)/jp.v /jk,k' 

a representation of (2.1) at time zero is provided by 

Ap.(x) = (21V1)-1/2 L {gp.vc~(k)e-ik.x_cp.(k)elk'X} , 

kero w(k) 

'TTp.(x) = -i(21V1)-1/2 

x L {gp.vc~(k)e -lk·x + cp. (k)e'k'x} . 
kero 

The q-coordinates are defined by 

Ap.(x) = (21V1)-1/2 

XL {ql,p. (k) cos(k·x) + q2,p. (k) sin(k-x)}, 
kern 

X L {PI,p. (k) cos(k-x) + P2,p. (k) sin(k-x)}, 
kerb 

where rb indicates those momenta in the dual lattice re
maining after using the relations 

qj,p. (k) == ( - 1)H I qj,p. ( - k) , 

k '+1 k Pj,p. ( ) = ( - 1)1 hp. (- ). 

For these momenta, (2.1) requires [qj,p. (k),p/,v(k')] 

= i/jj/ gp.v /jk,k" Each qj,l and Pj,/ are symmetric but in the 
Feynman gauge qj,O and Pj,O are skew symmetric. An irredu
cible representation for these Heisenberg relations is pro
vided by qj,/ (k) and - iqj,o (k) as multiplication operators 
with Pj,/ = i a laqj,/ and Pj,O = - a laqj,o' For the Stokes 
fields in (3.1) and (3.2), provided one uses a symmetric or 
midpoint approximation to the lattice derivatives, the oscil
lator variables are natural. For example, with midpoint de
rivatives 

q~.r)(k) =2- 1/2 {ql,o(k) ±2iq2,/(k) 

Xsin (k//)/2)/[/jw(k) n ' 
qi,t. ) (k) = 2 -1/2 {q2,O (k) + 2iqJ./ (k) 

xsin (k//)/2)/[/jw(k) n, 
with analogous expression for pD:- ) (k ). Again one finds 

[qj~f) (k),pJ.f )' (k') ] = (1 ( ± )( + )'I)/jj,/ Dk,k./2 . 

Systematic use of these expressions and their Fourier series 
for Ap. (x)'TTp. (x) , A l. ± ) (x), 'TTl. ±) (x) lead to the formulas 
appearing in Lemmas 3.2,3.3 and Eqs. (4.7) and (4.12). 
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The spectral sequence method is used to find the nonintegrated function cohomology of the 
BRS Yang-Mills operator in the space of the analytic (a priori nonpolynomial) functions in 
space-time dimensions. 

I. INTRODUCTION 

Symmetries are, in several cases, part of the definition of 
physical models; they indeed imply conservation laws that 
restrict the class of possible processes, thus simplifying the 
task of constructing dynamical models. 

This is akin to the widespread use of group theory and 
differential geometry in classical and quantum mechanics, to 
simplify the mathematical formulation and to characterize 
anomalous behavior due to quantum effects. 

In particular the BRS 1 perturbative quantization proce
dure emphasized the role of the cohomology space of the 
differential operator induced by the symmetry group. 

We shall find in this paper the cohomology space of the 
BRS operator of the pure Yang-Mills mode12

; that is, we 
solve the equations 

~a(x) = 0, 

a(x) ¥=~a(x), 

( l.la) 

(1.1b) 

where a (x) is an analytic function, ~ is the Yang-Mills-BRS 
operator, and a(x) is an arbitrary function. 

Our result is 

a(x) = F(ga*a(n)G*l-'v(x»)T(Ca(x»), (1.2) 

where F(ga* a(n) G * I-'v (x») and T(Ca(x») are group global 
invariant analytic functions, which depend on covariant de

rivatives of the curvature tensor G a I-'v (x), and underivated 
Faddeev-Popov ghosts, respectively. 

It is important to note that we get rid of the polynomia
lity hypothesis and our result holds for any space-time di
mensions. 

II. THE MODEL AND THE STRATEGY 

The pure Yang-Mills 1 models are based on a vector con
nection gauge field A al-' (x) in a d-dimensional space-time, 
which carries the adjoint representation of a semisimple lo
cal Lie group ;1. 

With the aid of the anticommuting Faddeev-Popov 
(<<I>n) charged fields Ca(x) the local transformations of [§ 

induce the null-squared BRS1 differential operator 

~ = f ddX{ [J Ca(x) + rbcA b (x)CC(x)] 8 
I-' I-' 8Aal-'(x) 

- ...!..[fabCCb(x)CC(x)] 8 }, (2.1) 
2 8ca(x) 

whose functional cohomology controls the perturbative re
normalization program of the model. 

We shall study, in this paper, the cohomology space 

H(~) (x) of the operator ~ in the space of the nonintegrated 
functions; that is we shall solve the system 

~a(x) = 0, 

a(x) ¥=~a(x), 

for any a(x). 

(2.2a) 

(2.2b) 

The space of the local functions a(x) can be parame
trized3 by the monomials of the fields and their space-time 
derivatives, which are to be considered as independent co
ordinates of the model (since partial integrations are not 
admissible) and the operator~, when acting on Y, can be 
written as 

~ = n~JDa(n) [JI-' Ca(x) + rbcA bl-' (x)CC(x)] 

J x-----
JDa(n)A al-' (x) 

_ ...!..Da(n) [fabcCb(X)CC(x)] a }, 
2 aDa(n) Ca(x) 

(2.3) 

where 

Da(n)A al-' (x) = aa(1) Ja(2)·· ·aa(n)A al-' (x). (2.4) 

To accomplish our program, we shall use the spectral 
sequence4 method, already introduced by Dixon,3 and used 
by the author in different cases,5 which allows one to reach, 
by iterations, a space IJ.(~) (x) isomorphic to H(~) (x). 

The first ingredient for our recipe is to endow the space 
Y with a grading induced by an operator v, 

Y = ED kEZY k' (2.5) 

such that each functionik (x )eY k is eigenfunction of v with 
eigenvalue equal to k, and there exists an adjointness rela
tionship with respect to which the operator v is self-adjoint, 

v= [v]+. (2.6) 

The action of ~ on Y k will increase the grading degree, 
while that of [~ ] + will lower it, 

~: Yk~Yk+r' 
[~]+: Yk~Yk-r (r>1). 

(2.7a) 

(2.7b) 

So elements belonging to spaces with different v eigenvalues 
will be orthogonal with respect to the scalar product defined 
by our adjointness procedure. 

The BRS operator ~ will be decomposed by v as 

[~,v) = L k~(k). (2.8) 
k=O 
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The general theorems of Appendix A, in which a more 
rigorous introduction to the spectral sequences method can 
be found, show that H ( 8 ) (x) is the space of functions A (x) 
which are solutions of the (a priori) infinite system 

8(k)A(x) = 0, 

[8]+(k)A(x) =0 (k= 1,2,3 ... ). 

(2.9a) 

(2.9b) 

It is obvious that the isomorphism which relatesH(8) (x) to 
H(8)(x) depends on the choice of the grading operator v, 
one might expect to get a neater result if the grading oper
ation would preserve the superselection rules of the model. 

Furthermore, if we want to get local functions with defi
nite Faddeev-Popov (<I>ll) charge, and to recover the <l>ll 
charge additivity property, we have to assume that each 
functionF(x) of the space Y be analytical in the field Ca(x) 

and its space-time derivatives; namely, 

F(x) =Fo[AalL(x)] + IDa(n)ca(x)Flaa(n)[AdlL(x)] 
n=O 

+ I I Da(n) Ca(x)DP(m) Cb(x) 
n=Om=O 

XF2a a(n)bP(m) [A dlL (x)], 

where the functions 

FO[ A aIL (x)], Fla a(n) [A dlL (x)], 

F2a a(n) bP(m) [A dlL (x)], 

(2.10) 

(2.11) 

are analytic functions on the gauge field A dlL (x) and its 
space-time derivatives for the reasons we shall later specify. 

This assumption will imply that the counting operator 

(2.12) 

induces a grading on Y, whose degree k is provided by the 
value o/the <l>ll charge plus the number o/the derivatives 0/ 
the Ca(x) fields o/the/unction in each sector Y k' 

It is now useful, for later uses, to introduce a new coordi
nate system in the uncharged <l>ll sector, such that each 
function of the gauge field A a v (x) and its space-time deriva
tives can be reparametrized in a different way. 

Each derivative of order n of the field A clL (x) can be 
expressed in terms of its symmetrized and antisymmetrized 
components 

Da(n)A clL (x) = D{a(n)A cIL} (x) + D{a(n)A cIL} (x). 

(2.13 ) 

If we introduce the usual curvature tensor 

GaILV(x) =aILAav(x) -avAQIL(x) 

+ /abcA blL (x)A \ (x), 

and the covariant derivative operator 

~ablLA b" (x):= [aIL 8ab + rbcA blL (x) ]A c" (x), 

(2.14 ) 

(2.15 ) 

it is easy to realize that the antisymmetric part 
D{a(n)A \} (x) can be expressed in terms of covariant de
rivatives of the curvature tensor and symmetrized deriva
tives of the gauge field oflower orders, 
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D{a(n _ I) avA cIL} (x) 

= ~c"a(n _ I) G * ILV (x) 

+ f?jJca(n _ 1).ILV{~d" a(r) G *P" (x),D{a(s)A by} (x»), 

O';;;r<n - 2, O';;;s<n - 1, (2.16) 

where we have indicated 

~a" a(n) G * ILV (x) 

= ~ab(\) a(l) ~b(\)b(2) a(2) ... ~b(n - I)b(n) a(n) 

XGb(n)ILV(x). (2.17) 

Therefore each space-time derivative of order n of the gauge 
field A blL (x) can be written in terms of the symmetrized 
derivative D{a(k)A cIL} (x) (k.;;;n), and covariant derivative 
of G a ILV (x) of order less than n. 

This implies a one-to-one map between the coordinate 
system defined by the field A C IL (x) and its space-time deriva
tives on one side, and the one expressed by the symmetrized 

derivativeD{a(k)A cIL} (x) (k = 0,1,2, ... ), the curvature ten
sor G a ILV (x), and its covariant derivatives, on the other side. 
Thus we are free to choose the latter one for our purposes. 
With this choice of variables, the BRS operator 8 can be 
written 

8 = n~J[D{a(n) aIL}ca(x) + rbcD{a(n) [A bIL} (x)CC(x)]] 

a 
X------

aD{a(n)A aIL} (x) 

+/abcCb(X)~C" G * (x) a 
a(n) J.lV • 

a~a a(n) G * ILV (x) 

(2.18 ) 

The operator v decomposes the BRS operator 8 as 

8(1) = I {CC(X) [rbCD{a(n)A bIL} (x)] a 
n=O aD{a(n)A aIL} (X) 

-..!...D [rbCCb(x)CC(x)] a } 
2 a(n) aD c a() a(n) X 

(2.19) 

and 

8(k) = Da(k 2) aIL Ca(x) { a 
- aD{a(k_2)A aIL} (X) 

~ (n +S - l)!/cbaD A b (x) +""" '( _ 1)' {a(n) v} n=O n. s . 

X a } 
aD{a(n) alLA \} (x) 

:=Da(k _ 2) aIL Ca(x).Af" a(k _ 2),IL (X), 

k=2,3, ... , 

in which the curvature tensor content disappears. 

(2.20) 

The adjointness relationship is defined, as in Ref. 3, by 
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the trivial substitution of each monomial in the fields with 
the derivative operation with respect to the same field and 
vice versa; it is so evident that the operator v is self-adjoint. 
Hence a Hilbert space structure is embedded in Y; the posi
tivity of the norm is assured by the requirement of the analy
ticity property of the functions pO [ A a" (x) ] , 
pia a(n)[A d" (x)], p2a a(n)b{3(m) [A d" (X) ], ... , in Eq. 
(2.11 ). Furthermore, we get 

[b]+(1) = L {[[fabcD{a(n)Aa,,}] a b 
n=O aD{a(n)A ,,} (x) 

+ fabcga* a(n) G * "V (x) a ] 
ag

b
" a(n) G * "V (x) 

x a 
acC(x) 

_ ~rbCD Ca(x) a } 
2 a(n) aDa(n) [Cb(x)Cc(x)] , 

[b] +(k) = {D{a(k_2)A a,,} (x) + nL=o (n + s - 1 )! 
n!(s - 1) 

k=2,3, .... 

(2.21 ) 

(2.22) 

Our task is now to solve the system Eqs. (2.21) and (2.22); 
this will be done in the next section. 

III. CALCULATIONS AND RESULTS 

The first step is to solve the system 

b(1)~(x) = 0, 

[b] + (1 )a(x) = 0, 

which implies 

{[b]+(1),b(1)}+~(x) =0. 

( 3.1a) 

(3.1b) 

(3.2) 

The above condition can be better analyzed if we decompose 
the operator b( 1) as 

b(1) = CC(x)bc(l) + CC(x)~c(1) 
(3.3 ) 

where 

b c (1) = L {[fabcD{a(n)A b,,} (x)] a a 
n=O aD{a(n)A ,,} (x) 

+ fabcg b" a(n) G * "V (x) 

x a }, 
aga* a(n) G * "V (X) 

( 3.4a) 
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~c (1) = - L rbcDa(n) Cb(x) a , 
n=1 aDa(n) [Ca(x)] 

(3.4b) 

d(1)=-1.-rbCCb(x) a, (3.4c) 
c 2 a [CC(x)] 

b(1) = - 1.- L n! 
2 n>l;n>r>1 r!(n - r)! 

x [rbcDa(r)Cb(x)Da(n_r)CC(x)] 

X __ ...:...a __ 
aDa(n) ca(x) 

Tedious and lengthy calculations give 

(3.4d) 

h bc (1) + ~c (1) + dc (1)] + [bc (1) + ~e (1) + dc (1)] 

X~(x) + [de(1)]+[dc(1)]~(x) 
1 {n' m' - - L . . /jm /ja 
2 n,m>l;n>r>I;m>s>1 r!(n-r)! s!(m-s)! n g 

xfabc [ Da(r) Cb(x)Da(n _ r) CC(x)] 

xjKde a a~(x)} 
aDa(m_s) Ce(X) aDa(s) Cd(X) 

+ " (2n!) C D Ca() a~(X) } = ° 
£... ,2 2 a(n) X a ' 
n>2 (n.) aDa(n) [C (X)] 

(3.5) 

where 

fmb'j'nbc = /jmncz (3.6) 

and we have used 

(CC(x)bc (1), [Ca(x)ba (1)] +) 

=be (1)+be (1) - [bc (1)+dc(l) +dc (1)+bc(l)], 

(CC(x)~e (1), [ca(x)~a (1)] +) 

= ~c ( 1) + ~c (1) - [~e ( 1) + dc (1) + dc ( 1) + ~e ( 1) ] , 

(C e (x) de ( 1 ), [ C a (x) da ( 1 ) ] +) = 2 de ( 1 ) + de ( 1 ) , 

(CC(x)be (1), [ca(x)~a (1)] +) = 2~a (1) +ba (1), (3.7) 

(C e (x) be ( 1 ) , [ C a (x) da ( 1 ) ] +) = 2 da ( 1 ) + b a ( 1 ) , 

( C e (x ) ~c ( 1 ) , [ C a (x) da ( 1 ) ] +) = 2 da ( 1 ) + ~a ( 1 ) , 

(ce(x)bc (1),[b(1)]+) = (CC(x)~c(1),[b(1)]+) 

= (CC(x)de (1),[b(1)]+) = 0. 

The Hilbert space structure we have embedded gives the 
conditions 

[be (1) +~c(1) +de(1)]~(x) =0, 

[de(1)]~(x) =0, 

L L m! r be 

m>l;m>ss>1 s!(m -s)! 

x a a~(x) =0, 

aDa(m_s) Ce(x) aDa(s) Cb(x) 

aa(x) ----'--:...-- = 0, m = 2,3,4, .... 
aDa(m) ca(x) 

( 3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

Equations (3.8a) and (3.8b) say that ~(x) can be written 
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6.(x) = F(D{acn)A b/L} ,ga· aCn) G "'I'V (x), 

D acm ) CO(x»)T(Ca(x»), (3.9) 

where T(ca(x») and F(D{acn)Ab/L}' ga"acn) G */LV (x), 
D acm) ca(x») are global invariant functions. The first de
pends only on the underivated Ca(x) field, the second can 
contain a ghost field only if it is derivated. Furthermore, Eq. 
(3.8d) says that 6.(x) cannot depend on the space-time de
rivatives of the ghost field CO(x) of order greater than 1. 

It is now a matter of tricks to show that 6.(x) does not 
depend on the first-order derivative either. Indeed the condi
tions (3.8c) and (3.8d) imply 

a6.a (1)6.(x) =6. (1) a6.(x) =0, (3.10) 
a [0I'Ca(x)j a a [0l'ca(x)) 

since 

6. (l)6.(x) = _rbca Cb(x) aA(x) (3.11) 
c I' a [o/Lca(x)) 

On the other hand it is evident, from Eqs. (3.8a)-(3.1O), 
that 

[
06.a (l),6.b (1) ]6.(X) 

a [0l'ca(x)] 

_ 2 bar 06., (1 )6.(x) = ° 
- if a [aI'CO(x)] 

= 2fbarA (1) a6.(x) = ° 
r a [al' Ca(x)] 

and so 

a6.(x) 
------=0, 
aD{aCr)A al'} (x) 

(3.12) 

(3.13 ) 

a6.(x) + rbcA a (x) a6.(X) 

aD{acr_I)A a/L}(x) v aD{aCr_1) al'A a
v } (X) 

=0, 

which, after a few calculations, gives 

o6.(x) = 0, (3.14) 
a [al' Ca(x)] 

which is our desired result. 
To sum up we have shown that the solution of the sys

tem Eqs. (3.1a) and (3.1b) 

A(x) = F(D{a(n)A b/L} ga· a(n) G * I'V (x) )T(Ca(x»). 
(3.15 ) 

The next step is to solve the equations 

b(k)6.(x) =Da(k-21 al'ca(X)~a(k_2)'/L(X)6.(x) =0, 
(3.16a) 

[b]+(k)6.(x) = [.~aa(k_2)/L] +(x) a6.(x) 
, aDa(k_2) a/Lca(x) 

= ° (k = 2,3, ... ), (3.16b) 

that is, 

([b] +(k),[b] (k»)+6.(x) 

= [J1i"a(k_2),I']+(x) 

XJ1i"u(k-2)'/L (x)6.(x) = ° (k = 2,3" .. ), (3.17) 

since 6. (x) does not depend on the derivative of the <l> n field. 
Now, the same tricks as before suggest the system of 

equations 

fOa(k-2),/L (x)6.(x) = ° (k = 2,3 ... ). (3.18 ) 

The locality hypothesis suggests that 6.(x) can depend expli

citly on the derivatives of the gauge field D{aCn)A aIL} (x) 
whose order has an upper bound (let us call it r); if it is so, the 
previous system reduces to (r + 1) equations, 

(3.19a) 

(3.19b) 

aA(x) + rbeA a (x) aA(x) + rrbC(aoA a (x») aA(x) = 0, 
aD{aCr_2)A a/L} (X) v aD{aCr_21 a/LAav}(x) v aD{aCr_2)al'avAov}(x) 

(3.19c) 

a6.(X)a +k~l (n+r-k+l)!labcD Ab (x) a6.(x) 

a £.J 'C k 1)' {a(n) v} air> a A C =0, 
V{aCr-k)A /L}(x) n=O n. r- + . :IJ{aCn+r-k) /L v} (x) 

(3.19x) 

aA(x) + ~ r~3 (n + 3)! fabeD A b (x) a6.(x) 

a 0 a A ° ( 3' £.J I {a(n)} v} aD a a a c {aCr-k) I' v {3} x) . n=O n. {aCn) /L v {3A v} (x) 
=0, ( 3.19u) 

o6.(X) + ~ r~2 (n + 2)! labcD A b ( ) a6.(x) = ° 
2' £.J, {a(n) v} xc' 

a{aa!J.A ao-} (x) . n=O n. aD{a(n) aIL avA v} (x) 
(3.19v) 

aA(x) r~1 ( l),l'abcD A b ( ) a6.(x) ° -----'--'-- - + £.J n + 'J {a(n) v} X = . 
oAa,,(x) n=O OD{a(nlO(]"Acv}(x) 

(3.19w) 

Now, Eq. (3.19a) says that 6.(x) does not depend on the r-order symmetrized derivative of the A a v (x) field; if we substitute 
this result in the next equation it follows that it cannot depend on the (r - 1 )-order derivative either; if we contim,le, the trick 
goes on, and the outcome is that 6.(x) cannot depend on any symmetrized derivative D{a(n)A C v} (x) (0 < n < r) 01 any order 
whatsoever. 
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Therefore our final result is that 

Ll(x) = F(fPa* a(n) G * /LV (x) )T(Ca(x»). (3.20) 

We have to remark that, from a physical point of view, it should be more important to find the cohomology space ofl) in the lo
cal functional space; however in this case, since the integration process has to be performed, all the global properties of space
time (dimensions, connectedness, etc.) have to be specified. 

Anyhow our result is the first step to solve this problem, as pointed out in Refs. 1 and 6. Presumably, this result plus the re
sult of Ref. 6 gives the proof for 8 mod d, knowing that d is trivial (in general the "de Wilde" result). 
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APPENDIX: SPECTRAL SEQUENCES: A BRIEF 
INTRODUCTION 

In this appendix we give a brief introduction to the spec
tral sequence technique. For a more exhaustive treatment we 
refer to Ref. 4. 

Let K be a differential complex with differential opera
tor 8; i.e., K is an Abelian group and 8: K=?K is a group 
homomorphism such that 82 = O. 

Suppose that inK there is agradingK = ~kEZCk and 8: 
C k =? C k + 1 increases the grading by 1. 

The infinite sequence of subcomplexes 

K = K(O) -::JK( 1) -::JK(2) -::J ... -::JK(p) 

-::JK(p+ 1)-::J"'-::JK(oo) =0 (AI) 

is called a filtration on K: this makes k a filtered complex. In 
our case the grading number is given by the eigenvalues of 
the <1>11 ghosts and their space-time derivative counting op
erator v, so the space K(p) contains elements whose eigen
value is greater than p. 

Suppose now that the filtration has the property 

8K(p) CK(p) for all p. (A2) 

The operator 8 will be graded with respect to v as 

[v,8] = D8(p). 
p>1 

Now define 

and 

8- IK(p) = [xE8- IK(p) if 8xEK(p)], 

KPr = K(p) n8- IK(p + r) 

Zbr = K(p) for r<O, 

8Z p- r
r =K(p)n8K(p-r). 

(A3) 

(A4) 

(A5) 

(A6) 

Obviously ZPr contains ZP+ Ir_ I and 8ZP+ I-rr _ I' so we 
can define 

EPr=ZPJ[ZP+l r _ 1 +8ZP+I-rr_I]' (A7) 

P 

It is evident that if xEK (p) and 8x = 0 then xEE P r for all r, 
and if xEK (p) and x = 8y, then x is not an element of E P r for 
r large enough. 
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Furthermore, 8 maps ZPr into zp+rr and 
[ZP+rr _ 1 +8ZP+ I - r

r _.] into 8ZP+ r
r _ 1 and since 

EP+rr =ZP+rrl[ZP+I+rr _ 1 +8ZP+ 1
r_.], 8 will in

duce a differential dr : EPr=?EP+rr whose cohomology 
space can be computed as follows: (1) the space Z P(Er ) of 
cycles in E P r is defined by xEZ P r such that 
8XE[ZP+I+rr _ 1 +8ZP+\_.], i.e., 8x=8y+z, with 
yEZP+ \-1' zEZP+ 1 +rr_I' For x =y + U, we get 8u =z, 
i.e., uE8-IZP+I+rr_P or, better uEk(p) 

n8- IK(p + r + 1) = ZZr+ I' and, sinceZP + \_ 1 is in the 
"denominator" or EPr , we obtain 

ZP(Er ) = [ZPr+ 1 + ZP+ \-1 ]/[ ZP+ \_1 

(A9a) 

(2) the space of coboundaries B P (Er) in E P r contains the 
elements zE8ZP- rr' hence 

BP(Er ) = E p
r n8ZP- rr 

= [8Z p- r
r +ZP+\_I ]![ZP+\_I 

+ 8Z P + 1 - r r _ 1 ] (A9b) 

and the cohomology space HP(Er ) = ZP(Er )IBP(Er ) will 
have the form 

HP(Er ) 

= [EPrnZPr+1 ]/[EPrn8Zp-rr] 

= [ZPr+ 1 +ZP+\_I ]/[8Zp- r
r +ZP+\_I] 

= Z P r + II 1 [ Z P r + 1 n [ 8Z P - rr + Z P + \ - I ] ] 

= ZPr+ I/[ 8ZP- rr + ZP+ \-1] = EPr+ 1 CEPr, 
(AW) 

since DZP- rr CZPr+ 1 and 
=ZP+\_I' 

We have 

lim ZPr = K(p) n8- IK( (0) = K(p) n8- 10, 
r=} '" 

which represents the space of cocycles of K (p), 

lim 8Zp- r
r = K(p)n8K( - (0) =K(p)n8K, 

r=} '" 

which represents the space of coboundary of K (p) and 

E", = lim Er = lim IEPr 
r=:::;. IX) r=;. 00 p 

= I Hp(K)IHp+ 1 (K) 
P 
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(which represents the graded cohomology group). There
fore the cohomology is reached first by the nested succession 
(in the index r) of the spaces E P r and then summing in p in 
the sense of set theory. 

Suppose now that K admits another filtration 

K = K'( (0):)'" :)K'(p) :)K'(p - 1):) ... :)K'(O) 
(A11) 

and K ' (p) = ° for p < ° and that there exists a scalar product 
such that K '(p) will be orthogonal to K (q) for p =1= q. 

In our case this is fulfilled if we use the same filtration as 
before if K' (p) contains elements whose eigenvalue is less 
than or equal to p, and if we take the scalar product defined 
in Sec. III we can now prove the following theorem. 

Theorem: IfxpEEPr, then the samexpEEPr + 1 if 

8(r)xp = 0, (AI2) 

8+ (r)xp = 0, (AI3) 

where 8+ (r) is the adjoint of 8(r) derived by the adjointness 
operation induced by our scalar product. 

Proof' IfxpEEPr, from Eq. (AlO) we shall get that the 
same xpEEPr+ 1 if (1) xpEZPr+ 1 that is 
xp E8- 1K(p+r+I), and this will imply 
(8xp IK'(p + r» = 0, where (1) means scalar product [if 
we decompose 8x p and K '(p + r) into their components be
longing to different eigenspaces of the operator v, then Eq. 
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(AI2) immediately follows]; and (2) xp has to be orthogo
nal to all elements of the space 8Z p - rr' that is, 
(8+xp IK(p - r» = 0. 

Equation (A13) is easily derived after the decomposi
tion of 8+xp and K(p - r) into their veigenspaces. 

Recalling now the definition of the space E r we can use 
the above theorem to prove the following lemma. 

Lemma: If xEEr, then the same xEEr+ 1 if 

8(r)x = 0, 

8+ (r)x = 0, 

(AI4) 

(AI5) 

and the space E 00 can be "formally" derived solving the 
above infinite system. 
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It is well known that, in doing light-cone gauge calculations, it is mandatory to regularize the 
unphysical (q n) -f3 poles by use of the Leibbrandt-Mandelstam prescription. This technique 
is also applied to general axial gauges and it is proved that it is a suitable regularization 
procedure for these gauges as well. In order to find the relation between the Leibbrandt 
prescription and the more familiar principal value prescription with its simpler Lorentz 
structure the temporal gauge limit n-+O is performed (within dimensional regularization). 
Although this limit is found to be singular for multiple poles, the analytically regularized one
loop integrals agree with the results obtained within the principal value technique for the 
temporal gauge. 

I. INTRODUCTION 

Since Mandelstam proved the UV finiteness of N = 4 
Super Yang-Mills theories by means of the light-cone 
gauge,1 this (very singular) gauge has become increasingly 
popular. Like the axial gauges the light-cone gauge is charac
terized by an arbitrary but constant vector nl" For the axial 
gauges nl' need only satisfy n2 i= 0, whereas for the light-cone 
gauge n2 = O. As a consequence of such gauges additional 
factors (qn) -1 appear in the momentum-space propagator 
of the gauge field, and loop integrals become more intricate 
than in covariant gauges. A major problem is the consistent 
treatment of the unphysical singularity (qn) -f3. However, 
for axial gauges the principal value (PV) prescription has 
proved to be a well-suited (but not unique) way to imple
ment power counting and unitarity.2 It amounts to setting3 

_1_= lim ~( 1 + 1 ). (1.1) 
(qn)f3 £_0+ 2 (qn + iE)f3 (qn - iE)f3 

But for the light-cone gauge the PV prescription is afHicted 
with serious peculiarities, namely4.5: (a) some of the diver
gences created by one-loop corrections manifest themselves 
as double poles (w - 2) -2 (space-time dimension 2w); and 
(b) the PV prescription gives rise to poles situated in the 
second and third quadrant of the complex qO plane which 
effectively prohibits Wick rotation and hence the application 
of standard power counting. 

Because of these defects of the PV technique it had to be 
abandoned for the light-cone gauge. Instead of it Mandel
stam and Leibbrandt independently introduced the so-called 
light-cone (LC) prescription 1.5 

--= lIm , E>O, 1 . ( (qn*) )13 
(qn)f3 £-0+ (qn) (qn*) + iE 

( 1.2) 

wherenl' = (no,n) and n: = (no, - n), and proved thatthis 
LC prescription exhibits all the necessary items of a viable 
regularization of the (qn) - f3 poles. The vital point with the 
LC prescription is that two space-time directions nl' and n: 
are singled out to regularize the (qn) - f3 pole a fa Eq. (1.2), 
yielding well-behaved integrals at the price of a richer tensor 

structure of the integrals (terms proportional to n * p, n * n, ... , 
occur) and the appearance of nonlocalities in the divergent 
parts. 

On the other hand, we find it desirable to investigate 
whether the LC prescription is applicable to axial gauges as 
well and, in doing so, to put the regularization of axial gauge 
poles and light-cone poles on equal footing. For arbitrary 
axial gauges (and therefore arbitrary nl' and n:) this should 
be a straightforward procedure. However, in the temporal 
gauge n = 0 (nl' = n: ) we have to expect difficulties as can 
be understood from 

lim 
E-O+ 

qn* = pV(_I_) _ itT sgn(qn* )a(qn) , 
(qn)(qn*) + iE qn 

(1.3 ) 

which is obviously meaningless for the temporal gauge. In
deed, the limit n-+O of Eq. (1.2) is singular for {3> 1 and 
some additional regularization is necessary. By analytic con
tinuation of the exponent of the axial pole we obtain well
defined momentum integrals, which are identical to the PV 
results, as we will prove. 

In the following only integrals with a factor 
(qn*)f3(qn)(qn*) + iE)-f3 are analyzed in Minkowski 
space with Feynman parameters and dimensional regular
ization. More complicated expressions can be reduced by 
repeated use of the identity 

qn* (q + p)n* 

(qn) (qn*) + iE (q + p)n(q + p)n* + iE 

1 ( qn* 
- pn + iEpn* (qn) (qn*) + iE 

(q+p)n* ) (1.4) 

Remarkably enough one does not pick up additional contri
butions from a functions, as it is the case for the correspond
ing formula holding in the PV technique: 
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1 = _1_ (_1_ _ 1 ) + ff28(nq)8(np) . 
qn(q + p)n pn qn (q + p)n 

(1.5 ) 

The paper is organized as follows: in Sec. II we derive 
the general formulas for LC-regularized one-loop integrals. 
Section tIl contains some new results on the light-cone 
gauge, whereas Sec. IV is devoted to the trickier business of 
the temporal gauge. 

II. AXIAL ONE-LOOP INTEGRALS AND THE LC 
PRESCRIPTION 

Due to Eq. (1.4) integrals to be computed in one-loop 
calculations can be reduced to [gil" 
= diag( 1, - 1, - 1, - 1), space-time dimension 2m], 

I(a,/3): = f d 2wq (q2 + 2pq - L + ie) -a(qn*)f3 

X(qn*)(qn) + i1/)-f3 , 

a;;d, {3>1, e>O, 1/>0. (2.1) 

For further covenience we define 

l(a,/3;f(q»): = f d 2Wq (q2 + 2pq-L + ie)-a 

X(qn*)(qn) + i1/)-f3 f(q) . (2.2) 

Hence 

I(a,/3) = [r(a - {3)/r(a)]( - D )t1J(a - {3,/3;1) , 
(2.3) 

where D=!n*(a lap). Note that regarding Wick rotation 
the LC prescription in a sense is much more natural than the 
PV prescription, because the denominator is positive semi
definite. Therefore in case of absolute convergence the above 
integral is well defined by analytic continuation to the Eu
clideanregion ifL + p2>0. Toevaluatel(a - {3,{3;1) we em
ploy the conventional Feynman trick and the Euclidean 
identity 

f d 2w q (aq2 + 2b(nq) + g(nq)2 + f)-a 

= (.!!...)'" ~ rea - w) , 
a \J C Fa-", 

(2.4) 

where 

C=a+gn2, F=f-b 2n2/C. (2.4') 

We obtain for lea - {3,{3; 1), 

l(a-{3,/3;I)=i1'T""(-l)a r(a-w) fldx 
r(a -{3)r({3)Jo 

X (AA) - 1/2x -f3 (1 _ x)f3- 12"'" - a, 

(2.5) 

with the choice nil = (no,0,0,n3) and the definitions 

A = x + n~ (1 - x) , 

A = x + ni (1 - x) , 

2" = L + p2 + (1 _ X)( (P3~3)2 
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(2.6) 

Now we apply the differential operator ( - D)f3 to the 
integral (2.5), utilizing the general chain rule6 

_ [f3/2] 
I(a,{3) =1 (a,{3; (qn*)f3) = i1'T"" L ( - l)a+ j 

j=O 

X r (a-w+{3-j) {3! 
r(a)r({3) ({3 - 2j)~12! 

xL dxx- f3 (1-x)f3- 1 

X (AA ) -1/2 2"0) - a - f3 + j(D2")f3 - 2j (D 22")j , 

(2.7) 

where 

(2.7') 

For arbitrary nil Eq. (2.7) leads to complicated generalized 
hypergeometric functions. 6 However, the divergent parts 
proportional to (w - 2) - I can be integrated elementarily 
and are polynomials in p2, pn, and pn*. But-like in the 
light-cone gauge-the complete graphs may contain non
polynomial parts due to the decomposition Eq. (1.4). Note 
that naive power counting is fulfilled and that I(a,{3) is a 
regular function of nil for no#O and n3#0. Fortunately, for 
the most interesting limiting cases, namely the light-cone 
gauge (n 3 = no) and the temporal gauge (n 3 = 0), I(a,{3) 
can be evaluated in terms of hyper geometric functions of one 
variable: Due to its homogeneity of degree - {3 in n we can 
simplify the integral (2.7) by setting no = 1. The results for 
general n are recovered by substituting n3 -+n3lnO and multi
plication with ling. 

Because the rest of the paper will be dealing with these 
two gauges we now provide the appropriate values of Eq. 
(2.6): 

n~ = 1, p; = p~ + p~; 
A: =X + n~(1-x) = 1; 

A:=x+n2(I_X)-+{I, 
x, 

2" = L - p; + xp~ - :. pi 
A 

light-cone gauge, 

temporal gauge; 

-+ {L - p; + x(n*p) (np), light-cone gauge, 

L - p2 + xp~ temporal gauge. 

III. THE LIGHT-CONE GAUGE 

(2.8) 

For the light-cone gauge the integraII(a,{3) [Eq. (2.5)] 
can easily be calculated in terms of hypergeometric func
tions F( a,b,c;z) (Ref. 6): 
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l(a,/3) = i( - l)a 1f" rea + p - OJ) 
rcp + 1)rca) 

( 
2)f3 (n*p)f3 

X n*n (L _p;)a+f3-w 

XF(I,a+ P -OJ,{3+1; _2_ (n*p)(np )). 
n*n p;-L 

(3.1 ) 

Due toD 2L: = ~(x2n2/AA) = 0 on the light cone this inte
gral is rendered more convergent than naive power counting 
would demand. Equation (3.1) is valid for arbitrary two
point functions in spontaneously broken gauge theories or 
QCD. Considering massless theories, i.e., L + p2 = 0, yields 
the result 

l(a,/3) =i( _l)a1f" rea +P-OJ) 
r(a)rcP) (OJ - a) 

(n*p)f3 (n*nI2)a-w 
X . 

[ - (n*p)(np)]a+f3- w (3.2) 

This result is in agreement with special cases of this formula 
which have already been derived in the literature, e.g., see 
Ref. 5. 

IV. THE TEMPORAL GAUGE 

The central point of this paper is the investigation of the 
temporal gauge limit nil- -+ (1,0) within the LC prescription 
for the qo- f3 poles. As already mentioned in the Introduction, 

switching over to the temporal gauge one encounters serious 
difficulties, due to the fact that the qo- /3 pole is not complete
ly regularized by the LC prescription. This feature is made 
explicit in the singular behavior of the momentum integrals 
at n3 = 0, seen in thex integration atx = O. For the complete 
regularization of the qo- f3 poles we will use analytic regular
ization. 

As a first step we assume the exponents to be contin
uous; the asymptotic behavior of the momentum integrals 
for n3 -+O is then contained in the parameter integral 

fdXX-f3'(x+n~)-a 
= B(1-p',a +P' - 1) (nD l-a-f3 

+ 1 F(a,a+p'-I,a+p';-nD 
l-a-p' 

(4.1 ) 
(note that the poles for a + P , = 1 cancel!). In order to find 
out for which P the integral Eq. (2.5) becomes singular we 
havetostudyl(a,{3';!(q)) [Eq. (2.2)] forf(q) = (qn*)f3. 
Evaluating this integral for P = 0,1, and 2 we obtain 

I(a,/3';I) - fdX x- f3 ' (x + n~) -1/2 

= B ( 1 - P',{3' - ! )n~ - 2f3' 

2 F(I,{3' 1,/3' 1 2) + 1-2{3' 2 -2 +2; -n3 , 

(4.2) 

I(a,f3',qn*) -n3 fdX x l - f3 ' (x + n~) - 3/2 + fdX XI-f3' (x + n~) -1/2 

=B(2 -P',f3' - ~)(n~ )1-f3' + ~F(~,/3' - ~,/3' +~. - n2) 
2 1-2P' 2 2 2' 3 

+B(2-P',f3'-~)n3-2f3'+ 2 F(~,{3'-~,{3'-~'-n2) 
2 3 3 _ 2f3' 2 2 2' 3' 

(4.3) 

I(a,f3',(qn*)2)-n~ fdX X2 -f3' (x + nD - S/2 + fdX X2 -f3' (x + nD - 3/2 

B (3 a ',/3 , 1) 3 - 2f3' 2n~ F ( 5 ,/3' 1 ,{3' 1 2 ) 
= - fJ - 2 n3 + 1 _ 2f3' 2 - 2 + 2; - n3 

+B(3 _P',{3'_~)n3-2f3' + 2 F(~,{3' -~,{3'-~' _n2). 
2 3 3 _ 2P' 2 2 2' 3 

(4.4) 

ThusI(a,p'; 1), I(a,/3;qn*), and I (a,/3'; (qn* )2) are regular 
for P , <~, P , ..;; 1, and P , < ~, respectively, and 

principal value is characterized by consistency with differen
tiation, which is guaranteed by analytic continuation, this 
amounts to taking the PV of tfo (q~ + ie) - f3, which, in turn, 
is equivalent to the PV of qr; f3 (this is easily "tested" with the 
basis {q~ InEN} of L2 [ - 1,1]). Thus we have proved that 
the LC prescription is not a complete regularization of mul
tiple axial poles in the temporal gauge limit; further regular
ization by means of analytic continuation eventually is 

l(a,{3) -n~ -f3, ( 4.5) 

so that lim l(a,/3) exists only for P = 1. 
n3 -O 

For P>2, l(a,fJ) can be defined by analytic continu-
ation ofI(a,p',(qn*)f3) in P' at P' =p. As Hadamard's 
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equivalent to the PV prescription. 
In order to confirm this general argument we now turn 

to the evaluation of J(a,[J) in the temporal gauge. We first 
define 

c: = a - w + 13 - j, 

p~ z p~ 
z' = --- --- = ---
. p2 + L' 1 _ z L _ p2 

which we insert into Eq. (2.7), 

i-rru(-l)a [{312j p!(-l)j 
Ra,[J) = ~ . 

r(a)r(p) j=O (13 - 2j)~14' 

X L1
dxx- 1I2 - j (1-X){3-1 

r(C)..P-lj 
X Yo 

(L - p2Y(1 - xz/(1 - zW 

( 4.6) 

(4.7) 

The sum is calculated in the Appendix, yielding the final result 

Using the integral representation of the hypergeometric 
function F(a,b,c;z) (Ref. 7), 

F(abc')= r(c) tdtt-I 
, , ;Z r(b)r(c _ b) Jo 

X (1- t)c-b-I(1- tz) -a (4.8) 

and formula (9.132) of Ref. 6 we obtain 

i-rru ( - 1)a [{3j;tj p! 

J(a,[J) = rca) /~o (13 - 2j)! 

pg-2j 
( 1 ) 

X 0 2 F p,c,[J - j + -2;Z . 
(L + p )C 

(4.9) 

{

rCa +13 /2 - w)rq) F(p/2,a +13 /2 - w,!;z) 
i-rru( _1)a r((P+ 1)/2) (L+p2)a+{312-", 

J(a,[J) = ngr(a) rIa + (13 + 1 )/2 - w)r(!) 2 F((p + 1)/2,a + (13 + 1 )/2 - w,~;z) 
rep /2) :Po (L + p2)a + ({3+ 1)/2 - <l) , 

13 even, 
(4.10) 

13 odd, 

nJl- = (no,O), which is in complete agreement with the PV result of Konetschny.3 

V.SUMMARY 

In this paper we have proved that the LC prescription is 
a well-defined regularization of the axial gauge poles as well 
and derived the general formula for axial one-loop integrals 
within the LC prescription. We discussed the limiting cases 
of the light-cone gauge, where we found some new formulas, 
and the temporal gauge. For the latter the LC prescription 
does not regularize the qo- {3 poles sufficiently: the limit n -+ 0 
is singular. However, the analytically regularized LC results 
turn out to be identical to the results obtained within the PV 
technique. Hence, in a way, we put the regularization of the 
axial gauges and of the light-cone gauge on the same basis. 
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APPENDIX: PROOF OF EQ. (4.10) 

In order to prove the relation under scrutiny [Eq. 
( 4.1 0)] we proceed from the identity 

zF(a,b + 1,c + 1;Z) = [c(c - 1)/b(c - a)][F(a,b,c;z) 

- F(a - 1,b,c - 1;Z)] . (AI) 
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Accordingly we define a new function 

F(a,b,c;z) = [r(b)zc-a/r(c)T(a-c+ 1)] 

xF(a,b,c;z) . (A2) 

Then the functions y(p,j) and the coefficients c(p,j), 

y(p,j) = F(p,a - j,p - j + !;Z) , 

{ r<p+ 1) 0<J<jJ /2, 

jEZ"- [O,[J /2], (A3) 
c(p,j) = rep - 2j + 1)r(j + 1)4/' 

0, 

fulfill the recursions 

y(p,j) =Y(p-1,j+ 1) - (p-j-~)Y(P,j+ 1), 

c(p,j) = c(p - 2,j - 1) (13 - j - !) + c(p _ 2,j). (A4) 

Now we rewrite Eq. (4.9) in terms of c(p,j) and Y(p,j) 
and perform the sum using the recursion given above 
(O.;;;k.;;; [13 /2]): 

Gaigg eta!. 2784 



                                                                                                                                    

[,B/2J 00 

L c({3,j)Y({3,j) = L c({3 - 2k,j)Y({3 - k,j + k) 
j=O j=O 

00 

= Lc({3 - 2k - 2,j - 1)({3 - j -! - 2k)Y({3 - k,j + k) + c({3 - 2k - 2,j) 
j=O 

X [Y({3-k-l,j+k+ 0 - ({3-2k-j-~)Y({3-k,j+k+ 0] 

00 

= L c({3-2k-2,j)Y({3-k-l,j+k+ 1) 
j=O 

Inserting Y({3,j) and c({3,j) with a = a + (3 - (j) then 
yields Eq. (4.10) 
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For an arbitrary vector field F: xER3 ->F(X)ER3, the representation F = V<P + VI' + V A LX, 
where <P, IIJ, X are scalar potentials, is used to disentangle the longitudinal and transversal 
degrees of freedom of the electromagnetic field. As a result the potentials for the 
electromagnetic field can be quantized restriction-free. Replacing the conventional vector 
potential in the Dirac equation by these Debye potentials provides a manifestly covariant and 
local description for the interaction of the quantized electromagnetic field with a quantized 
Dirac field. 

I. INTRODUCTION 

In the theory of electromagnetism the Helmholtz 
Theorem is commonly used to decompose a three-dimen
sional vector field F: xER3 -> F (x) ER3 as 

F(x) = V<P(x) + V AA(x), (1) 

thereby introducing a scalar function <P and a vector poten
tial A. However, there exist other decompositions in terms of 
three scalar potentials, the so-called Debye potentials. 1-3 

Precisely stated one can decompose as follows. 
Representation Theorem: Given a region n \": R3 \ {O}, 

with regular boundary, and a C 3-vector field, F: 
xEn->F(x)ER3

. Let L denote the angular momentum oper
ator. Then there exist three scalar functions <PF, IIJF,XF on 
n such that 

(2) 

Requiring <PF to vanish on the boundary, and t/JF' XF not to 
contain spherically symmetric components, these functions 
are unique. 

This theorem can be derived from the rigorous results in 
Ref. 1; a self-contained proof based on the Hodge decompo
sition for exterior differential forms4 is given in the Appen
dix. Two proofs, one intuitive, the other formal, based on 
inverse operators, are given by Gray and Nickel. 2 The 
"gauge freedom" associated with decomposition (2) is the 
freedom to add spherically symmetric functions to the De
bye potentials IIJ, X. The requirement of spherical symmetry 
distinguishes this gauge from the usual vector potential 
gauge where the gradient of any scalar function can be added 
to the vector potential. 

It is the purpose of this paper to show that the longitudi
nal and transversal degrees offreedom of the electromagnet
ic field disentangle if we use the scalar fields of (2) in the 
Maxwell equations. Without further assumptions, such as 
the Lorentz condition or Coulomb gauge, we arrive at wave 
equations for the transversal potentials. Therefore the trans
versal potentials can be quantized canonically without the 
notorious restrictions which are a main cause of the difficul
ties in quantum electrodynamics.5 On the other hand, up to a 
time derivation, the gradient potentials of the electric field 
and the exterior current are identical. This shows that the 
longitudinal part of the Maxwell field belongs to the sources. 
With regard to the separation between transversal and longi
tudinal, it is interesting to notice that from a group theoreti-

cal point of view, where photons are defined by irreducible 
unitary rest mass zero representations of the Poincare group, 
it is the introduction of the conventional vector potential 
that causes difficulties. 6 

The Debye potentials can be implemented in the Dirac 
equation in a Lorentz invariant form, thereby replacing the 
conventional vector potential. This provides a description 
for the interaction between photons and electrons that is 
both local and covariant. 

II. MAXWELL EQUATIONS IN TERMS OF DEBYE 
POTENTIALS, CANONICAL QUANTIZATION 

The Maxwell equation (in SI units) are given by 

V AE = - Ii, 
V AU =J + D, 

with the usual assumptions 

V·D=p, 

V'B=O, 

EE=D, 

B =IlU, 

(3a) 

(3b) 

(4a) 

(4b) 

(5a) 

(5b) 

where the medium is supposed to be characterized by a di
electric constant E and a constant magnetic permeability Il. 
Combining (5) and (3b) yields 

V AB =IlJ + EllF-. (3b') 

Now we decompose the vector fields according to (2), 

F=V<PF+LIIJF+VALXF' F=E,B,J, (6) 

under the tacit assumption that the gradient potentials van
ish on the boundary of the region n under consideration 
which is supposed to exclude the origin, and to be sufficient
ly regular. A straightforward calculation implies the follow
ing form of the Maxwell equations: 

<i>B = 0, 

L211JE = - L2XB' 

V2L2XE = L 2q,B' 

<i>E= -(1!E)<PJ , 

L 211JB =IlL2XJ + EIlL2q,E' 
V2L2XB = -IlL2I1JJ - EIlL2q,E. 

The assumptions (4) are equivalent to 

(7a) 

(7b) 
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V2<1>E = (1/£) p, 

<l>B = O. 

(8a) 

(8b) 

The remarkable result of this calculation is the separation of 
the gradient potentials <I> and the transversal potentials '1', X. 
Without any further assumptions or restrictions, we arrive 
at a wave equation by eliminating 'I' E and 'I' B' 

DL2XE =IlL2XJ' 0: = V2 
- Ell a;, 

DL2XB = -IlL2'1'J' 

(9a) 

(9b) 

Equation (8a) and the first of Eqs. (7b) can be com
bined to give the continuity equation 

V2<1>J +,0 = 0, (10) 

which is nothing more than 

V·J +,0 =0. ( 10') 

Equation (10) underlines that charge transport is exclusive
ly related to the gradient potential of the current. 

The angular momentum operator L annihilates spheri
cally symmetric functions. Therefore, referring to the gauge 
principle, we can omit L2 in Eqs. (7) and (9). Thus (3a) is, 
up to a gauge, equivalent to 

<i>B=O, 'l'E= -XB' V2XE=WB, (11a) 

(3b') is equivalent to 

<i>E = - (1/E)<I>J' 

'I' B = IlXJ + EIlXE' 
2 • 

V XB = -Il'l' J - Ell 'I' E' 

and (9) is equivalent to 
DXE =IlXJ' 

DXB = -1l'l'J' 

(11b) 

(12a) 

(12b) 

The formulation (7) [resp. (12)] ofthe Maxwell equations 
exhibits a structure crucial for the quantization procedure. 
By the first of Eqs. (7b), the electric gradient field <I> E coin
cides with a matter field. Hence its possible quantization is 
subject to a quantum theory of matter. Moreover we want 
the triviality of the magnetic gradient field <I> B due to the first 
ofEqs. (7a) [resp. Eq. (8b)] to be maintained in the quanti
zation. Therefore we have to omit <l>E and <l>B from the 
quantization of the free electromagnetic field. In the wave 
equation (9) [resp. (12)] the inhomogeneities refer only to 
matter while the homogeneous solutions precisely exhaust 
the free electromagnetic field. Therefore the quantization of 
the free electromagnetic field is achieved by the canonical 
quantization of the solutions of the homogeneous wave 
equations 

O ° E 'B' E' 1/2E B' -1/2B ~a = , a = " : = £ , : =Il , 
(13 ) 

and presents no problem at all. General quantized solutions 
of (9) involve the quantization of the inhomogeneities as 
well which has to originate in quantum theory of matter. 

We sketch the canonical quantization of (13). Here 
(V2 - Ell a;) X a = ° can be derived from the Lagrange den
sity 

S"'(Xa,VXa) =1. L {EIlX! - (VXa )o(VXa)) (14) 
2 a=E',B' 

by the Euler-Langrange equation 
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at as'" + V. as'" = o. 
aXa a(VXa) 

(15) 

The canonical momentum with respect to X a is 

as'" . 
1Ta = -. - = £IlXa' 

aXa 
(16) 

and the Hamiltonian density 

JY =1. L (tr! + (VXa )o(VXa») 
2 a=E',B' Ell 

1 ~ (tr! 2) =- £... --XaVXa' 
2 a=E',B' Ell 

(17) 

A Fourier transformation with respect to the time variable 
makes (13) assume the form of an eigenvalue equation, 

- V 2Uk = EIlW~Uk' (18) 

We specify a boundary value problem on n, Dirichlet data 
say, such that the Laplacian is self-adjoint. Now let us ex
pand X a (x,t) with respect to an orthonormal basis {Uk} of 
eigenfunctions of - V2: 

Xa (X,t) = L (2£IlWk) 1/2{bka Uk (x)e - jWk
t 

k 

(19) 

the orthogonality may be given with respect to the inner 
product 

(J,g): = if*(X)g(X)d3x, 

(20a) 

(Uk,Uk') =Okk" 

We assume a nontrivial time dependence in ( 19), W k > 0 for 
all k (see final section) . Now insert (19) in (16) and (17). 
Observe that both Uk' and ut are eigenfunctions to the same 
eigenvalue in (18) such that by 

0= (u k,( - V2)ut,) - ( - V2Uk,Ut·) 

=£Il(W~. -W~)(Uk,Ut·), 

we have 

(Uk,Ut·) = 0, Wk =F-Wk" (20b) 

Hence the Hamiltonian density 

JYp = ! wp (b ;bp + bpb ;), p: = (k,a), a = E ',B', 
(21) 

follows straightforwardly. Canonical quantization consists 
in postulating the commutation relations 

[bp,b;] _ = M pp" [bp,bp'] _ = O. (22) 

Therefore the Hamiltonian density is 

JYp = wpb ;bp + ! IUup. (23) 

We can rearrange the decomposition of the electromagnetic 
field into the poloidal potentials X E' , X B" to represent the 
helicity 

XK: = (1/,fi) (XB' + jKXE ')' K = + 1, - 1. (24a) 

This transformation leaves the commutation relations (22) 
unaffected, i.e., they are valid for 
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q = (k,K), K = + 1, - 1, 

bq: = (1/~)(bk,B + iKbk •E ), 

[bq,b:-] = M qq, , [bq,bq,] = O. 

The Hamiltonian density with respect to helicity is 

,:;rq = wqb ;bq +! wq. 

III. DEBYE POTENTIALS AND DIRAC EQUATION 

(24b) 

(24c) 

(25) 

(26) 

In this section we describe the interaction between the 
electromagnetic field and a Dirac field in terms of Debye 
potentials. This is achieved by rewriting the conventional 
vector potential in terms of Debye potentials. The resulting 
description is manifestly covariant. 

Let us assume the poloidal current potential XJ to van
ish. Then the magnetic induction B can be written as the 
second of Eqs. (7b), 

B=VIIB +VALXB 

= V A (xi at Eof1oXE + LXB)' 

(In this section we set € = Eo, f1 = f10·) Therefore 

xi at E0f10XE + LXB 

(27) 

(28) 

is a vector potential. The expression xi at in the first term of 
(28) can be considered as part ofa Lorentz boost generator 

K: = x( lIi)-JEof1o at + (l/-JEof1o )t( 1/i)V. (29) 

The addition of the gradient of a scalar function does not 
affect the B field. We use this freedom to define a vector 
potential 

(30) 

With respect to parity the electric field E transforms odd 
while the magnetic induction B transforms even.7 Hence XB 
is a pseudoscalar field, and X E a scalar field. Therefore C 
transforms as a proper three-vector. Its transformation be
havior is dictated by the vector operators K, L which repre
sent the Lie algebra of Lorentz generators. Under spatial 
rotations, C transforms form invariant, 

(
K-J E0f10XE (t,X») _ (K'-J E~f1oX~ (~',X'») , 

LXB (t,x) L XB (t ,x) 
(31a) 

while under infinitesimal Lorentz boosts 

(
K-JE0f10X;' (t,X»)_(lL'-J€0f10X;' (t"X'») . (31b) 

LXB (t,x) iK'XB (t ',x') 

This follows from the commutation relations for the infini
tesimal generators of the Lorentz group, 

[Lk,L I ] = iEk1mLm, 

[Lk,KI ] = i€klm K [, 

[Kk ,K[] = - iEk1mLm • 

(32a) 

(32b) 

(32c) 

The transition from the vector potential (28) to the vector 
potential (30) conflicts with the gauge freedom associated 
with decomposition (2); the boost generator K does not nec
essarily annihilate functions dependent on 1 x I. The scalar 
functions that are invariant under Lorentz transformations, 
and that are annihilated by the infinitesimal generators K, L, 
are 
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(33) 

Thus the gauge freedom associated with decomposition (30) 
is the freedom to add to the potentials X E' X B functions 
which are spherically symmetric with respect to the Min
kowski space. 

Now we use the three-vector potential C to form a four
vector potential 

(AIL): = (~), (34) 

where the scalar-valued potential cp is defined by 

E=:-Vcp-C (35) 

= V<I>E + VilE + V ALXE 

= V<I>E + V A (K(XBI-JEof1o) + LXE); (36) 

in the last line we employed the Bianchi identity [the second 
of Eqs. (1Ia)], and 

WEof1o at = - V AK. (37) 

By (35) we get (up to a constant) 

cp = - <l>E - i(x lL aIL + 2)XE' (35') 

We would like to use the four-vector potential (34) in the 
Dirac equation. Because of our assumption of a vanishing 
poloidal current potential X J which was essential to get the 
four-vector potential in the form (34), we have to recur to 
the variational principle for the Lagrangian of the interac
tion of Dirac field and electromagnetic field to ensure the 
consistency of the use of A IL in the form (34). 

With the familiar notation 

FlLy = aIL Ay - ay AIL' (38) 

the purely electromagnetic part of the Lagrangian is given as 

= ! EoE2 - (1/2 f10)B2 

=! Eo( - <l>E V2<1>E + XE DL2XE) 

- (1/2 f10)XBDL2XB' (39) 

Clearly the variational principle for this Lagrangian repro
duces the free case of Eqs. (8) and (9). But neither these 
equations nor the Lagrangian (39) are manifestly covariant. 
The presence of the operators L2 and V2 in (39) [resp. (8) 
and (9)] reflects the noncovariance of the Debye decompo
sition (2). Under an infinitesimal Lorentz boost L2 trans
forms into - K2. Therefore the requirement of manifest co
variance imposes the substitution of L 2X E by - K2X E' the 
conjugation (XE,XB) ...... UXB,iXE) under infinitesimal 
boost, and similarly the substitution of V2 by D. This yields 
the following Lagrangian: 

.Y = ¢(yO( - (fzli)at - e<l>E) 

+ Y"( - (fzc/i) V - e(M + M*) - mc2 )t/J 

+! €o( - <l>ED<I>E + (M + M*)"D(M + M*»), 
(40) 
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M:= (-L+iK)X, X: = HiXE - (l!~Eo,uO)XB)' 
Now variation with respect to (M + M*), and ct>E implies 
the following set of coupled equations of motion: 

(yO( - (fzli) at - ect>E) 

+ y.( - (fzcli)V - e(M + M*») - mc2 )t/J = 0, (41) 

Oct>E = - (eIEo)Wt/J, (42a) 

O(M + M*) = - (el€o)ht/J, (42b) 

The canonical quantization of the electromagnetic poten
tials X E' X B (resp. X, X*) has to be adapted to the inhomo
geneous wave equations, and presents no problem. Again we 
quantize restriction-free. The quantization of the Dirac field 
is carried out as usual. 

IV. DISCUSSION 

( 1) The use of the electromagnetic Debye potentials in 
the Dirac equation provides a manifestly Lorentz-covariant 
description that at the same time preserves locality under the 
quantization. Moreover the Lagrange density (40) is invar
iant under gauge transformations of the potentials X E' X B' 

i.e., addition of scalar functions dependent on 
(Eo ,uo) -It 2 - X2)1/2 only. 

(2) The presence of the angular momentum operator in 
(9) is physically significant. It prevents the photon fields 
XE' XB from being spherically symmetric. This guarantees a 
nonvanishing helicity. Simultaneously this excludes the pos
sibility of a nontrivial field for the eigenvalue zero in the 
Helmholtz equation (18) for the free case, which otherwise 
would emerge in the infinite volume limit, or for Neumann 
data, etc. Thereby the conceptual problem is circumvented 
that a rest mass zero particle with kinetic energy zero cannot 
exist. 

The gauge freedom associated with decomposition (2) 

introduces the non uniqueness of the ground state. 
(3) It is obvious that the Debye-Hodge decomposition 

(2) and the decomposition (30) deserve a completely 
group-theoretical analysis. This will be done in a forthcom
ing paper.8 Here we only remark that the operators L, 
i- ICV2) - 1/2V /\ L satisfy the algebraic relations (32).9 

Moreover it is clear that the Dirac equation with the 
scalar valued electromagnetic potentials will considerably 
simplify QED calculations. This is the subject of current 
work. 10 
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APPENDIX: INGREDIENTS OF HODGE'S 
DECOMPOSITION THEOREM 

We use Hodge's decomposition theorem for exterior dif
ferential forms of degree p on a closed orientable n-dimen
sional Riemannian manifold n, in the form given by Ref. 4. 
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It states that every C 2 p-form a can be decomposed uniquely 
into a sum of three forms 

(AI) 

a I being exact, a 2 coexact, and a3 harmonic; i.e., there exists 
a (p - I)-form.81 with 

a l =d.81 

and a (p + I )-fonn Y2 with 

a 2 = t5Y2: = (dr!)* 

while, for a: = ( - I )npt5d + ( - I ) lip + 11 dt5, 

(A2) 

(A3) 

(A4) 

If the manifold n is two dimensional and a a one-form, the 
forms.8 I and r! are scalars. If in addition n is a sphere the 
first Betti number is zero, and a 3 vanishes. Hence we have 
the special situation that the decomposition of the two-com
ponent vector a is given in terms of two scalar fields.8 I and 
r!. This implies the following lemma (see Ref. 1). 

Lemma 1: Let n be a two-dimensional sphere and F, a 
C 2-vector field on n. Let V t denote the gradient on n, and r 
the unit vector at renClR3 perpendicular to n. Then there 
exist functions Sand Ton n such that 

F, = V,S + r/\ VIT. (AS) 

Here VtS gives the exact one-form d.8I' and ,./\ V,T the 
coexact one-form t5Y2 = t5 (TdO). (The dO denotes the ob
vious two-dimensional differential.) 

To apply this lemma for a three-dimensional vector field 
F: xelR3 -+F(x)elR3

, we use radial and tangential coordi
nates: 

F(x) = : FI (x)x + F, (x). (A6) 

So excluding the origin we relate xelR3 one-to-one to 
(x,x)elR+ Xn,x: = lxi, with n the unit sphere, and x: = xl 
x. TheFI is a scalar function on the domain ofF, and F, (x) a 
tangent vector to n at X. In these coordinates the gradient is 
given as 

(A7) 

Proof of the Representation Theorem: We may always 
add a spherically symmetric function of \{IF' X F without 
changing (2). Let us assume ct>F to vanish on the boundary, 
and \{IF' XF not to be spherically symmetric. WeusethePois
son formula I I 

F(x) = V21 K(x,y)F(y)d 3y, (A8) 

where the kernel K is a fundamental solution of the Laplace 
equation, and abbreviate G(x): = SnK(x,y)F(y)d3y. Em
ploying the decompositions (A6) and (AS), and some vec
tor identities, we have 

F(x) = V2G(x) 

= V(V·G(x») - V /\ (V /\ G(x») 

= V(V·{GI (x)x + V,S(x) + x /\ V, T(x)}) 

- V /\(V /\ {GI (x)x + V,S(x) + x /\ V,Tex)}) 

= V(V·(GI(x)x) + V;S(x») 
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- VA(VAxG1(x») + VA(VAX ~ S(X») 

- v A(V A {xA VT(x)}) 

= V(V·(G1(x)x) + V;S(x») 

+ VAL.!.. (G1(X) - ~S(X») 
x ax 

+ LV2(i T~X») . 
This proves the existence of the Debye potentials. 

Suppose now 

F = Vet> + L'I' + V ALX = Vet>' + L'I" + V A LX'. 

Then straightforward vector calculations imply 

V2et> = V·F, L2'1' = L·F, L2V2X = - (LA V) ·F, 

hence 

V2(et> - et>') = 0, L2('I' - '1") = 0, 

L2V2 (X-X') = -x2V:(X-X') =0, 

and therefore 

et> = et>', 'I' = '1", X = X'· Q.E.D. 
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Electrohydrodynamic stability of two superposed elasticoviscous liquids 
in plane Couette flow 
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The electrohydrodynamic stability of two superposed elasticoviscous liquids (Oldroyd's liquid 
B) in plane Couette flow is studied. The system is stressed by a normal electric field. The 
analysis includes all possible modes of perturbations. The eigenvalue problem governing the 
stability of the flow against wave formation is formulated and solved for small values of wave 
numbers. It is found that the electric field cannot only destabilize the flow but it can also 
stabilize the flow for certain values of dielectric ratio, depth ratio, viscosity ratio, elasticity 
ratio, density ratio, Froude number, Reynolds number, and the electric potential of the plate. 

I. INTRODUCTION 

The stability of non-Newtonian fluid has received in
creasing interest due to its technological applications such as 
petroleum industries, packed bed reactors, and many other 
industries. 

The investigation of the stability of non-Newtonian 
fluids has been undertaken by Yih,1 Chun and Schwabs,2 
Gupta,3 LaV and Fan Chun.5

.
6 The stability of two super

posed fluids has been studied by Yih,7 Hickox,8 Kao,9 Li,1O 
and Shivamoggi. ll 

Here we aim to study the effect of a normal electric field 
on the stability of two superposed elasticoviscous liquids in 
plane Couette flow. Li'slO perturbation technique is used in 
the following analysis. 

II. THE PRIMARY FLOW 

The system considered here consists of two finite homo
geneous dielectric non-Newtonian fluids u and I between 
two parallel walls having the upper boundary moving with a 
constant velocity Uo and of Vo potential. The lower bound
ary is stationary and of zero potential in order to produce a 
normal electric field (see Fig. 1.). Let (u*) k, (v*) k, (w*) k 

denote the velocity components in the x*, y*, z* directions, 
respectively, where x*, y*, and z* are Cartesian coordinates. 
The superscript k is u for the upper liquid and I for lower 
liquid. The prototype ofliquid designed by Oldroyd 12 is con
sidered. For this liquid, the rheological equations are 

(1) 

and 

Pik+A ~=271 hik+A _C_ 
d ik ( d h ik) 

1 dt ',0 2 dt ' (2) 

in which Sik is the stress tensor, 1T = P - (!)E*E 2
, P is the 

hydrostatic pressure, E* is the dielectric constant, E is the 
electric field, Dik is the Kronecker delta, 
h ik = (ut k + ut, i )/2 is the rate-of-strain tensor, 170 is a co
efficient of viscosity, A 1 is the relaxation time, and A2 is the 
retardation time. The coefficients 170' A l' and A2 ( < AI) are 
all positive. The symbol de / dt denotes the convective deriv
ative of a tensor quantity in relation to the fluid in motion. 
For a contravariant tensor B ik 

(3) 

No volume charges are present in the bulk of the fluids. Also 
because of the continuity of the electric field, no surface 
charges are present at the interfaces in the equilibrium state 
and will therefore vanish during the perturbation. 13 Due to 
the potential difference there exists a normal electric field 
whose form in the unperturbed state can be determined from 
Poisson's equation 

V·e*E = O. (4) 

We assume that the quasistatic approximation 14 is valid for 
the problem and therefore the electric field is a curl-free vec
tor, 

VAE=O. (5) 

Therefore we can define an electric potential function Q such 
that 

E= -VQ. 

From Eq. (4) 

E = Te j • 

Then potential Q is 

Q= - Ty+D, 

(6) 

(7) 

(8) 

where T and D are constants, since the rheological equations 
and equations of motion governing the upper liquid and the 

* y 

___ ~uo 

1 

v = 0 

FIG. 1. Definition sketch. 
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lower liquid will be in the same form. At this stage we drop 
the superscript for convenience, and consider the steady un
disturbed flow 

u* = u(y*), v* = 0, w* = O. 

For this flow, the constitutive equations can be written as 
follows: 

- + A (iJpll + iJpll U _ T au) = 2 1 (au)2 
PII I at ax* P12 ay* - rJO'"2 ay* ' 

- A (iJp12 - - au) au 
P12 + I ax* u - P22 ay* = rJo ay* ' 

- 1 (iJp13 - - au) 0 P13 +/1,1 --u -P23- = , 
ax* ay* 

- 1 iJp22 - 0 P22+/I,I--U= , 
ax* 

- 1 iJp23 - 0 P23 +/I,I--U = , 
ax* 

- 1 iJp33 - 0 P33 + /I, 1--U = . 
ax* 

The equations of motion can be written as 

0= _ a1f + iJpll + iJp21 + iJp31, 
ax* ax* ay* az* 

(9) 

0= - a1f + iJp12 + iJp22 + iJp32 _ pg, (10) 
ay* ax* ay* az* 

0= _ a1f + iJp13 + iJp23 + iJp33 . 
a z* a x* a y* a z* 

Equations (9) and (10) admit the stress components ofpri
mary flow to be 

P13 = 0, P22 = 0, P23 = 0, 

1f=1f(y*), PII =PII(Y*)' P12 =P12(Y*) . 

We make all quantities nondimensional by letting 

x* = xdl, y* = ydl, U = UUo, 

1f=PIU~1r*, E=E*dl, 

(11) 

E- ( ud )112u,· v* - uU 2p d IU, - P I ()L', Pij = P 0 ij' t = IT 0 • 

The nondimensional forms of the first two equations of (9) 
and (10) are then 

and 

dP~1 
0=-dy , 

0= _ d1T*i _ 1P-2 
dy , 

(12a) 

(12b) 

(12c) 

(12d) 

in which R = Uopudl/rJ~ is the Reynolds number, 
M; = UoA; Idl, M~ = UoA ~/dl' and F2 = U~/gdl is the 
Froude number. The superscript i is taken to be U and / for 
the upper and the lower layer of liquids, respectively, 

PU-l pi Ilu -, = m.", m." = rJo rJo (13) 
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is the ratio of viscosity and 

1'= 1, y=v, v=/Ipu (14) 

is the ratio of density. From Eqs. (12b) and (12c) the equa
tions governing the primary flow can be obtained. These are 

d 2 u u d 2 U I 

--=0 and --=0. (15) 
dy2 dy2 

They are subject to the boundary condition that UU is equal 
to a specified Uo on the upper boundary and U is zero on the 
lower boundary. Also, UU and U andP~z andP~z must be 
continuous at the interface. Equations ( 15) can be solved to 
yield the solutions 

UU = aly + band U I = azy + b 

in which 

al = m."/(m." + n), b = nl(m." + n), 

a2 = lI(m." + n), n = dzldl . 

Equations (12a)-( 12d) become 

P~2 = alIR, P~I = (2IR)(M~ - Mnai , 

d *u _1r_= _F-z, 
dy 

I a 2m." u P I2 =--=P I2 , 
R 

1 2m." I I z d1r*1 _ .1:'-2 P ll =--(M I -M2)a2, --- -Vr . 
R dy 

III. PERTURBATION EQUATIONS 

(16) 

(17) 

We assume that the interface y = 0 is slightly disturbed 
such that 

y = rJ = D exp[ia(x - CT)] , (18) 

where D is a smallness parameter, a indicates the wave num
ber, and C accounts for the complex phase velocity of the 
disturbance. The electric field, the potential, the velocity, the 
pressure, the stress tensor, and the rate-of-strain tensor are 
then 

E = Eo + E', Q = Qo + Q', u* = U + u', 

v* = v', 1r* = n + 1r', PII = PII + (711' 

P12 = P12 + (712' P22 = (722' hll = h;I' 

h12 = H12 + h ;2' hZ2 = h ;2' 

(19) 

in which the strain components are nondimensionalized by 
the unit Uoldl, and (711' (712' (722' and the quantities denoted 
by a prime indicate the small perturbation from the equilibri
um state. The linearized equations of motion are 

The linearized equations of state are 

+ M [
a(711 a(711 U ,aPII 

(711 1 --+-- +v--
aT ax ay 

- 2 -Pll + -P12 + (712 -(
au' au' dU)J 
ax ay dy 
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= 2.h' + 2M2 [ah II + ah II U 
R II R aT ax 

_ (au' + 2h ;2)dU] , 
ay dy 

0"12 + MI(aO"I2 + aO"I2 U + v' ap12 _ 0"22 dU _ av' PI!) 
aT ax ay dy ax 

= 2.h 12 + 2M2 ( ah 12 (21) 
R R aT 

+ ah l2 U+~d2U -h' dU) 
ax 2 dy2 22 dy , 

+ M (
a0"22 + a0"22 U 2 au'p ) 0"22 1 -- - - 12 
aT ax ax 

=2.h~2 + 2M2(ah ;2 + ah 22 U _ au' dU). 
R R aT ax ax dy 

It is clear that the linearization of Eqs. (4) and (5) leads to 
the following: 

V2Q' = 0, where E' = - VQ'. (22) 

In addition to these, we have the equation of continuity 

au' au' 
-+-=0. 
ax ay 

(23) 

In order to retain the meaning of Rand nondimensionalize 
the pressure by the same unit pU U ~ for both layers of liquid, 
a factor l/v will arise on the right-hand sides of Eqs. (20) 
and another factor m'l will arise in Eqs. (21) for those terms 
that contain the Reynolds number R, when the lower layer is 
considered. 

Equation (21) permits the use of a streamfunction in 
terms of which 

, at/; , at/; 
u =-, u = --. 

ay ax 
(24) 

As a result of perturbation, Q', n', t/;, 0"11' 0"12' and 0"22' in 
view of the dependence given by Eq. (18), may have the 
form 

(Q ',n',t/;'O"WO"I2'0"22) 

= [Q(y),J(y), ¢(y), FI (y), F2(y)] exp[ia(x - CT)] . 

(25) 

Substituting from the first equation of Eqs. (25) into Eq. 
(22), the solution of the differential equation is 

Q,u,I=(AU,lexp(ay) +Bu,l exp ( -ay») 

Xexp[ia(x - CT)] , (26) 

where A u, I and B u, I are constants that are to be evaluated by 
making use ofthe appropriate boundary conditions. Substi
tuting Eqs. (25) and (24) into Eqs. (20) we eliminate n' 
and obtain, for the two layers in turn, 

ia[(UU-c)(¢U" _a2¢U)] 

= iaFr' + F~" + a2F~ - iaF~' , 

ia[ (U I - c) (rp"1 - a 2¢1)] 

= iaF~' + rt + a2F~ - iaF~I. 

(27) 

Similarly, substituting Eqs. (17) into Eqs. (21) for the two 
layers, in turn, 
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F; [I + iaM; (U i - c)] 

= M; {iaP I; ¢i + 2(iaP;I¢,i + P;2rp"i + F~ U i,]} 

+ 2ia(Ji¢i/R - (2(JiM~/R) 

X (a2rpn'( U i _ c) + U'i(2rp"i + a 2¢i)] , 

F ~ [1 + iaM; ( U i - c)] 

= M; [ia(p12 ),i¢i + F~ U,; + a 2¢iP\d (28) 

+ «(Ji/R)(¢"i + a 2¢i) + (ia(J'MUR) 

X [(¢'" + a 2¢i)( U i _ c) _ ¢iU"i + 2¢';U,i] , 

F ~ [1 + iaM; ( U i - c) ] 

= 2M;Pi2a2¢i - 2ia(Ji¢';/R + (2(JiM~a2/R) 
X[¢,i(Ui_C) _ U';¢i] , 

in which the superscript i is taken to be u and I as before for 
the upper layer and the lower layer of fluids, respectively. 

IV. BOUNDARY CONDITIONS 

From Eqs. (7) and (8) the electric fields and the poten
tials in the equilibrium state are 

E~,I=Cu,lej and Q~,l= _CU'Y+Du,l. (29) 

The fields and the potentials are subjected to the following 
conditions. 

(a) The electric potential is continuous at the interface. 
(b) Since there are no surface charges on the interface, 

the normal electric displacement is continuous across the 
interface. 

Applying the above conditions and simplifying we get 

Eb = - Vo~u/(EUn + El) , 

E~ = - Voc/(EUn +c), 

(30) 

and 

Q ~ = VoEI [y + n~U /~l ]!(~Un + c) , 
where the subscript 0 will refer to the equilibrium state. 

(c) The continuity of the electric potential at the per
turbed interfaces leads to 

Q,u=Q,1 at y=8exp[ia(x-cT)] 

and 

Q'U = 0 at y = 1, Q,I = 0 at y = - n , 

noting that 

aQu,11 
Qu,I(1J) =Q~,I(O) +1J_o- +Q,u,I(O). 

ay y=O 

(d) The continuity of the normal electric displacement 
across the perturbed interface is, namely, 

~U(Eu'N) = ~1(EI'N) at y = 1J , 

where N is the unit vector normal to the interface, 
N = - 8ia exp[ia(x - CT) lei + ej . 

Note that 
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Hence, from Eqs. (26) and conditions (c) and (d), we ob
tain 

and 

Q 'u = VoEI(EU - E/)D[exp(ay) - exp(a(2 - y»)] 

X exp[ia(x - cr) ]I(EUn + E/) 

X [(EI - EU) - (EI + EU) exp(2a)] 

Q,[ = VoEU(EU - E/)(1 + exp(2a») 

XD[exp(ay) - exp( - a(2n + y»)] 

Xexp[ia(x - cr) ]I(EUn + E/) 

X [(EI - EU) - (EI + EU) exp(2a)] 

X(1 - exp( - 2an»). 

(31a) 

(e) The normal components of the stress tensor IIij 
should be discontinuous at the interface by the surface ten
sion T*, where 

II ij = - (II + EEk E k I2)Dij + EE,Ej + Pij' 

i.e., 

(N,II,y)U - (N,II,y)1 = - SDij "12rt, 

in whichS = T* IpuU~dl and again, variables are evaluated 
at y = O. On substitution from Eqs. (17) and (20) the nor
mal stress condition (e) can be rewritten as 

- a(c'cp'u + alcpU) - aFr + iF~u + aF~ 
+ av(c'cp,1 + a2cpl) + aFi - iF~1 - aF~ 

= a[ (v - 1 )F~2 + a 2S]D - a2V~EUE/(1 + exp(2a») 

XD(EU - E/)2(1 + exp(2a»)/(EUn + E/) 

(31b) 

(f) The shear stress is continuous at the perturbed inter
face, this condition yields 

F~ =F~ - iaV~~~(~ - ~)D/(~n +~) at y = O. (3Ic) 
(g) On the boundaries, the zero normal velocity and 

nonslip condition demand that 

cpU(l) =0, (31d) 

cpU(l) =0, (3Ie) 

cpl( - n) = 0, (31f) 

cpl( - n) = O. (31g) 

(h) The continuity of v' at the interface demands that 

cpU(O) = cpl(O) . (3Ih) 

(i) The kinematic boundary condition at the interface is 

( art + UU art) = v' = _ iacpU(O) exp [ia(x - cr)] . 
ar ax 

From this we find 

rt = (cpU(O)lc')exp[ia(x - cr)] (3li) 

in which c' = c - UU (0) . 
(j) The continuity in u' at interface then demands that 

cp'U(O) + cpU(O) U'U(O)/c' = cp,/(O) + cpl(O)U,/(O)lc' . 

(3Ij) 
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The differential system governing the stability consists of 
Eqs. (27), (28), and (3Ia)~(3Ij). 

V. SOLUTION OF THE DIFFERENTIAL SYSTEM 

The regular perturbation technique is used to solve the 
eigenvalue problem for long waves (a ~ 1 ). From substitut
ing Eqs. (28) into Eqs. (27) and (3Ia)~(3Ij), we have to 
the first power of a, 

cp",,1 - iaRv( U I - C)cp,,1 1m." = 0, 
(32) 

cpU(l) =0, cpU(l) =0, cpl(-n)=O, cpl(-n)=O, 
(33) 

(34) 

cp'U(O) - cp,/(O) + (a l - a2)cpU(0)/c' = 0, (35) 

cp"u _ iabM(2cp'uU 'u + cp"U( uu _ c») - m."cp,,1 

+ iam."mA bM(2cp'/U I + r/( U I - c») 

= - iaRV~EuElcpU(O) (EU - EI)lc'(EUn + EI) , (36) 

cp",u(1 + iabMmA (U
I - c») + iaR(c'cp'u + alcpU) 

+ iaAMU'ucp"u - m."cp",/(1 + iaAM( UU - c») 

- iabMm."mA U 'lcp"l 

+ iaR (v - I)F ~2cpU(0)lc' = 0 , (37) 

in which 

bM=Mr -M~, 

mA = (Mi - Mi )/(Mr - Mn (38) 

= (Ai -A~)/(Ar -An 

and primes, expect the prime on c, indicate the derivative 
with respect to y. Following the approach of Yih, 15 by ex
panding the eigenfunctions and eigenvalue in a power series 
of wave number a, 

cpU = CPo + aCPI + a 2cp2 + ... , 
cpl = Xo + aXI + a 2X2 + ... , 
c = Co + aCI + a 2c2 + ... , 

where the subscripts 0, 1, and 2 refer to the zeroth, first, and 
second approximations. 

A. The zeroth-order approximation 

After some rather lengthy calculations, we obtain the 
solution of the zeroth-order differential system as follows: 

CPo = 1 +Aly +A2y2 +A3y3, 

Xo= 1 +Bly+B2y2+B3y3, 

in which 

AI = - (m." + 3n2 + 4n3)/2n2(1 + n), 

BI = (n3 + m 71 (4 + 3n»)/2m 7l n(1 + n), 

B2 = (n 3 + m 71 )ln
2m 71 (I + n), 

B3= (n 2-m7l )/2n2m 7l (1 +n), 

A2 = m"B2, A3 = m7l B 3 • 
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FIG. 2. A representation of the system whose particulars are 
e" = 2.284, e' = 80.37, R = to, F= 1, and v = I. Here u denotes unstable 
regions and s refers to stable regions. For m~ = 0.1 and the solid curve is for 
n = 0.4, the solid curve marked with. is for n = 1.0, the solid curve 
marked with'" is for n = to, the solid curve marked with D is for n = 0.8, 
the dotted curve for n = 0.9 marked with. is for n = 0.6. 

The eigenvalue Co is determined by 

C; = Co - b = 2n2m1) (1 + n)(a l - a2) 

x[m; +2nm7J (2+3n +2n2) +n4J-I. 
(41 ) 

B. The first-order approximation 

Having obtained the eigenvalue Co and eigenfunctions,po 
and X 0' we substitute them into the equations governing the 
first-order approximation. After some rather lengthy calcu
lations, the general solutions are found to be 

,pI =A fy +A !y2 +A Ty 3 + iRHI(y) , (42) 
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FIG. 3. The same as Fig. 2 except for m~ = 0.4, the solid curve for n = 0.8, 
the solid curve marked with. is for n = 0.9, the solid curve marked with ... 
is for n = 1.0, the solid curve marked with D is for n = to. 

in which 

and 

HI (y) = a 1A3y6/60 + (a 1A 2 - 3A3C; )y5/60 

- cbA2y4/12 , 

H2 (y) = a2B 3 y6/60 + (a2B 2 - 3B3Cb )y5/60 

- c;BV04
/ 12 . 

The six constants of integration and hence the eigenvalue 
will be determined from the first-order approximation of the 
boundary conditions. We get 

A f + A r + A T + iRHI (1) = 0 , 

A f + 2A ! + 3A T + iRH ; (1) = 0 , 

nBT-n2B!+n3BT-iRvH2( -n)/m1) =0, 
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FIG. 7. The same as Fig. 2 except for m'l = 1.25, the solid 
curve for n = 0.4, the solid curve marked with. is for n 1.0, 
the solid curve marked with'" is for n = 0.8, the solid curve 
marked with 0 is for n = 0.9, and the dotted curve is for 
n 0.6. 
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FIG. 8. The same as Fig. 2 except for n 10, the solid curve for m'l = 1.25, 
the solid curve marked with. is for m'l 2.5, the solid curve marked with 
... is for m'l 4.0, the solid curve marked with 0 is for m'l = 10, the dotted 
curve is for m" = 5.526 and dotted curves marked with. are for my! = 8. 

FIG. 9. The same as Fig. 2 except that the solid curve for mrt 0.4 and 
n = 0.4, the solid curve marked with. is for m" = 0.4 and n 0.6, the 
solid curve marked with'" is for m'l 0.8 and n = 0.8, the solid curve 
marked with 0 is for m7J = 0.8 and n = 0.4, the dotted curve for m." is equal 
to 0.8 and n = 0.6, the dotted curve marked with. is for m." equal to 0.1 
and n = 0.1, and the dotted curve marked with 0 is for m'l 0.4 and 
n 0.1. 
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FIG. 10. For a system having F = 0.1 and 1.0, and v = 1.0 and 1.4, the 
group of curves I represent the case when m. = 1.25 and n = 0.1, curves II 
for m. = 0.1 and n = 0.4, curves III for m. = 0.4 and n = 0.4, and curves 
IV for m. = 1.25 and n = 10, where solid curves are for F = 1.0 and 
v = 1.1, the solid curves marked with. are for F = 1.0 and v = 1.4, the 
dotted curves for F = 0.1 and v = 1.1, and the dotted curves marked with. 
arc for F= 0.1 and v = 1.4. 

Bt-2nB!+3nZBt+iRvH;( -n)/mT} =0, 

At-Bt+ (az-aJ)cJ/c~2=0, 

A! - m7lB! - it:.MK J 

+ iR V6EUE1(EU - E1)/(EUn + El) = 0 , 

A t - mT}B t + iRKz + it:.MK3 = 0 , 

in which 

and 

2798 

K J = alAI - c~Az - mT}mA (azB] - c~Bz) , 

Kz = (v - 1) [(1/cbPz) - cbA] - ad/6, 
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(43) 
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FIG. 11. For a system having R = 10 and 100, the group of curves I repre
sents the case when m. = 0.4 and n = 0.1, curves II for m" = 0.1 and 
n = 0.6, curves III for m. = 1.25 and n = 0.6, and curves IV for m. = 1.25 
and n = 10, where the solid curves are for R = 10 and the dotted curves are 
for R = 100 . 

We note that the electric field effect is felt only through 
the condition of continuity of shear stress at the interface in 
the linearized case. Also the surface tension T * is eliminated 
because we take only the first power wave number. In future 
papers we will take into consideration the problem of nonlin
ear wave numbers up to the third power. This will require 
more complicated treatment to be solved. In this case the 
term of the surface tension will appear. 

Separating the eigenvalue c] into real and imaginary 
parts as c] = (c l ), + i(c]);, we obtain from Eqs. (43) the 
result (c]), = 0, and 

in which 

J I = (cb2/mT}(a1 - az»){mT}(H; (1) - 2H](1») 

- 2vHz( - n)/n - vH; ( - n) 

- m7l K2 + ((mT} - nZ)/2(1 + n») 

X [HI(1) -H;(1) -vHz( -n)/nz 

- vH; ( - n)/n + 2Kz]} , 

Jt = c~2(mT} - n2)/2mT} (a l - az) (1 + n) , 

Nabile T. M. Eldabe 
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J2 = (cf/!mTJ(a l - a2 »)[ (n 2 
- m TJ )KI/2(1 + n) 

- n(n + mTJ )K3/( 1 + n)] , 

Vt 2 = V~€u€l(1 - €**)/(n€** + 1) , 

and €** = €U I €l is the dielectric ratio. 

VI. RESULTS AND DISCUSSION 

The (c I) j given by Eq. (44) is the criterion of stability. 
The flow is stable when (c I) j is negative and unstable when 
it is positive. It consists of three parts: RJI due to the viscos
ity, /llfJ2 due to the elasticity of the liquids, and RJ T Vt 2 

due to the electric field. For Va = 0, Eq. (44) becomes 

(c1)j = RJ1 + /llfJ2 , (45) 

which is in agreement with Li'sJO result for non-Newtonian 
fluids, while, for /llf = 0, Eq. (45) becomes 

(c1)j = RJ1 , (46) 

which reproduces Yin's 7 results for Newtonian fluids. 
To see the effects of the flow phenomena, numerical cal

culations have been carried out, and by plotting the curves 
V~ = (RJ1 + /llfJ2 )(n€** + 1)IRJT€u€I(1- €**) for 
various values of mTJ (viscosity ratio), n (depth ratio), m;. 
(elasticity ratio), v (density ratio), R (Reynolds number), 
€** (dielectric ratio), and F (Froude number), we can as
certain the regions of instability and stability. We do this in 
Figs. 2-11 using a log-log scale in order that the effect of 
reciprocating the ratios can be easily observed. We discussed 
the stability of the system under the electric field by drawing 
the curves in the v~-m;. plane. The letter s stands for stable 
regions and u for unstable regions. 

Figures 2-4 represent the cases for mTJ = 0.1, 0.4, and 
0.8, respectively, and different values of n where 
€** < 1, mTJ < 1, and mTJ <n2

• The stable and unstable re
gions for the solid curve are shown: the solid curve marked 
with e, the solid curve marked with A, the solid curve 
marked with 0, and the dotted curve marked with e are 
(Sl' u I ), (S2' u2 ), (S3' u3 ), (S4' u4 ), (S5' us), and (S6' u6 ), re
spectively. We show from Fig. 2 that at n 2 

- mTJ = 0.06 the 
unstable region slightly increases, this occurs up to a value of 
m;. very close to 0.4, and then the stable region increases as 
m;. increases. For values of n2 

- mTJ = 0.26 and higher, the 
stable region decreases as n increases. In Fig. 3 we observe 
that at n2 

- mTJ = 0.24, the unstable region slightly in
creases up to a value of m;. very close to 0.8, and then the 
stable region increases as m;. increases, while for values of 
n 2 

- mTJ = 0.6 and higher the stable region decreases as n 
increases. It is clear from Fig. 4 that at n2 

- mTJ = 0.01, the 
unstable region increases up to a value of m;. very close to 1, 
and then the stable region increases as m;. increases. But for 
values of n2 

- mTJ = 1.16 and higher the stable region de
creases as n increases. 

Figures 5-7 represent the v~ -m;. plane for the case 
where €** < 1, mTJ > 1, and mTJ > n2, but in Figs. 5 and 6 we 
draw curves for n = 0.1 and 0.4, respectively, and for differ
ent values of m TJ , while in Fig. 7 we draw curves for mTJ 
= 1.25, and different values of n. We observe from Fig. 5 

that the unstable region increases as m A and mTJ increases. In 
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Fig. 6, we show that as mA increases the unstable region 
increases, while for mTJ increases the unstable region in
creases up to a value of mA very close to 15, and then the 
stable region increases as mA increases. From Fig. 7 we can 
see that mTJ - n2 equals 0.89 and greater. The stable region 
increases as n increases, but for values of m'1 - n2 1ess than 
0.89, the stable region decreases as n decreases to mA very 
close to 2, and then the stable region increases with m;.. 

Figure 8 illustrates the case when €** < 1, m'1 > 1, and 
mTJ < n2. We take the special case n = 10, for different values 
of m TJ , we observe that as mTJ increases not greater than 
5.526, the unstable region increases. For a value of mTJ 
greater than 5.526, the stable region increases with mTJ up to 
a value of m;. very close to 4, and then the unstable region 
increases as m A increases. 

The case where €** < 1, mTJ < 1, and mTJ > n2 is illustrat
ed in Fig. 9 for different values of mTJ and n. We show that for 
mTJ = 0.4 and mTJ - n2 = 0.04, the unstable region increases 
up to a value of m;. very close to 0.6, and then the stable 
region increases as m;. increases. For values of mTJ 
- n2 = 0.24 and higher the unstable region increases as n 

increases, while for mTJ = 0.8, and mTJ - n2 = 0.16, the un
stable region increases up to a value of mA very close to 2, 
and then the stable region increases as m A increases. For 
values of mTJ - n2 = 0.44 and higher the unstable region in
creases as n increases. Also from the same figure for n = 0.1 
and various values of m'1 = 0.1 and 0.4, respectively, we can 
show that the stable region increases as mTJ increases. In this 
figure the dotted curve marked with 0 divide the plane into 
two regions stable S7 and unstable u7 • 

Our computations are also carried out for different val
ues of the Froude number F, and density ratio v for the cases 
of mTJ < 1 and mTJ <n2, mTJ> 1 and mTJ >n2, mTJ > 1 and 
mTJ < n2, and mTJ < 1 and mTJ > n2. The results demonstrate 
that the unstable region increases while increasing the value 
of F, while the stable region increases while increasing the 
value of v. This case is represented numerically in Fig. 10. 

Figure 11 shows the variation of v~ with m;. , m TJ , and n 
for different values of the Reynolds number R. We see that 
the stable region increases with the increasing value of R, 
this occurs for the cases having mTJ < 1 and m'1 < n2, and m'1 
> 1 and mTJ > n2

, while for the cases having mTJ < 1 and m'1 
> n2, and m'1 > 1 and mTJ < n2, the unstable region increases 
with increasing the value of R. 

Computations for v6 are also carried out for all previous 
cases when €** changes from 0.02842 to 35.1883. A mirror 
image around the m A axis of the curves occurs. Similar be
havior occurs for all values of E** and its reciprocal. In order 
to shorten the paper all tables and some figures are not pre
sented. 

It is clear from previous results that for €** < 1, mTJ ~ 1, 
and m'1 ~n2, the electric term is positive and the flow is stable 
or unstable according to whether v6 is greater or less than 
(RJ1 + /llfJ2) (n€** + 1) I RJ TEu~ (1 - €**). Also, this 
condition is still satisfied for E** > 1, mTJ < 1, and mTJ ~n2, 
while for €** < 1,mTJ > l,andm TJ <n2, the system is stable or 
unstable according to whether v6 is less or greater than 
- (RJ1 + /llfJ2)(nE** + l)IRJT€uEl(1- €**). 

From the foregoing it can be concluded that the electric 
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field destabilizes the flow for certain values of n, m'l' m).. , F, 
v, R, €**, and the electric potential vo, and stabilizes it also, 
for other values of these variables. 
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Kalita and Bujarbarua [J. Phys. A: Math. Gen. 16, 439 (1983)] obtained a set of equations to 
describe the nonlinear propagation of ion acoustic waves in a warm magnetoplasma and made 
a numerical study of these equations for particular values of the physical parameters. In this 
paper a rigorous and general analytical study is presented. Some simple necessary and 
sufficient conditions for solitary wave solutions are derived and it is also shown that cavity 
solutions are not possible. 

I. INTRODUCTION 

For the nonlinear propagation of ion acoustic waves in a 
warm magnetoplasma, Kalita and Bujarbarua 1 have ob
tained the following evolution equation: 

d
2
F(n) = G(n), (1) 
dr/ 

where 

F(n) = log n + ~O"n2/3 + M2/2n2, 

G(n) = {- (/;/M2) [(n - 1)n 

+ ~0"(n5/3 - 1)n] + (n - I)}, 

1/ = IxX + IzZ -Mt, 

n = n(1/), 

I;' + I; = 1, 

0" = 5poI3noTe' 

(2) 

Here n is the ion density, no the equilibrium ion density, Po 
the equilibrium ion pressure, Te the electron temperature, M 
the velocity of nonlinear waves, and lx, Iz are constants. The 
notation used here is exactly the same as that used by Kalita 
and Bujarbarua. 1 

The boundary conditions for localized waves are 

~=o 1 atn = , 
d1/ 

(3a) 

and 

n = 1 at 1/ = ± 00. (3b) 

Integrating ( 1) and using (3a), one gets 

(~:r(~~r =J(n), (4a) 

where 

J(n) = 2 f'G(n')F'(n')dn " (4b) 

Thus to obtain localized wave solutions one has to solve 
Eq. (4) subject to the boundary condition (3b). 

a) Formerly Morning Section for Girls, Netaji Nagar College. 

However, in view of (4a) one has to ensure that 

J(n»O (1) 

for all values of n. 
Kalita and Bujarbarua explicitly evaluated the integral 

in (4b) and attempted to obtain the conditions under which 
the inequality (1) is satisfied. However, they failed to obtain 
general analytic results due to the complexity of the integral 
expression and restricted their study to a numerical integra
tion of the equation with specific values of the constant pa
rameters. Their results are further limited by the fact that 
they could check the validity of (I) at two limiting values of 
n and not for the intermediate region. 

The purpose of this paper is to provide a general analyti
cal solution of the above problem. It will be shown here that 
one can find simple necessary and sufficient conditions for 
the validity of (I) and hence for localized waves, by use of 
analytical methods without resorting to an explicit integra
tion of the right-hand side of (4b). 

II. AN ANALYTICAL STUDY 

A. Necessary and sufficient conditions 

From expressions for Fand G given in Eq. (2), it is easy 
to make the following observations: 

Observation 1: For n > 0, dF / dn = ° can hold at only 
one value of n. 

Observation 2: For n > 0, G = ° can hold at most for two 
values ofn. 

Observation 3: G(1) = 0. 
Now we establish the following theorem. 
Theorem: For given values of lx, Iz' 0", and M, the neces

sary and sufficient conditions for a solution of Eq. (4) that 
gives real n as a function of 1/ and satisfies (3) are as follows. 

Condition (i): 

(N - n)(n - 1»0, 

i.e., either 

l<n<NorN<n<l, 

for all values of nand N such that 

J(N) = 0. 

Condition (ii): 

2801 J. Math. Phys. 28 (11), November 1987 0022-2488/87/112801-03$02.50 @ 1987 American Institute of Physics 2801 



                                                                                                                                    

(n - I)G'(1)F'(n) >0 

in a deleted neighborhood of n = 1 (i.e., for n"", 1 ). 

Condition (iii): 

F'(1)F'(N) >0. 

Condition (iv): 

(N - l)F'(1)G(N) <0. 

Proof' Conditions are necessary. 
Condition (i) is necessary. 
From (3b), we see that n is bounded at 17 = 00. Since for 

our problem n is to be taken as a continuous function of 17, it 
is bounded for finite 17. Let n l and n2 be, respectively, the 
lower and upper bounds of n. Then 

(Sa) 

dn 
- = 0 at n = n I' nz. 
d17 

(5b) 

Since in view of (Sa), dF Idn is finite, we must have from 
( 4a) and (5b) 

J(n) = 0 at n = nl,nz. 

By virtue of (3 ) , 

n ,<I<n2 • 

(6) 

(7) 

Then from (6) and by Rolle's theorem of differential calcu
lus, there exist two numbers n3 , n4 such that either 

or 

J'(n 4 ) =0, n,<1 <n4 <nZ' 

From (4b) and (8), either 

G(n)F'(n) = 0 at n = n3 , 

or 

G(n)F'(n) = 0 at n = n4 • 

From observation (1) and (9), if we suppose 

F'(n) = 0 at n = n3, 

then we get 

G(n)=O at n=n4 • 

From (4a) and (10), we get 

J(n) = 0 at n = n3 • 

(8a) 

(8b) 

(9a) 

(9b) 

(10) 

(11 ) 

(12) 

From (6), (12), and by Rolle's theorem, there exist two 
numbers ns and no such that 

and 

J'(n)=O at n=nS ,n6 • 

From (4b) and (13b), we get 

G(n)F'(n) = 0 at n = nS ,n6 , 

( 13a) 

(13b) 

which is impossible by observations (1)-(3) and by (10) 
and (11) .... n l < 1 <n2 is not true .... Either n l = 1 or n2 

= 1. So, we can write that either 

l<n<N, whereN=n2 ifn , =1 

or 
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N<n<l, where N = n l ifnz = 1, 

i.e., (N - n)(n - 1);>0 for all values of nand N is such that 
J(N) = 0, which follows from (6). 

Condition (ii) is necessary. 
We observe that 

J'(n) > 0 (14) 

in the deleted neighborhood of n = 1, i.e., in the neighbor
hood of n = 1 excluding this point n = 1. 

Since G(n) is an analytic function of n, the Taylor series 
expansion of G(n) around n = 1 gives 

G(n) = G(1) + (n - I)G'(1) + .... (15) 

.'. From (4b), (14), (15), and using observation (3), we get 

(n - I)G'(1)F'(n) >0 

in the deleted neighborhood of n = 1 (i.e., n = 1). 
Condition (iii) is necessary. 
We shall first show that dF Idn cannot vanish in [nl' 

nz]. If possible, let 

dF 
- = 0 at n = noE[nl,nz]' (16) 
dn 

Then from (4a), (4b), (16), and (6), we get 

J(no) =J(n l ) =J(nz ) =J(1) =0. (17) 

.'. From (17) and from Rolle's theorem, there exist two 
numbers n7 and ns such that 

(18a) 

and 
(18b) 

From (16) and observation (1), we conclude that dF I 
dn = 0 cannot happen at n = n7,nS' Then from (4b) and 
(18b), we get 

(19) 

From observation (2), observation (3), and Eq. (19), it fol
lows that either n7 = 1 or ng = 1. 

If n7 = 1, then from (17) and (18a) and by Rolle's 
theorem, we get at least one n9 such that 

(20a) 

(20b) 

From (4b) and (20), we see that either G = 0 or F' = 0 at 
n = n9 , which is impossible by observation ( 1 ), observation 
(2), observation (3), and Eqs. (16) and (19). 

Similarly, we arrive at the same situation if ns = 1. So, 
dF Idni=O in [nl,nz]' 

Hence F' ( 1) and F' (N) are of the same signs, i.e., 

F'(1)F'(N) >0. 

Condition (iv) is necessary. 
To satisfy the inequality (I) in the vicinity ofn = None 

must have 

i.e., 

J'(N) <0 if N> 1, 

J'(N»O if N<I, 

(N - 1)J'(N) <0. (21) 

K. K. Ghosh and D. Ray 2802 



                                                                                                                                    

From (4b), (21), and using condition (iii), we get 

(N - I)G(N)F'(l) <0. 

The following conditions are sufficient. 
Sufficiency will be established by showing that if condi

tions (i)-(iv) hold then the inequality (I) holds for 
(N - n) (n - 1);;.0 and boundary condition (3) is satisfied. 
That the inequality (I) is satisfied in the vicinity of n = 1 
and n = N (i.e., for values of n sufficiently close to either 1 or 
N) when conditions (i)-(iv) hold can easily be established 
by retracing the argument given in proving that the "condi
tions are necessary." 

To show that the inequality (I) is satisfied for the entire 
interval between 1 and N if conditions (i)-(iv) hold we pro
ceed as follows: If possible, let the inequality (I) be not satis
fied between 1 and N. Then there exists a number No such 
that 

J(No)<O for I<No<N or N<No<1. 

But we have already proved that 

J(n);;'O for n-;::; 1 and n-;::;N. 

Owing to the continuity of the function J( n), there exist two 
numbers Nt, N2 such that 

J(Nt ) =J(N2) =J(l) =J(N) =0, 

where either 

1 < Nt < No < N2 < N 

or 

N <N2 <No <Nt < 1. 

(22) 

Then from (22) and from Rolle's theorem, there exist 
numbers N 3, N4, Ns such that 

1 <N3 <Nt <N4 <N2 <Ns <N (23a) 

or 

and 

J'(N3) =J'(N4) =J'(Ns ) =0. (23b) 

From (4b) and (23b), we get that either 

which is impossible by observation (2), observation (3), and 
condition (ii). 

... If conditions (i)-(iv) hold then inequality (I) is sat
isfied for (N - I) (N - n) < O. 

Now we establish that the boundary condition (3) is 
satisfied, (4a) can be written as 

f dF
/
dn f + --dn = + d1], 

- J(n) -
( 4a') 

since for n = 1, dF / dn is finite and from (4a) we get that for 
n = 1,1] = ± 00 and hence dn/d1] = 0 for n = 1. 

B. Simplification of conditions 

The conditions (i)-(iv) can be simplified as follows. 
Using the expression for F(n) and G(n) in Eq. (2), condi
tion (ii) can be explicitly written as 
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(24a) 

and 

M2/1; < 1 + U<M2 for n < 1. (24b) 

But (24b) can hold only if I; > 1, which is impossible be
cause!: + I; = 1: 

".M2/1; > 1 + U>M2 for n> 1. (25) 

Equation (25) is equivalent to 

G'(l) >0 and F'(l) >0. 

Then conditions (iii) and (iv) are reduced to 

F'(N) >0 

and 

(N -1)G(N) <0, 

respectively, i.e., 

N 2 + uN S
/ 3 _ M2>0 

and 

(N -l){ - (/;/M2)[(N -1)N 
+~u(NS/3_l)N] + (N-l)}<O. 

Equation (27) can be rewritten as 

N=K3, 

uK s +K 6>M 2
, 

M2 3uK 3(K 4+K 3+K 2+K+l) 
_<K 3 + . I; 5(K 2+K+l) 

At this stage we note that 

uK s + K6~U + 1, 

3uK 3(K 4+K 3+K 2+K+ 1) K3+ ~1+u 
5(K 2 +K + 1) 

(26) 

(27) 

(28) 

accordingly as K~ 1. Relations (25) and (28) can be com
bined to give 

3K3U(K4+K3+K2+K+ 1) K 3 + __ --'----_.:........,._-'--_-'-_-'-----'--
5(K 2+K+1) 

M2 
>-> 1 + U>M2, 

J2 z 

(29) 

for N = K 3> 1, and N < 1 is not possible. 

III. CONCLUSION 

In summary, for solutions of ( 1) and (2) subject to the 
boundary conditions (3) representing localized ion acoustic 
waves in a warm magnetoplasma one can get only humps 
(i.e., N> 1) and cavities (i.e., N < 1) are not possible. The 
conditions for humps are given by (29). 
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